DEPTH AND MINIMAL NUMBER OF GENERATORS OF SQUARE FREE MONOMIAL IDEALS

DORIN POPESCU

Abstract

Let I be an ideal of a polynomial algebra S over a field generated by square free monomials of degree $\geq d$. If I contains more monomials of degree d than $(d+1) / d$ of the total number of square free monomials of S of degree $d+1$ then depth $I \leq d$, in particular Stanley's Conjecture holds in this case.

Key words : Monomial Ideals, Depth, Stanley depth. 2000 Mathematics Subject Classification: Primary 13C15, Secondary 13F20, 13F55, 13P10.
Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in n-variables over a field K and $I \subset S$ a square free monomial ideal. Let d be a positive integer and $\rho_{d}(I)$ be the number of all square free monomials of degree d of I.

Proposition 1. If I is generated by square free monomials of degree $\geq d$ and $\rho_{d}(I)>((d+1) / d)\binom{n}{d+1}$ then $\operatorname{depth}_{S} I \leq d$.

Proof. Apply induction on n. If $n=d$ then there exists nothing to show. Suppose that $n>d$. Let ν_{i} be the number of the square free monomials of degree d from $I \cap\left(x_{i}\right)$. We may consider two cases renumbering the variables if necessary.

Case $1 \nu_{1}>\binom{n-1}{d}$.
Let $S^{\prime}:=K\left[x_{2}, \ldots, x_{n}\right]$ and $x_{1} c_{1}, \ldots, x_{1} c_{\nu_{1}}, c_{i} \in S^{\prime}$ be the square free monomials of degree d from $I \cap\left(x_{1}\right)$. Then $J=\left(I: x_{1}\right) \cap S^{\prime}$ contains $\left(c_{1}, \ldots, c_{\nu_{1}}\right)$ and so $\rho_{d-1}(J) \geq \nu_{1}>\binom{n-1}{d}$. By induction hypothesis, we get $\operatorname{depth}_{S^{\prime}} J \leq d-1$. It follows $\operatorname{depth}_{S} J S \leq d$ by [1, Lemma 3.6] and so depth $I \leq d$ by [6, Proposition 1.2].

Case $2 \nu_{i} \leq\binom{ n-1}{d}$ for all $i \in[n]$.
We get $\sum_{i=1}^{n} \nu_{i} \leq n\binom{n-1}{d}$. Let A_{i} be the set of the square free monomials of degree d from $I \cap\left(x_{i}\right)$. A square free monomial from I of degree d will be present in d-sets A_{i} and it follows

$$
\rho_{d}(I)=\left|\cup_{i=1}^{n} A_{i}\right| \leq(n / d)\binom{n-1}{d}=((d+1) / d)\binom{n}{d+1}
$$

if $n \geq d+1$. Contradiction!
Remark 2. If I is generated by square free monomials of degree $\geq d$, then depth ${ }_{S} I \geq$ d. Indeed, since I has a square free resolution the last shift in the resolution of I is at most n. Thus if I is generated in degree $\geq d$, then the resolution can have length at most $n-d$, which means that the depth of I is greater than or equal to d (this

[^0]argument belongs to J. Herzog). Hence in the setting of the above proposition we get depth ${ }_{S} I=d$.

Corollary 3. Let I be an ideal generated by $\mu(I)$ square free monomials of degree d. If $\mu(I)>((d+1) / d)\binom{n}{d+1}$ then $\operatorname{depth}_{S} I=d$.

Example 4. Let $I=\left(x_{1} x_{2}, x_{2} x_{3}\right) \subset S:=K\left[x_{1}, x_{2}, x_{3}\right]$. Then $d=2$ and $\mu(I)=2>$ $(3 / 2)\binom{3}{2+1}$. It follows that depth ${ }_{S} I=2$ by the above corollary.

The condition $\mu(I)>((d+1) / d)\binom{n}{d+1}$ is not necessary in the above corollary as shows the following:

Example 5. Let $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{5}, x_{3} x_{4}, x_{3} x_{5}, x_{4} x_{5}\right) \subset$ $S:=K\left[x_{1}, \ldots, x_{5}\right]$. Then $d=2$ and $\mu(I)=8<15=(3 / 2)\binom{5}{2+1}$ but depth ${ }_{S} I=2$ because $I=\left(x_{1}, x_{2}, x_{4}, x_{5}\right) \cap\left(x_{1}, x_{3}, x_{5}\right) \cap\left(x_{2}, x_{3}, x_{4}\right)$.

