
ar
X

iv
:1

10
7.

25
76

v1
  [

m
at

h.
ST

] 
 1

3 
Ju

l 2
01

1

A simple variance inequality for U-statistics of a

Markov chain with applications ✩

G. Forta,∗, E. Moulinesa, P. Priouretb, P. Vandekerkhovec

aLTCI-CNRS/TELECOM ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France. Fax:
+(33) 1 45 81 71 44
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Abstract

We establish a simple variance inequality for U-statistics whose underlying se-
quence of random variables is an ergodic Markov Chain. The constants in this
inequality are explicit and depend on computable bounds on the mixing rate of
the Markov Chain. We apply this result to derive the strong law of large number
for U-statistics of a Markov Chain under conditions which are close from being
optimal.
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1. Introduction

Let {Yn}
∞
n=0 be a sequence of random variables with values in a measurable

space (Y,Y). Let m be an integer and h : Ym → R be a symmetric function.
For n ≥ m, the U-statistic associated to h is defined by

Un,m(h)
def
=

(

n

m

)−1
∑

1≤i1<···<im≤n

h(Yi1 , . . . , Yim) . (1)

The function h is often referred to as the kernel of the U-statistics and m is called
the degree of h. We refer to Serfling (1980), Lee (1990), and Koroljuk and Borovskich
(1994) for U-statistics whose underlying sequence is an i.i.d. sequence of random
variables.
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Several authors have studied U-statistics for stationary sequences of de-
pendent random variables under different dependence conditions: see Arcones
(1998), Borovkova et al. (2001), Dehling (2006) and the references therein. Much
less efforts have been spent on the behavior of U-statistics for non-stationary and
asymptotically stationary processes; see Harel and Puri (1990) and Elharfaoui and Harel
(2008). In this letter, we establish a variance inequality for U-statistics whose
underlying sequence is an ergodic Markov Chain (which is not assumed to be
stationary). This inequality is valid for U-statistics of any order and the con-
stants appearing in the bound can be explicitly computed (for example, using
Foster-Lyapunov drift and minorization conditions if the chain is geometrically
ergodic). This inequality can be used to derive, with minimal effort, limit the-
orems for U-statistics of a non-stationary Markov chain. In this paper, for the
purpose of illustration, we derive the strong law of large numbers (SLLN) under
weak conditions.

Notations

Let (Y,Y) be a general state space (see e.g. (Meyn and Tweedie, 2009,
Chapter 3)) and P be a Markov transition kernel. P acts on bounded measurable
functions f on Y and on measures µ on Y via

Pf(x)
def
=

∫

P (x, dy)f(y) , µP (A)
def
=

∫

µ(dx)P (x,A) .

We will denote by Pn the n-iterated transition kernel defined by induction

Pn(x,A)
def
=

∫

Pn−1(x, dy)P (y,A) =

∫

P (x, dy)Pn−1(y,A) ;

where P 0 coincides with the identity kernel. For a function V : Y → [1,+∞),
define the V -norm of a function f : Y → R by

|f |V
def
= sup

Y

|f |/V .

When V = 1, the V -norm is the supremum norm and will be denoted by |f |∞.
Let  LV be the set of measurable functions such that |f |V < +∞. For two
probability measures µ1, µ2 on (Y,Y), ‖µ1 − µ2‖TV denotes the total variation
distance.

For µ a probability distribution on (Y,Y) and P a Markov transition kernel
on (Y,Y), denote by Pµ the distribution of the Markov chain (Yn)n∈N

with initial
distribution µ and transition kernel P ; let Eµ be the associated expectation.
For p > 0 and Z a random variable measurable with respect to the σ-algebra

σ
(

(Yn)n∈N

)

, set ‖Z‖µ,p
def
= (Eµ [|Z|p])

1/p
.

