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ON SMOOTHNESS OF ISOMETRIES BETWEEN

ORBIT SPACES

MARCOS ALEXANDRINO AND ALEXANDER LYTCHAK

Abstract. We discuss the connection between the smooth and
metric structure on quotient spaces, prove smoothness of isome-
tries in special cases and discuss an application to a conjecture of
Molino.

1. Smoothness of isometries

1.1. The main question. Given an action of a closed group of isome-
tries G on a Riemannian manifold M , the quotient X = M/G is
equipped with the natural quotient metric and a natural quotient “smooth
structure”. The smooth structure on X is given by the sheaf of “smooth
functions” C∞(U) := (C∞(π−1(U)))G, where U ⊂ X is an arbitrary
open set and π : M → X is the canonical projection. One says that a
map F : M/G → N/H between two quotient spaces is smooth if the
pull-back by F sends smooth functions on N/H to smooth functions
on M/G. If F is bijective and smooth together with its inverse, it is
called a diffeomorpism.
If X is (isometric to) a smooth Riemannian manifold, i.e., if M → X

is a fiber bundle, then the quotient smooth structure on X is the same
as the underlying smooth structure of the Riemannian manifold X . In
this case, the classical theorem of Myers-Steenrod ([MS39]) states that
the metric of X determines its smooth structure. This motivates the
following natural and simple-minded question:

Question 1.1. Does the metric of a quotient space X determine its
smooth structure? In other words, given two manifolds with isometric
actions (M,G) and (N,H) and an isometry I : M/G → N/H, is I
always a diffeomorphism?

Key words and phrases. Isometric groups action, singular Riemannian foliations,
invariant function, basic form.
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1.2. Comments on the smooth structure. Before we proceed, we
would like to make a few comments about the smooth structure on
quotients. First and most important: the terms “smooth structure”,
“smooth function”, “diffeomorphism” may be misleading, since the
quotient X = M/G almost never is a smooth manifold. We adopt the
notation of [Sch80] and hope that the terms are not too ambiguous.
By definition, the projection π : M → X = M/G is smooth; a map

F : X → Y is smooth iff F ◦ π is smooth. Note that the smooth struc-
ture (and the metric on the quotient) does not change if one replaces
the action of G by an isometric action of another group, orbit equivalent
to the action of G, i.e., having the same orbits. The question when a
smooth map (a diffeomorphism) F : M/G → N/H (of a space to it-
self) can be lifted to a smooth map (diffeomorphism) between the total
spaces M and N is highly non-trivial (cf. [Str82], [Sch80], [Sch09]).
Clearly, one can always reduce question of smoothness to the the case

where the manifolds in question are connected. Below we will always
implicitly make this connectedness assumption. Using distance func-
tions to orbits, one easily constructs arbitrary fine smooth partitions of
unity in quotient spaces. In particular, this implies that all questions
concerning smoothness are local.
Let p ∈ M be an arbitrary point and let V ⊥

p be the normal space

to the fiber through p. The isotropy group Gp acts on V ⊥

p defining
the slice representation at p. The famous slice theorem (cf. [Bre72])
says that the exponential map exp : V ⊥

p → M descends to a local

diffeomorphism O ⊂ V ⊥

p /Gp → M/G from a small neighborhood O of

0 to a small neighborhood O′ of x = π(p) ∈ X . The space V ⊥

p /Gp is
the tangent space of X at x (in the sense of metric geometry) and the
above diffeomorphism will also be denoted by expx.
Let now I : X = M/G → Y = N/H be an isometry and let x ∈