Now, let I be an arbitrary square free monomial ideal and P_{I} the poset given by all square free monomials of I (a finite set) with the order given by the divisibility. Let \mathcal{P} be a partition of P_{I} in intervals $[u, v]=\left\{w \in P_{I}: u|w, w| v\right\}$, let us say $P_{I}=$ $\cup_{i}\left[u_{i}, v_{i}\right]$, the union being disjoint. Define sdepth $\mathcal{P}=\min _{i} \operatorname{deg} v_{i}$ and $\operatorname{sdepth}_{S} I=$ $\max _{\mathcal{P}}$ sdepth \mathcal{P}, where \mathcal{P} runs in the set of all partitions of P_{I}. This is the so called the Stanley depth of I, in fact this is an equivalent definition given in a general form by [1].

For instance, in Example 4, we have $P_{I}=\left\{x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\}$ and we may take $\mathcal{P}: \quad P_{I}=\left[x_{1} x_{2}, x_{1} x_{2} x_{3}\right] \cup\left[x_{2} x_{3}, x_{2} x_{3}\right]$ with $\operatorname{sdepth}_{S} \mathcal{P}=2$. Moreover, it is clear that $\operatorname{sdepth}_{S} I=2$. When I is generated by $\mu(I)>((d+1) / d)\binom{n}{d+1}>\binom{n}{d+1}$ square free monomials of degree d then $\operatorname{sdepth}_{S} I=d$. Thus the Proposition 1 says that in this case depth $I \leq \operatorname{sdepth}_{S} I$, which was in general conjectured by Stanley [7]. Stanley's Conjecture holds for intersections of four monomial prime ideals of S by [2] and [4] and for square free monomial ideals of $K\left[x_{1}, \ldots, x_{5}\right]$ by [3] (a short exposition on this subject is given in [5]).

Remark 6. The hypothesis of Corollary 3 is too strong. If $\mu(I)>\binom{n}{d+1}$ then $\operatorname{sdepth}_{S} I=d$ and we may get depth ${ }_{S} I=d$ if Stanley's Conjecture holds.

In the Example 5 we have $P_{I}=\left[x_{1} x_{2}, x_{1} x_{2} x_{4}\right] \cup\left[x_{1} x_{3}, x_{1} x_{3} x_{5}\right] \cup\left[x_{1} x_{4}, x_{1} x_{4} x_{5}\right] \cup$ $\left[x_{2} x_{3}, x_{1} x_{2} x_{3}\right] \cup\left[x_{3} x_{4}, x_{1} x_{3} x_{4}\right] \cup\left[x_{3} x_{5}, x_{3} x_{4} x_{5}\right] \cup\left[x_{4} x_{5}, x_{2} x_{4} x_{5}\right] \cup\left[x_{2} x_{3} x_{4}, x_{2} x_{3} x_{4}\right] \cap$ $\left[x_{2} x_{3} x_{5}, x_{2} x_{3} x_{5}\right] \cup\left(\cup_{\alpha}[\alpha, \alpha]\right)$, where α runs in the set of square free monomials of I of degree 4,5 . It follows that $\operatorname{sdepth}_{S} I=3$. But as we know $\operatorname{depth}_{S} I=2$.

Proposition 7. If I is generated by square free monomials of degree $\geq d$ and $\rho_{d}(I) \leq$ $\binom{n}{d+1}$ then $\operatorname{sdepth}_{S} I \geq d+1$.
Proof. Apply induction on n. If $n=d+1$ then there exists nothing to show. Suppose that $n>d+1$. Let $S^{\prime}=K\left[x_{2}, \ldots, x_{n}\right]$ and $I^{\prime}=I \cap S^{\prime}$. Let $x_{1} c_{1}, \ldots, x_{1} c_{e}$, $c_{i} \in S^{\prime}$ be the square free monomials of degree d from $I \cap\left(x_{1}\right)$ and a_{1}, \ldots, a_{s} be the square free monomials of degree d from $I \backslash\left(I \cap\left(x_{1}\right)\right)$. We have $\rho_{d}(I)=e+s$. Set $r=\max \left\{\rho_{d}(I)-\binom{n-1}{d}, 0\right\}$. If $r>0$ we may suppose that a_{i} is a multiple of c_{i} for each $1 \leq i \leq r$, after renumbering of $\left(c_{i}\right),\left(a_{j}\right)$. Certainly, it is possible
that several a_{j} are multiples of the same c_{i} but we just pick one of them a_{i}. Set $L=\left(a_{1}, \ldots, a_{r}\right) S^{\prime}$. As $r \leq\binom{ n}{d+1}-\binom{n-1}{d}=\binom{n-1}{d+1}$ we get $\operatorname{sdepth}_{S^{\prime}} L \geq d+1$ by induction hypothesis. Then there exists a partition of P_{L} of the form