2. Main Results

Let P be a Markov transition kernel on (Y,Y). We assume that the transition
kernel P satisfies the following assumption:

2



A1 The kernel P is positive Harris recurrent and has a unique stationary
distribution π. In addition, there exist a measurable function V : Y →
[1,+∞) and a nonnegative non-increasing sequence (ρ(k))k∈N

such that
limn ρ(n) = 0 and for any probability distributions µ and µ′ on (Y,Y),
and any integer k,

∥

∥µP k − µ′P k
∥

∥

TV
≤ ρ(k) [µ(V ) + µ′(V )] , (2)

and
π(V ) < ∞ . (3)

A2 The function h is symmetric and π-canonical, i.e, for all (y1, . . . , ym−1) ∈
Y
m−1, y 7→ h(y1, . . . , ym−1, y) is π-integrable and

∫

π(dy)h(y1, . . . , ym−1, y) = 0 . (4)

For µ a probability measure on (Y,Y), we denote

M(µ, V )
def
= sup

k≥0
µP k(V ) . (5)

Note that, under A 1, for any probability measure µ on (X,X ), π(V ) ≤ M(µ, V ).
We can now state the main result of this paper, which is an explicit bound for
the variance of bounded π-canonical U-statistics. The proof of Theorem 2.1 is
given in Section 3.

Theorem 2.1. Assume A1-A2. If |h|∞ < ∞ then, for any initial probability
measure µ on (Y,Y),

‖Un,m(h)‖µ,2 ≤ Cn,m

√

M(µ, V )|h|∞ n−m/2 (6)

with

Cn,m
def
= 2m/2+1

√

(2m)!

(

n
∑

k=0

(k + 1)mρ(k)

)1/2
nm

(

n
m

) . (7)

Remark 1. In the case where ρ(k) = ̺k for some ̺ ∈ (0, 1), for all (m,n) ∈ N,

n
∑

k=0

(k + 1)mρ(k) ≤
1

̺ (− ln(̺))m+1

mm+1 − (− ln(̺))m+1

m + ln(̺)
.

We may extend Theorem 2.1 to symmetric functions h which are not canon-
ical. For any integer p and any µ1, . . . , µp, p (signed) finite measures on (Y,Y),

denote by µ1 ⊗ · · · ⊗ µp
def
=
⊗p

i=1 µi, the product measure on (Yp,Y⊗p). For µ

a (signed) finite measure on (Y,Y), define µ⊗p def
= µ⊗ · · · ⊗ µ.
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Let h : Ym → R be a measurable and symmetric function such that π⊗m(|h|) <
∞. Define for any c ∈ {1, . . . ,m− 1} the measurable function πc,mh : Yc → R

given by

πc,mh(y1, . . . , yc)
def
= (δy1 − π) ⊗ · · · ⊗ (δyc

− π) ⊗ π⊗(m−c)[h] , (8)

where for any y ∈ Y, δy denotes the Dirac mass at y. Set

π0,mh
def
= π⊗mh and πm,mh(y1, . . . , ym)

def
=

m
⊗

i=1

(δyi
− π)[h] . (9)

Note that for any c ∈ {1, . . . ,m} πc,mh is a π-canonical function. The Hoeffding
decomposition allows to write any U-statistics associated to a symmetric func-
tion h as the following sum of canonical U-statistics (see e.g. (Serfling, 1980, p.
178, Lemma A)):

Un,m(h) =

m
∑

c=0

(

m

c

)

Un,c(πc,mh) , (10)

where Un,c is defined in (1) when c ≥ 1 and Un,0(f)
def
= f . The symmetric

function h is said to be d-degenerated (for d ∈ {0, . . . ,m}) if πd,mh 6≡ 0 and
πc,mh ≡ 0 for c ∈ {0, . . . , d − 1}. By construction, a π-canonical function h is
m-degenerated (it is also said “completely degenerated”).

Corollary 2.2. Assume A1. Let h be a bounded symmetric d(h)-degenerated
function. Then

∥

∥Un,m(h) − π⊗mh
∥

∥

µ,2
≤
√

M(µ, V )|h|∞

m
∑

c=d(h)∨1

(

m

c

)

2cCn,cn
−c/2 ,

where Cn,c is defined in (7).

It is possible to extend the previous result to unbounded canonical functions.
Define, for any q ≥ 1,

Bq(h)
def
= sup

(y1,...,ym)∈Ym

|h(y1, · · · , ym)|
∑m

j=1 V
1/q(yj)

, (11)

where V is defined in A1. The proof of Corollary 2.3 is given in Section 3.

