
ar
X

iv
:1

10
7.

23
21

v1
 [

m
at

h.
N

T
]

 1
2

Ju
l 2

01
1

An algorithm for list decoding number field

codes

Jean-François Biasse1 and Guillaume Quintin2

1 Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

biasse@lix.polytechnique.fr
2 École Polytechnique, 91128 Palaiseau, France

quintin@lix.polytechnique.fr

Abstract. We present an algorithm for list decoding codewords of al-
gebraic number field codes in polynomial time. This is the first explicit
procedure for decoding number field codes whose construction were pre-
viously described by Lenstra [14] and Guruswami [9]. We rely on an
equivalent of the LLL reduction algorithm for OK -modules due to Fieker
and Stehlé [6] and on algorithms due to Cohen [3] for computing the
Hermite normal form of matrices representing modules over Dedekind
domains.

1 Introduction

Algorithms for list decoding Reed-Solomon codes, and their generalization the
algebraic-geometric codes are now well understood. The codewords consist of
sets of functions whose evaluation at a certain number of points are sent, thus
allowing the receiver to retrieve them provided that the number of errors is
manageable. Some algebraic-geometric codes beat the Gilbert-Varshamov bound
for alphabet sizes q > 49 (see [7, 18]), and possess a nice algebraic structure which
enables to decode even in the presence of a large number of errors [12, 17].

The idea behind behind algebraic-geometric codes can be adapted to de-
fine algebraic codes whose messages are encoded as a list of residues redundant
enough to allow errors during the transmission. The Chinese Remainder codes
(CRT codes) have been fairly studied by the community [11, 15]. The encoded
messages are residues modulo N := p1, · · · , pn of numbers m ≤ K := p1 · · · pk
where p1 < p2 < · · · < pn are prime numbers. They are encoded by using

Z −→ Z/p1 × · · · × Z/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Decoding algorithms for CRT codes were significantly improved to reach the
same level of tolerance to errors as those for Reed-Solomon codes [2, 8, 11]. As
algebraic-geometric codes are a generalization of Reed-Solomon codes, the idea
arose that we could generalize the results for CRT codes to redundant residue
codes based on number fields. Indeed, we can easily define an analogue of the

http://arxiv.org/abs/1107.2321v1

CRT codes where a number field K plays the role of Q and its ring of integers
OK plays the role of Z. Then, for prime ideals p1, · · · , pn such that N (p1) <
· · · < N (pn), a message m ∈ OK can be encoded by using

OK −→ OK/p1 × · · · × OK/pn
c : m 7−→ (m mod p1, · · · ,m mod pn).

The construction of good codes on number fields have been independantly stud-
ied by Lenstra [14] and Guruswami [9]. They provided indications on how to
chose number fields having good properties for the underlying codes, but they
did not describe any decoding algorithm.
Contribution: The main contribution of this paper is to provide the first algo-
rithm for decoding number field codes. We adapt an algorithm of Guruswami [10,
Chap. 7] for CRT codes, and present original contributions to methods for
manipulating modules over the ring of integers of a number field (see Sec-
tion 7). Throughout the article, we denote by K a number field of degree d,
of discriminant ∆ and of ring of integers OK . The prime ideals (pi)i≤n sat-
isfy N (p1) < N (p2) < · · · < N (pn), and we define N :=

∏

i≤n N (pi) and
B :=

∏

i≤k N (pi) for integers k, n such that 0 < k < n. Before describing our
algorithm in more details in the following sections, let us state the main result
of the paper.

Theorem. Let ε > 0, and a message m ∈ OK satisfying ‖m‖ ≤ B, then there

is an algorithm that returns all the messages m′ ∈ OK such that ‖m′‖ ≤ B and

that c(m) and c(m′) have mutual agreement t satisfying

t ≥
√

k(n+ ε).

This algorithm is polynomial in d , log(N), 1/ε and log |∆|.