X a point with y = I(x). Then I sends geodesics starting at x to
geodesics starting in y. Thus, on a small neighborhood of x we have
I = expy ◦DxI ◦ exp−1

x , for the induced isometry DxI between the
metric tangent spaces DxI : TxX → TyY . Since the exponential maps
are local diffeomorphisms, I is a local diffeomorphism at x if and only
if the isometry DxI is a diffeomorphism between the quotient spaces
TxX := V ⊥

p /Gp → TyY = V ⊥

q /Hq. Here, p and q are arbitrary points
in the orbits corresponding to x and y respectively. This reduces our
main Question 1.1 to the case of representations.
Recall that, for a representation of a compact group G on a vector

space V , the set of G-invariant polynomials is finitely generated by
some polynomials f1, ..., fn, due to a theorem of Hilbert. By a theorem
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of Schwarz, any smooth G-invariant function on V is a smooth function
of the polynomials (f1, ..., fn) ([Sch75]). Thus to prove that an isometry
between quotients of representation is a diffeomorphism, it is sufficient
(and necessary) to prove that it preserves invariant polynomials.
The last remark leads to an interesting question in metric geometry.

Namely, any G-invariant polynomial of degree n on a representation
vector space V of G defines a map on the quotient space V/G, whose
restriction to each geodesic is polynomial of degree at most n. It seems
interesting to recognize such functions metrically:

Question 1.2. Let X be an Alexandrov space. Let f be a function
whose restriction to each geodesic is a polynomial of degree at most n.
Does it have some implication on the structure of X?

For n = 1, the answer is yes and a splitting result under the assump-
tion that X does not have boundary has been obtained in [AB05]. It
corresponds to the easy statement that G-invariant linear functions on
V can exist only if the set of fixed points of G is non-trivial. Already
for n = 2, Question 1.2 seems to be much harder.

1.3. Known results. Probably, the main contribution of this note
containing more questions than results, is the observation that Ques-
tion 1.1 is non-trivial and interesting for applications and for its own
sake. We are going to explain now, that our Question 1.1 has been an-
swered in special cases by some famous theorems. Beyond the theorem
of Myers-Steenrod, mentioned above, there are two important algebraic
results.
The first result is the famous restriction theorem of Chevalley ([Che55]).

Let p be the tangent space of a symmetric space M = G/K with the
induced isotropy representation of K. Let a be a maximal flat in p

and let W be the (finite) stabilizer of a in K. The isotropy representa-
tion is polar, meaning that the embedding a → p induces an isometry
I : a/W → p/K; we refer to [AG07], [Mic96], [LT10] for basics facts
about polar actions. The theorem of Chevalley says that this isometry
induces an isomorphism between the rings of invariants, i.e., that I is
a smooth map.
The second result is the theorem of Luna and Richardson ([LR79]).

Given an isometric action of G onM with non-trivial principal isotropy
group H = Gp of a regular point p ∈ M , let M̄ be the connected
component through p of the set of fixed points MH of H . The nor-
malizer N(H) of H in G stabilizes the generalized section M̄ (cf.
[GOT04], [Mag]) and the embedding M̄ → M induces an isometry
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I : M̄/N(H) → M/G (to be precise, if MH is not connected, one may
need to replace N(H) by an open subgroup of it) .
If M is a Euclidean vector space then the main result of [LR79] (after

applying a complexification and using [Sch75], cf. [Str94]) says that I
is a diffeomorphism. Applying the reduction procedure to slice rep-
resentations from the previous subsection and using that the tangent
space of a generalized section is a generalized section of the slice rep-
resentation, we deduce that the reduction map I is a diffeomorphism
for arbitrary M .

Remark 1.1. In fact, applying Theorem 2.2 from [LR79], instead of
the special case we have applied above, one deduces that the reduction
of (M,G) to any generalized section (Σ, N) in the sense of [GOT04]
induces a diffeomorphism I : Σ/N → M/G.

Finally, we mention the extension of Chevalley’s restriction theorem
to general polar actions by Michor ([Mic96], [Mic97]).

1.4. Some new simple observations. Our first observation is that
the analogue of the theorem of Myers-Steenrod is true if the quotient
is isometric to a Riemannian orbifold:

THEOREM 1.3. Let X = M/G be as above. If there is an isometry
I : X → B, where B is a smooth Riemannian orbifold, then I is a
diffeomorphism between the quotient smooth structure of X and the
underlying smooth orbifold structure of B.