Corollary 2.3. Assume A1-A2 and that, for some p ∈ [0,∞), B2(p+1)(h) < ∞
holds. Then, for any initial probability measure µ on (Y,Y),

‖Un,m(h)‖µ,2 ≤ 2m/2m
√

(2m)! D(p, µ, V, h)

(

n
∑

k=0

(k + 1)m (ρ(k))
p

(p+1)

)1/2
nm/2

(

n
m

) ,

where the constant D(p, µ, V, h) is given by

D(p, µ, V, h)
def
= 2

2p+1
2(p+1)

[

p
1

p+1 + p−
p

p+1

]1/2 √

M(µ, V ) B2(p+1)(h) . (12)
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Using again the Hoeffding decomposition (10), Corollary 2.3 can be extended
to the case when h is d-degenerated for d ∈ {0, · · · ,m−1}. Details are left to the
reader. When used in combination with explicit ergodicity bounds for Markov
chains, Theorem 2.1 and the corollaries can be used to obtain non-asymptotic
computable bounds for the variance of U- and V-statistics. As a simple illus-
tration, assume that the transition kernel P is phi-irreducible, aperiodic and
that

1. (Drift condition) there exist a drift function V : Y → [1,+∞) and con-
stants 1 < b < ∞, and λ ∈ (0, 1) such that

PV ≤ λV + b .

2. (Minorization condition) for any d ≥ 1, the level sets {V ≤ d} are petite
for P .

Then, there exists a probability distribution π such that πP = π and π(V ) ≤
b(1−λ)−1. In addition, there exist computable constants C < ∞ and ρ ∈ (0, 1)
such that for any probability measures µ, µ′ on (Y,Y) and any n ≥ 0,

‖µPn − µ′Pn‖TV ≤ C ρn [µ(V ) + µ′(V )] ;

(see for example Roberts and Rosenthal (2004), Douc et al. (2004) or Baxendale
(2005)). Assumption A1 is thus satisfied with ρ(k) = Cρk and we may thus
apply Theorem 2.1 to obtain a non-asymptotic bound.

It can also be used to derive limiting theorems for U-statistics of Markov
chains. In what follows, as an illustration of our result, we derive a law of
large numbers which holds true under conditions which are, to the best of our
knowledge, the weakest known so far and more likely pretty close from being
optimal.

Theorem 2.4. Assume A1 with ρ(n) = O (n−r) for some r > 1. Let m ≥ 1
and h : Ym → R be a symmetric function such that for some δ > 0,

sup
(y1,...,ym)∈Ym

|h(y1, . . . , ym)|(log+ |h(y1, . . . , ym)|)1+δ

∑m
i=1 V (yi)

< ∞ . (13)

Then, for any probability measure µ on (Y,Y) such that M(µ, V ) < ∞,

(

n

m

)−1
∑

1≤i1<···<im≤n

{h(Yi1 , . . . , Yim) − Eµ[h(Yi1 , . . . , Yim)]} → 0 , Pµ−a.s.

(14)
when n → +∞ and

lim
n→+∞

(

n

m

)−1
∑

1≤i1<···<im≤n

Eµ[h(Yi1 , . . . , Yim)]

=

∫

π(dy1) · · ·π(dym)h(y1, · · · , ym) . (15)
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3. Proof of Theorem 2.1 and Corollary 2.3

For any probability measure µ on (Y,Y), for any positive integer ℓ and any
ordered ℓ-uplet k0 = 0 ≤ k1 ≤ · · · ≤ kℓ, consider the probability measure
P
k1,k2,...,kℓ
µ defined for any nonnegative measurable function f : Yℓ → R+, by

P
k1,k2,...,kℓ
µ (f)

def
=

∫

· · ·

∫

µ(dy0)

ℓ
∏

i=1

P ki−ki−1(yi−1, dyi)f(y1:ℓ) , (16)

where y1:ℓ
def
= (y1, . . . , yℓ). Note that, by construction,

Eµ [f(Yk1 , . . . , Ykℓ
)] = P

k1,k2,...,kℓ
µ (f) .