$$
P_{L}=\left(\cup_{i=1}^{r}\left[a_{i}, b_{i}\right]\right) \cup\left(\cup_{t}[t, t]\right),
$$

where $b_{i}, t \in S^{\prime}, \operatorname{deg} b_{i}=d+1$ and t runs in the set of all square free monomials of L different of $\left(b_{i}\right)$ of degree $>d$. Then there exists a partition \mathcal{P} of P_{I} of the form

$$
P_{I}=\left(\cup_{i=1}^{r}\left[a_{i}, b_{i}\right]\right) \cup\left(\cup_{i=1}^{r}\left[x_{1} c_{i}, x_{1} a_{i}\right]\right) \cup\left(\cup_{j>r}^{s}\left[a_{j}, x_{1} a_{j}\right]\right) \cup\left(\cup_{p}[p, p]\right),
$$

where p runs in the set of all square free monomials of I different of $\left(b_{i}\right),\left(x_{1} a_{j}\right)$ of degree $>d$. Thus sdepth $\mathcal{P}=d+1$ and so $\operatorname{sdepth}_{S} I \geq d+1$.

Example 8. Let Δ be the simplicial complex on the vertex set $\{1, \ldots, 6\}$, associated to the canonical triangulation of the real projective plane \mathbb{P}^{2}, whose facets are

$$
\mathcal{F}(\Delta)=\{125,126,134,136,145,234,235,246,356,456\}
$$

Then the Stanley-Reisner ideal of Δ is
$I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{1} x_{4} x_{6}, x_{1} x_{5} x_{6}, x_{2} x_{3} x_{6}, x_{2} x_{4} x_{5}, x_{2} x_{5} x_{6}, x_{3} x_{4} x_{5}, x_{3} x_{4} x_{6}\right)$.
We have $n=6, d=3$ and $\rho_{3}\left(I_{\Delta}\right) \leq\binom{ 6}{4}$. By the above proposition sdepth ${ }_{S} I_{\Delta} \geq 4$, the inequality being in fact equality. It is known that depth $I_{\Delta}=4$ if char $K \neq 2$ and depth $I_{\Delta}=3$ if char $K=2$. Hence Stanley's Conjecture holds in this case. Now, let $S^{\prime}:=K\left[x_{1}, \ldots, x_{5}\right]$ and $I^{\prime}:=I_{\Delta} \cap S^{\prime}$. Then $\rho_{3}\left(I^{\prime}\right) \leq\binom{ 5}{4}$ and we get also $\operatorname{sdepth}_{S} I^{\prime}=4$.
Corollary 9. In the above setting, the following statements are equivalent:
(1) $\rho_{d}(I)>\binom{n}{d+1}$
(2) $\operatorname{sdepth}_{S} I=d$.

References

[1] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
[2] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101), no 4 (2010), arXiv:AC/1008.3680.
[3] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sc. Math. Roumanie 52(100), (2009), 377-382, arXiv:AC/0905.4597v2.
[4] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals, arXiv.AC/1009.5646.
[5] D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2), (2011), 187-194.
[6] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2010),773-784.
[7] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.

Dorin Popescu, Institute of Mathematics "Simion Stoilow", Research unit 5, University of Bucharest, P.O.Box 1-764, Bucharest 014700, Romania

E-mail address: dorin.popescu@imar.ro

[^0]: The support from the CNCSIS grant PN II-542/2009 of Romanian Ministry of Education, Research and Inovation is gratefully acknowledged.