A few comments before we proceed. The assumption that X is
(isometric to) a Riemannian orbifold is satisfied in many geometric
situations, for instance, for actions of cohomogeneity at most 2, for
variationally complete or polar actions ([LT10]). The quotient X is a
Riemannian orbifold if and only if the action is locally diffeomorphic to
a polar action, for which reason, such actions are called infinitesimally
polar. Another equivalent formulation is that all slice representations
are polar. However, for polar actions (representations) Theorem 1.3
follows from the proof of Michor ([Mic96], [Mic97]). The reduction of
the global to the infinitesimal problem discussed in Subsection 1.2 pro-
vides now a proof of Theorem 1.3. (A slightly different proof of the
Theorem will be explained in the last section).
From the theorem of Myers-Steenrod one deduces that the smooth

structure on a Riemannian orbifold is uniquely determined by the met-
ric. Hence we get
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Corollary 1.4. The answer to Question 1.1 is affirmative if M/G is
isometric to a Riemannian orbifold, i.e., if the action of G on M is
infinitesimally polar.

We are going to deduce the affirmative answer to our main question
in another special case. Again the proof will be an easy consequence
of known results.

THEOREM 1.5. Let X = M/G and Y = N/H be of dimension at
most 3. Then each isometry I : X → Y is a diffeomorphism.

Proof. If the dimension of X is at most 2, then the action is infinites-
imally polar and the result follows from Corollary 1.4. Thus we may
assume that X and Y have dimension 3. Proceeding as in Subsection
1.2, we may assume that M = V and N = W are real vector space
representations of G and H respectively (we might replace G and H by
corresponding isotropy groups). If one of the representations is polar,
so is the other, and the result follows again from Corollary 1.4. Thus
we may and will assume that the representations are not polar.
We may replace G and H by larger groups G′ ⊂ O(V ) and H ′ ⊂

O(V ) having the same orbits as G and H respectively, whenever it
is possible. Using the theorem of Luna-Richardson, we may replace
(G′, V ) by the generalized section (N(G′

p)/G
′

p, V
G′

p) and perform the

same operation on (H ′,W ). In this way we get an isometry Î : V̂ /Ĝ →

Ŵ/Ĥ , where Ĝ and Ĥ act on V̂ and Ŵ respectively, such that the
principal isotropy groups are trivial and the groups cannot be enlarged
without enlarging the orbits. Due to the theorem of Luna-Richardson,
all maps we used producing the ”reduction“ Î are diffeomorphism.
Hence it suffices to prove that Î is a diffeomorphism.
Note that the actions of Ĝ (and Ĥ) are not polar. Now we invoke the

classification of all representations of cohomogeneity 3, as it is discussed
in [Str94]. From the above assumptions on the representations we

deduce that Ĝ and Ĥ are one-dimensional and that V̂ = Ŵ = R
4.

In this case, using Section 4 of [Str94], one deduces that Ĝ = Ĥ, and

that the representations of Ĥ and Ĝ on R
4 are equivalent. Hence we

may assume that Î is an isometry of R4/Ĝ to itself. In Section 4 of
[Str94] it is shown that any such isometry is induced by an element J

in the normalizer of Ĝ in O(4). In particular, Î preserves the smooth
structure. �

1.5. What to do in general? The proof of Theorem 1.3 as described
above is algebraic. However, at least after the reduction to the case
of representations, there is a more geometric proof of Theorem 1.3,
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essentially contained in [Ter85], that uses the geometric properties of
the Laplacian. We hope that the use of invariant differential operators
(cf. [Men11]) may help to understand the structure of smooth functions
on quotients and to answer Question 1.1.
Another algebraic way, chosen in the proof of Theorem 1.5 consists in

understanding (classification) of representations having isometric quo-
tients. The description of such quotient equivalence classes of repre-
sentations is probably possible in each concrete case, but seems to be
difficult in general. At least in small codimensions, it should be possi-
ble to prove the analogue of Theorem 1.5 along the same lines. Some
ideas and results concerning quotient-equivalence classes can be found
in [GL11]. These results and the proof of Theorem 1.5 motivate the fol-
lowing question. An affirmative answer to it would provide an answer
to Question 1.1 as well.