For any positive integer m and any ordered 2m-uplet I = (1 ≤ i1 ≤ i2 ≤ · · · ≤
i2m), we denote for ℓ ∈ {1, . . . ,m},

jℓ(I)
def
= min(i2ℓ−1 − i2ℓ−2, i2ℓ − i2ℓ−1) , (17)

j⋆(I)
def
= max [j1(I), j2(I), . . . , jm(I)] , (18)

where, by convention, we set i0 = 1. Denote by B+(Y2m) the set of nonneg-
ative measurable function f : Y2m → R+. For any probability measure µ on

(Y,Y) and any ordered 2m-uplet I, denote P
I
µ

def
= P i1,...,i2m

µ . We consider the

probability measure P̃
I
µ = P̃

i1,...,i2m
µ on (Y2m,Y⊗2m) given for f ∈ B+(Y2m) by

P̃
I
µ(f)

def
=

∫

π(dy1)Pi2,...,i2m
µ (dy2:2m)f(y1:2m) , (19)

if inf {k ∈ {1, . . . ,m}, j⋆(I) = jk(I)} = 1 and

P̃
I
µ(f)

def
=

∫

P
i1,...,i2ℓ−2
µ (dy1:2ℓ−2)π(dy2ℓ−1)Pi2ℓ,...,i2m

µ (dy2ℓ:2m)f(y1:2m) , (20)

if ℓ = inf {k ∈ {1, . . . ,m}, j⋆(I) = jk(I)} ∈ {2, . . . ,m}. For any permutation σ
on {1, . . . , 2m}, define fσ : Y2m → R the function

fσ(y1, . . . , y2m)
def
= h

(

yσ(1), . . . , yσ(m)

)

h
(

yσ(m+1), . . . , yσ(2m)

)

. (21)

Since the function h is π-canonical, it follows from the definition of P̃I
µ that, for

any ordered 2m-uplet I and any permutation σ,

P̃
I
µ(fσ) = 0 . (22)

This relation plays a key role in all what follows and is the main motivation for
considering the probability measures P̃

I
µ.
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Proposition 3.1. Assume A1-A2. Then, for any probability measure µ, any
positive integer n and any ordered 2m-uplet I in {1, · · · , n},

∥

∥

∥P
I
µ − P̃

I
µ

∥

∥

∥

TV
≤ 4 ρ (j⋆(I)) M(µ, V ) , (23)

where the sequence (ρ(n))n∈N, M(µ, V ) and j⋆(I) are defined respectively in (2),
(5), and (18).

Proof. Let I = (1 ≤ i1 ≤ i2 ≤ · · · ≤ i2m ≤ n). To simplify the notation, in
what follows, the dependence in I of j1, . . . , jm - defined in (17) - is implicit.
Assume first that j⋆ = j1.

Let f ∈ B+(Y2m). The definition of (16) implies that

P
I
µ(f)

def
= P i1,...,i2m

µ (f) =

∫

µP i1(dy1)Pi2−i1,...,i2m−i1
y1

(dy2:m)f(y1:2m) .

Combining this expression with the definition (19) of P̃I
µ yields

∣

∣

∣
P
I
µ(f) − P̃

I
µ(f)

∣

∣

∣
≤ T1 + T2 , (24)

with

T1
def
=

∣

∣

∣

∣

∫

[

µP i1(dy1) − π(dy1)
]

P
i2,...,i2m
µ (dy2:2m)f(y1:2m)

∣

∣

∣

∣

,

T2
def
=

∣

∣

∣

∣

∫

µP i1(dy1)
[

P
i2−i1,...,i2m−i1
y1

(dy2:2m) − P
i2,...,i2m
µ (dy2:2m)

]

f(y1:2m)

∣

∣

∣

∣

.

Consider first T1. Since
∣

∣

∫

P
i2,...,i2m
µ (dy2:2m)f(y1:2m)

∣

∣ ≤ |f |∞, A1 and (5) imply
that

T1 ≤
∥

∥µP i1 − π
∥

∥

TV
|f |∞ ≤ ρ(i1) [µ(V ) + π(V )] |f |∞ ≤ 2ρ(i1)M(µ, V ) ,

where we have used that µ(V ) ≤ M(µ, V ) and π(V ) ≤ M(µ, V ). On the other
hand, for any bounded measurable function g : Y2m−1 → R, and y ∈ Y,

P
i2−i1,...,i2m−i1
y (g) =

∫

δy(dy1)P i2−i1(y1, dy2)Pi3−i2,...,i2m−i2
y2

(dy3:2m)g(y2:2m)

and

P
i2,...,i2m
µ (g) =

∫

µP i1(dy1)P i2−i1(y1, dy2)Pi3−i2,...,i2m−i2
y2

(dy3:2m)g(y2:2m) .

Therefore, under A1,
∣

∣P
i2−i1,...,i2m−i1
y (g) − P

i2,...,i2m
µ (g)

∣

∣ ≤ ρ(i2 − i1)
[

V (y) + µP i1(V )
]

|g|∞ .

Integrating this bound shows that T2 ≤ 2ρ(i2− i1)M(µ, V )|f |∞, where M(µ, V )
is defined in (5). In conclusion we get

∣

∣

∣P
I
µ(f) − P̃

I
µ(f)

∣

∣

∣ ≤ 2 [ρ(i2 − i1) + ρ(i1)] M(µ, V ) |f |∞ . (25)
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Assume now that, for some ℓ ∈ {2, . . . ,m}, j⋆ = jℓ. With these notations,
for any nonnegative function f : Y2m → R,

P
I
µ(f) =

∫

P
i1,...,i2ℓ−1
µ (dy1:2ℓ−1)Pi2ℓ−i2ℓ−1,...,i2m−i2ℓ−1

y2ℓ−1
(dy2ℓ:2m) f (y1:2m) .

Combining this expression with the definition (20) of P̃I
µ, we get

∣

∣

∣P
I
µ(f) − P̃

I
µ(f)

∣

∣

∣ ≤ T1 + T2 , (26)

with

T1 =

∣

∣

∣

∣

∫

P
i1,...,i2ℓ−2
µ (dy1:2ℓ−2)[P i2ℓ−1−i2ℓ−2(y2ℓ−2, dy2ℓ−1) − π(dy2ℓ−1)]

× P
i2ℓ,...,i2m
µ (dy2ℓ:2m)f(y1:2m)

∣

∣

∣

∣

,

and

T2 =

∣

∣

∣

∣

∫

P
i1,...,i2ℓ−1
µ (dy1:2ℓ−1)

×
[

P
i2ℓ−i2ℓ−1,...,i2m−i2ℓ−1
y2ℓ−1

(dy2ℓ:2m) − P
i2ℓ,...,i2m
µ (dy2ℓ:2m)

]

f(y1:2m)

∣

∣

∣

∣

.

Consider first T1. Under A1, (2), for any y2ℓ−2 ∈ Y, and any bounded measur-
able function g : Y 7→ R,

∫

[P i2ℓ−1−i2ℓ−2(y2ℓ−2, dy2ℓ−1) − π(dy2ℓ−1)]g(y2ℓ−1)

≤ ρ (i2ℓ−1 − i2ℓ−2) [V (y2ℓ−2) + π(V )] |g|∞ .

Applying this relation with

gy1:2ℓ−2
(y2ℓ−1) =

∫

· · ·

∫

P
i2ℓ,...,i2m
µ (dy2ℓ:2m)f(y1:2ℓ−2, y2ℓ−1, y2ℓ:2m) ,

and using that, for any y1:2ℓ−2 ∈ Y
2ℓ−2, |gy1:2ℓ−2

|∞ ≤ |f |∞, yields to

T1 ≤ ρ(i2ℓ−1 − i2ℓ−2)
[

µP i2ℓ−2(V ) + π(V )
]

|f |∞

≤ 2ρ(i2ℓ−1 − i2ℓ−2)M(µ, V )|f |∞ .