Question 1.6. Let (V,G) and (W,H) be two representations and let
I : V/G → W/H be an isometry. Can I be obtained as a compositions
of following three kinds of isometries between quotients: The isometry
induced by an orbit equivalence (i.e., replacing a group by a larger group
having the same orbit); the isometry induced by the reduction as in the

theorem of Luna-Richardson; the isometry Î of a quotient U/K to itself
induced by an element g in the normalizer of K in the orthogonal group
O(U)?

2. Basic forms

The quotient space X = M/G contains an open dense Riemannian
manifold X0 that consists of the set of principal orbits. A smooth
function on X as defined in the previous section, is just a smooth
function on the manifoldX0, whose pull-back toM extends to a smooth
function on M . It is natural to define generalizations of smooth forms
in the same way.
A basic p-form on an open subset U of X is a smooth p-form on X0∩

U , whose pull-back to M extends to a smooth p-form on π−1(U). The
basic forms constitute a complex (of sheaves on X) and its cohomology
coincides with the singular cohomology of X (The sheaves are fine and
the usual lemma of Poincare holds with the usual proof, cf. [Kos53]).
Despite this fact and the very natural definition of the complex, the
following question seems to be difficult in general:

Question 2.1. Does the smooth structure determine the basic forms
on a quotient? In other words, given a diffeomorphism F : M1/G1 →

M2/G2, does F induce a bijection between basic forms?
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The following question generalizes Question 1.1:

Question 2.2. Does an isometry I : M/G → N/H always preserve
the sheaves of basic forms?

The arguments from Subsection 1.2 apply to this situation as well
and reduce both question to the case of representations. Again, in
the case of infinitesimally polar actions the answer to both question is
affirmative and an easy consequence of known results:

THEOREM 2.3. If X = M/G is isometric to a smooth Riemannian
orbifold then the basic forms of X are precisely the smooth forms of the
underlying smooth orbifold.

Proof. The reduction explained in Subsection 1.2 reduces the ques-
tion to isotropy representations. For infinitesimally polar actions, the
isotropy representations are polar, in which case the result is known
([Mic96], [Mic97]). �

Thus we deduce:

Corollary 2.4. The answer to Question 2.1 and Question 2.2 is affir-
mative for infinitesimally polar actions.

3. Singular Riemannian foliations

3.1. Definition. The definition of smooth structures, in particular of
basic forms, on a quotient space X = M/G does not depend on the
group action of G on M , but only on the decomposition of M into
G-orbits. Such a decomposition is a special case of a singular Rie-
mannian foliation, a notion that generalizes Riemannian foliations and
decomposition in orbits of isometric group actions. We just recall the
definition here and refer the reader to [Mol88], [AG07], [LT10] for more
on details.
A transnormal system on a Riemannian manifold M is a decompo-

sition of M into pairwise disjoint isometrically immersed submanifolds
M = ∪xL(x), called leaves, such that a geodesic starting orthogonally
to a leaf remains orthogonal to all leaves it intersects. Atransnormal
system is a called a singular Riemannian foliation if for each leaf L
and each v ∈ TL with footpoint p, there is a vector field X tangent
to the leaves so that X(p) = v. While there is some evidence that the
answer to the following question is affirmative (see the final remarks of
[Wil07]), the question seems to be highly non-trivial:

Question 3.1. Is any transnormal system automatically a singular
Riemannian foliation?
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3.2. Smooth structure. From now on let F be a singular Riemannian
foliation on a Riemannian manifold M . A smooth p-form on an open
subset V ⊂ M is called basic if the restriction of the form to the set
of regular leaves V0 ⊂ V is the pull-back of a smooth p-form on a
local quotient, locally around each point x ∈ V0. Again, the basic
forms constitute a complex of sheaves, whose cohomology, the basic
cohomology is a very important invariant of the foliation.
Again locally around each point p ∈ M the foliation is locally dif-

feomorph to a (uniquely defined) singular Riemannian foliation TpF

on the Euclidean space TpM , which is invariant with respect to scalar
multiplications (cf. [LT10]).
This can be used to reduce questions to the case of singular Rie-

mannian foliations on Euclidean spaces. However, most fundamental
results known in case of representations (for instance the main theo-
rems from [Sch75] and [Sch80]) have not been answered in this more
general situation until now. We would like to formulate:

Question 3.2. Let F be a singular Riemannian foliation on a Eu-
clidean space R

n. Assume that the leaf through the origin 0 consists of
only one point. Is the space of basic functions finitely generated?

3.3. Smoothness of isometries. The singular Riemannian foliation
F is called closed if all of its leaves are closed. Assume now that M
is complete and that F is closed. Then the set of leaves X = M/F
carries a natural quotient metric and the sheaf of basic forms should be
considered as a sheaf on X . Again there are arbitrary fine partitions
of unity consisting of basic functions and the usual Lemma of Poincare
holds with the usual proof, thus showing that the basic cohomology
coincides in this case the singular cohomology (with real coefficients)
of the metric space X .
The following generalization of Question 1.1 and Question 2.2 is fur-

ther remote from algebra and representation theory, and one can hope,
that the right geometric answer to Question 1.1 would answer the fol-
lowing question as well.

Question 3.3. LetM,N be complete Riemannian manifolds with closed
singular Riemannian foliations F and G respectively. Does an isometry
I : M/F → N/G induce a bijection between the basic forms?

While we believe that the answer to this question is affirmative in
general, we only know a proof in a very special situation. Recall that
a singular Riemannian foliation F is called polar (also known as a
singular Riemannian foliation with section, cf. [Ale04]) if any point
p ∈ M is contained in a submanifold Σ (called section) that intersects
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all leaves orthogonally and the regular leaves transversally. A singular
Riemannian foliation F is called infinitesimally polar if and only if
at all points p ∈ M the infinitesimal foliation TpF is polar ([LT10]).
Again, all singular Riemannian foliations of codimension at most 2 are
infinitesimally polar. If M is complete and F is closed, infinitesimal
polarity is equivalent to the assumption that M/F is isometric to a
smooth Riemannian orbifold. We have:

THEOREM 3.4. Let F be a closed singular Riemannian foliation
on a complete Riemannian manifold M . If there is an isometry I :
M/F → B to a smooth Riemannian orbifold B then I induces an
isomorphism between the sheaves of smooth forms on B and the sheaves
of basic forms on M/F . In particular, the answer to Question 3.3 is
affirmative for infinitesimally polar foliations.

A short proof of the theorem above can be obtained along the same
lines as the proof of Theorem 1.3 relying on [AG07] instead of [Mic96].
We are going to explain another only slightly different proof that is
also valid for non-closed foliations. To do this we recall from [Lyt10]
that for any infinitesimally polar singular Riemannian foliation F on
a Riemannian manifold M there is a Riemannian manifold M̂ (called
the geometric resolution of M) with a regular (!) Riemannian foliation

F̂ and a smooth surjective map F : M̂ → M , such that the following
holds true. The preimages of leaves of F are leaves of F̂ . The map F is
a diffeomorphism, when restricted to M̂0, the preimage of the regular
part of M . The map F preserves the lengths of all horizontal curves.
If M is complete and F is closed then so are M̂ and F̂ , and F induces
an isometry F̄ between the quotients M̂/F̂ and M/F . Note that since

F̂ is a regular foliation, the F̂ -basic forms are the smooth forms on the
quotient orbifold M̂/F̂ (cf. [Mol88]).
Thus the following observation generalizes and proves Theorem 3.4.