Consider now T2. Note that, for any bounded measurable function g : Y2m−2ℓ+1 →
R that

P
i2ℓ−i2ℓ−1,...,i2m−i2ℓ−1
y2ℓ−1

(g) =

∫

P i2ℓ−i2ℓ−1(y2ℓ−1, dy2ℓ)

× P
i2ℓ+1−i2ℓ,...,i2m−i2ℓ
y2ℓ

(dy2ℓ+1:2m)g(y2ℓ:2m),
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and

P
i2ℓ,...,i2m
µ (g) =

∫

µP i2ℓ−1(dy2ℓ−1)P i2ℓ−i2ℓ−1(y2ℓ−1, dy2ℓ)

× P
i2ℓ+1−i2ℓ,...,i2m−i2ℓ
y2ℓ

(dy2ℓ+1:2m)g(y2ℓ:2m) .

Therefore, under A1, for any bounded measurable function g : Y2m−2ℓ+1 → R

and y2ℓ−1 ∈ Y,

∣

∣

∣P
i2ℓ−i2ℓ−1,...,i2m−i2ℓ−1
y2ℓ−1

(g) − P
i2ℓ,...,i2m
µ (g)

∣

∣

∣

≤ ρ(i2ℓ − i2ℓ−1) [V (y2ℓ−1) + M(µ, V )] |g|∞ .

Therefore, by integrating this bound with respect to P
i1,...,i2ℓ−1
µ yields to the

bound
T2 ≤ 2ρ(i2ℓ − i2ℓ−1)M(µ, V )|f |∞ ,

which concludes the proof.

Lemma 3.2. Let (X,X ) be a measurable space. Let ξ and ξ′ be two probability
measures on (X,X ) and p ∈ [0,+∞). Then, for any measurable function f
satisfying ξ(|f |1+p) + ξ′(|f |1+p) < ∞,

|ξ(f) − ξ′(f)| ≤ C(p)
[

ξ(|f |1+p) + ξ′(|f |1+p)
]1/(p+1)

‖ξ − ξ′‖
p/(p+1)
TV ,

where C(p)
def
=
[

p1/(p+1) + p−p/(p+1)
]

.

Proof. For any M > 0,

|ξ(f) − ξ′(f)| ≤ M ‖ξ − ξ′‖TV |f |∞ + ξ [|f |1{|f | ≥ M}] + ξ′ [|f |1{|f | ≥ M}]

≤ M ‖ξ − ξ′‖TV |f |∞ + M−p
[

ξ(|f |1+p) + ξ′(|f |1+p)
]

.

The proof follows by optimizing in M .

Proposition 3.3. Assume A1-A2. Then, for any ordered 2m-uplet I = (1 ≤
i1 ≤ · · · ≤ i2m ≤ n), any permutation σ on {1, . . . , 2m}, and any initial distri-
bution µ on (Y,Y),

|Eµ [fσ(Yi1 , . . . , Yi2m)]| ≤ 4M(µ, V ) ρ (j⋆(I)) |h|2∞ , (27)

where the sequence (ρ(n))n∈N, the index j⋆(I) and the function fσ are defined
in (2), (18), and (21), respectively. If, for some p ∈ [0,∞), the constant
B2(p+1)(h), defined in (11) is finite, then

|Eµ [fσ(Yi1 , . . . , Yi2m )]| ≤ m2 D(p, µ, V, h)2 (ρ (j⋆(I)))
p

(p+1) (28)

where the constant D(p, µ, V, h) is defined in (12).
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Proof. The proof of (27) follows immediately from (22) and Proposition 3.1.
By applying the inequality ab ≤ 1/2(a2 + b2) and the Jensen inequality, it

follows from A2 that

|fσ(y1, . . . , y2m)|
p+1

≤ (1/2)B
2(p+1)
2(p+1)(h)m2p+1

2m
∑

i=1

V (yi) ,

where fσ is defined in (21). Therefore, for any ordered 2m-uplet I = (1 ≤ i1 ≤
· · · ≤ i2m ≤ n),

P
I
µ

[

|fσ|
p+1
]

≤ M(µ, V )B
2(p+1)
2(p+1)(h)m2(p+1) , (29)

P̃
I
µ

[

|fσ|
p+1
]

≤ M(µ, V )B
2(p+1)
2(p+1)(h)m2(p+1) . (30)

The proof then follows by using (22) and by applying Proposition 3.1 and
Lemma 3.2.

Proof of Theorem 2.1 and Corollary 2.3. Denote by Γ(2m) the collection of all
permutations of 2m elements. We have

Eµ











∑

1≤i1<···<im≤n

h(Yi1 , . . . , Yim)





2





≤

∑

σ∈Γ(2m)

∑

1≤i1≤···≤i2m≤n

∣

∣Eµ

(

h(Yiσ(1)
, . . . , Yiσ(m)

)h(Yiσ(m+1)
, . . . , Yiσ(2m)

)
)∣

∣ .

Let k ≥ 0. Denote by I
k
m,n the set of all ordered 2m-uplet I = (1 ≤ i1 ≤ · · · ≤

i2m ≤ n) such that j⋆(I) = k, where j⋆(I) is defined in (18). By definition,
for I ∈ I

k
m,n, and ℓ ∈ {1, . . . ,m}, jℓ(I) ≤ k. It is easily seen that the cardinal

of I
k
m,n is at most 2mnm(k + 1)m. The proof of Theorem 2.1 follows from

Proposition 3.3, (27).
The proof of Corollary 2.3 follows from Proposition 3.3, (28).

4. Proof of Theorem 2.4

We will use the following elementary Lemma.

Lemma 4.1. Let (sn)n∈N
be a non-decreasing sequence of real numbers. Let

(un)n∈N
be a non-decreasing sequence of positive numbers. Assume that

• the sequence (ln(un)/ ln(n))n∈N
converges to a positive limit δ.

• for any α > 1, the sequence
(

u−1
⌊αn⌋s⌊αn⌋

)

n∈N

converges to L.

Then, the sequence
(

u−1
n sn

)

n∈N
converges to L.
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Proof. Let α > 1. For any n ∈ N, denote by kn
def
= sup{k ∈ N, ⌊αk⌋ ≤ n}.

Since the sequences (sn)n∈N
and (un)n∈N

are non decreasing and un > 0 for any
n ∈ N,

u⌊αkn⌋

u⌊αkn+1⌋

s⌊αkn⌋

u⌊αkn ⌋

≤
sn
un

≤
u⌊αkn+1⌋

u⌊αkn⌋

s⌊αkn+1⌋

u⌊αkn+1⌋

.

Since limn→∞ u⌊αn+1⌋/u⌊αn⌋ = αδ,

1

αδ
L ≤ lim inf

n

sn
un

≤ lim sup
n

sn
un

≤ αδL

Proof of Theorem 2.4. Note that the positive and negative parts of h satisfy the
conditions of Theorem 2.4 so that we can assume without loss of generality that
h is non negative.

Proof of (15). For any τ > 0, denote

hτ (y1, . . . , ym)
def
= h(y1, . . . , ym)1{|h(y1,...,ym)|≤τ} .

By A1, we have, for any 1 ≤ i1 < · · · < im ≤ n,

∣

∣Eµ [hτ (Yi1 , . . . , Yim)] − π⊗m[hτ ]
∣

∣ ≤ 2M(µ, V )|hτ |∞

m
∑

j=1

ρ(ij − ij−1) ,

where by convention, i0 = 0. Note that
∑

1≤i1<i2≤n ρ(i2 − i1) =
∑n−1

k=1 (n −

k)ρ(k) ≤ n
∑n−1

k=1 ρ(k). Therefore,

∣

∣

∣

∣

∣

∣

(

n

m

)−1
∑

1≤i1<···<im≤n

Eµ [hτ (Yi1 , . . . , Yim)] − π⊗m[hτ ]

∣

∣

∣

∣

∣

∣

≤ 2M(µ, V )τ

m
∑

j=1

(

n

m

)−1
∑

1≤i1<···<im≤n

ρ(ij − ij−1)

≤ 2M(µ, V )τ

m
∑

j=1

(

n

m

)−1

nm−2
∑

1≤ij−1<ij≤n

ρ(ij − ij−1)

≤ 2M(µ, V )τ

m
∑

j=1

(

n

m

)−1

nmn−1
n
∑

k=1

ρ(k) ,

which goes to zero since n−1
∑n

k=1 ρ(k) → 0. Under the stated assumptions,
there exists a constant C such that

Eµ

[

|h(Yi1:m)|1{|h(Yi1:m )|≥τ}

]

≤ C
(

log+ τ
)−(1+δ)

.