PROPOSITION 3.5. Let F be an infinitesimally polar singular Rie-
mannian foliation on a Riemannian manifold M . Let F : (M̂, F̂) →

(M,F) be the geometric resolution of F . Then F induces a bijection
between the sheaves of basic forms.

Proof. Since F maps leaves to leaves, the pull-back by F defines a map
from basic forms on V ⊂ M to basic forms on F−1(V ) = V̂ . Since the

restriction to M̂0 is a diffeomorphism, the pull-back by F is injective.
And it remains to prove, that any basic form on V̂ is the pull-back of
some form on V . By injectivety, this question is local and it is enough
to prove it for a distinguished neighborhood U of a given point x ∈ M .
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Identifying the restriction of F to U with a polar foliation and using
the fact that the resolution map F is constructed in a canonical and
local way, we reduce the question to the case of polar foliations on
Euclidean spaces. Here we apply [AG07] to finish the proof. �

3.4. Conjecture of Molino. We would like to discuss an application
of Question 3.3 to the so called Conjecture of Molino. Given a com-
plete Riemannian manifold M , Molino has shown that for any regular
Riemannian foliation F on M , the closure F̄ of F consisting of leaf
closures of F is a singular Riemannian foliation (cf [Mol88]). Molino
has conjectured that the closure F of a singular Riemannian foliation
is a singular Riemannian foliation as well.
For a singular Riemannain foliation F on a complete Riemannian

manifold M any pair of leaves are equidistant. Thus so are any pair of
closures of two leaves. Therefore, the leaf closure F̄ is a transnormal
system. Thus the problem whether F̄ is a singular Riemannian foliation
amounts to finding smooth vector fields tangent to F̄ and generating
this transnormal system. In particular, the conjecture of Molino is a
special case of Question 3.1.
Using [Sch80], it is possible to prove that an affirmative answer to

Question 1.1 would prove the conjecture of Molino for all singular Rie-
mannian foliations, all of whose infinitesimal foliations are given by
isometric group actions. Similarly, an affirmative answer to Question
3.3 together with a generalization of [Sch80] to singular Riemannian fo-
liations would prove the conjecture of Molino in general. Our interests
in the smoothness issues discussed in this note originated from these
observations. We would like to finish our exposition by sketching the
proof of the conjecture of Molino for infinitesimally polar foliations, a
result previously shown in [Ale06] for polar foliations.

THEOREM 3.6. Let F be an infinitesimally polar foliation on a
complete Riemannian manifold M . Then the closure F̄ is a singular
Riemannian foliation.

Proof. Consider the resolution M̂ of M discussed in the previous sub-
section. The map F : M̂ → M is proper, thus the leaf closures F̂

are exactly the preimages of the “leaves” of F̄ . Due to the theorem of
Molino, the closure G of F̂ is a singular Riemannian foliation. More-
over, locally, the generating smooth vector field of G are given by the
vector fields generating F̂ and a family of smooth horizontal fields
(“the horizontal lifts of basic Killing fields”, cf. [Mol88]). However,
by duality with respect to our Riemannian metric, smooth horizon-
tal fields are in one-to-one correspondence with basic 1-forms. Due to
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Proposition 3.5 these basic one forms descend to basic 1-forms on M .
Dualizing again, one obtains the smooth horizontal vector fields on M
that together with the generating vector fields of F generate F̄ . �

Remark 3.1. The above proof shows that the vector fields generating
the closure F̄ in Theorem 3.6 can locally be obtained by adding to the
vector fields generating F the horizontal lifts of “transversal Killing
fields”, as expected by Molino. In the case of infinitesimally polar
foliations, these horizontal vector fields are uniquely determined by
their restrictions to any minimal stratum, cf. [Ale06].
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