Since limτ→∞ π⊗m[hτ ] = π⊗m[h], the proof follows.
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Proof of (14). Let m ≥ 1 be fixed. We prove that

lim
n

(

n

m

)−1
∑

1≤i1<···<im≤n

h(Yi1:m) = π⊗m[h] , Pµ − a.s. (31)

Using Lemma 4.1, we have to prove that (31) holds if for any α > 1,

lim
k→+∞

(

φk

m

)−1
∑

1≤i1<···<im≤φk

h(Yi1:m) = π⊗m[h] Pµ − a.s. (32)

where φk
def
= ⌊αk⌋. By the Hoeffding decomposition (10), it suffices to prove

that for any c ∈ {1, · · · ,m},

lim
k→+∞

(

φk

c

)−1
∑

1≤i1<···<ic≤φk

πc,mh(Yi1:c)
a.s.
−→ 0

where πc,mh is the symmetric π-canonical function defined in (8); note that
under (13),

sup
(y1,··· ,yc)∈Yc

|πc,mh(y1, · · · , yc)| log+(|πc,mh(y1, · · · , yc)|)
1+δ

∑c
i=1 V (yi)

< +∞ . (33)

The case c = 1 is the ergodic theorem for Markov Chain (see for example
(Meyn and Tweedie, 2009, Theorem 17.1.7)).

We consider now the case c ∈ {2, · · · ,m}. In all what follows, the index
c ∈ {2, . . . ,m} is given and for ease of notations, we denote by g an arbitrary
π-canonical symmetric function of c variables . Take s > 0 such that

2s < r − 1 . (34)

By A1 and (33), there exists a constant C depending upon s and M(µ, V ), such
that

Eµ





∞
∑

k=1

φ−c
k

∑

1≤i1<···<ic≤φk

|g(Yi1:c)|1{|g(Yi1:c )|≥φs
k
}





≤ C

∞
∑

k=1

(logφk)−δ−1 , (35)

and the RHS is finite since α > 1 and δ > 0. Therefore,

φ−c
k

∑

1≤i1<···<ic≤φk

g(Yi1:c)1{|g(Yi1:c )|≥φs
k
} → 0 Pµ − a.s. . (36)

We must now prove that

lim
k

φ−c
k

∑

1≤i1<···<ic≤φk

gφs
k
(Yi1:c) = 0 , Pµ − a.s. , (37)
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where for τ > 0, gτ (y1:c)
def
= g(y1:c)1{|g(y1:c)|<τ}. We apply again the Hoeffding

decomposition (10) to the function gφs
k
. Observe that since g is π-canonical,

satisfies (33) and π(V ) < +∞, the dominated convergence theorem implies that
limk π

⊗c(gφs
k
) = π⊗c(g) = 0. Hence, by (10), the limit (36) holds provided for

any ℓ ∈ {1, · · · , c},

lim
k→∞

φ−ℓ
k

∑

1≤i1<···<iℓ≤φk

πℓ,c[gφs
k
](Yi1:ℓ) = 0 , Pµ − a.s. . (38)

Since g is π canonical, for ℓ ∈ {1, · · · , c− 1}, we have πℓ,cg = 0 which implies

πℓ,c[gφs
k
] = πℓ,c

[

g − g1{|g|≥φs
k
}

]

= −πℓ,c

[

g1{|g|≥φs
k
}

]

.

Therefore, (38) is equivalent to

lim
k→∞

φ−ℓ
k

∑

1≤i1<···<iℓ≤φk

πℓ,c[g1{|g|≥φs
k
}] = 0 , Pµ − a.s. ,

which holds true by using an argument similar to (35); details are omitted.
When ℓ = c, by definition of πc,c (see (9)) we have by applying Theorem 2.1

Eµ









φ−c
k

∑

1≤i1<···<ic≤φk

πc,c[gφs
k
](Yi1:c )





2






≤ C φ−c
k





φk
∑

j=0

(j + 1)cρ(j)



φ2s
k ≤ C′ φ1−r+2s

k ,

which by (34) implies (38) when ℓ = c. This concludes the proof.
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