2 Previous work

Even though little has been done on decoding algorithms for number field codes,
their construction is not recent. Indeed, they were described in the 1980’s by
Lenstra [14], and in 2003, Guruswami [9] introduced classes of number field
codes that correspond to the description we gave in the introduction. The main
difference between the two approaches is the fact that Lenstra used the residue
of the message at both Archimedian and non-Archimedian places whereas the
approach of Guruswami (that we followed here) consists of restricting ourselves
to Archimedian places. In fact, the approach of Lenstra allows to prove the
existence of good asymptotic codes more easily, but it is then harder to pursue
the analogy with Reed-Solomon and CRT codes. Nevertheless, Guruswami [9]
exhibited a code family {Ci} of increasing block length ni → ∞ such that

lim inf
ki
ni

> 0 and lim inf
di
ni

> 0,

where ki denotes the dimension of Ci and di denotes its minimum distance.
In his thesis, Guruswami [10, Chap. 7] described a more general framework

embracing both algebraic-geometric codes and CRT codes. The messages lie in
a ring R, and they are encoded via a n-uplet of residues modulo coprime ideals
I1, · · · , In of R by using the function

R −→ R/I1 × · · · ×R/In
c : m 7−→ (m mod I1, · · · ,m mod In).

Then, the messages with sufficient agreement are recovered as roots of a poly-
nomial in R[y]. In [10], this general approach is applied to CRT codes, as well as
to Reed-Solomon codes and algebraic-geometric codes. Finding a suitable poly-
nomial of degree l for decoding boils down to finding short elements in a sub
R-module of Rl+1. This is achieved in [10, Chap. 7] for CRT codes by the means
of the LLL algorithm [13]. In this paper, we use an equivalent of this algorithm on
OK-modules of K l+1 described by Fieker and Stehlé [6], and we provide a proper
analysis of the construction of the module containing our decoding polynomial,
thus allowing to follow the approach of the general framework [10, Chap. 7]. We
use the same notations as in [10, Chap. 7] as much as possible, however, the proof
of many results need to be adjusted to our context, although the general strategy
remains unchanged. As we see in Section 7, the major technical difference is that
we need to manipulate OK-modules defined by their pseudo-basis.

Note that Cohn and Heninger [5] recently gave an ideal form of Coppersmith’s
theorem that can be applied to enhance list decoding of Reed-Solomon and
Algebraic-geometric codes. They used a weak version of the result of Fieker and
Stehlé [6] to give a variant of this theorem for number fields. They discussed
its applications to the shortest vector problem in integral lattices in the context
of lattice-based cryptography, but they did not consider the possibility to list
decode number field codes.

3 Generalities on number fields

Let K be a number field of degree d. It has r1 ≤ d real embeddings (θi)i≤r1 and
2r2 complex embeddings (θi)r1<i≤2r2 (coming as r2 pairs of conjugates). The
field K is isomorphic to OK ⊗ Q where OK denotes the ring of integers of K.
We can embed K in

KR := K ⊗ R ≃ Rr1 × Cr2 ,

and extend the θi’s to KR. Let T2 be the Hermitian form on KR defined by

T2(x, x
′) :=

∑

i

θi(x)θi(x
′),

and let ‖x‖ :=
√

T2(x, x) be the corresponding L2-norm. Let (αi)i≤d such that

OK = ⊕iZαi, then the discriminant of K is given by ∆ = det2(T2(αi, αj)). The
norm of an element x ∈ K is defined by N (x) =

∏

i |θi(x)|.

We encode our messages with prime ideals of OK . However, for decoding, we
need a more general notion of ideal, namely the fractional ideals of OK . They
can be defined as finitely generated OK-modules of K. When a fractional ideal
is contained in OK , we refer to it as an integral ideal, which is in fact an ideal
of OK . For every fractional ideal I of OK , there exists r ∈ Z such that rI is
integral. The sum and product of two fractional ideals of OK is given by

IJ = {i1j1 + · · ·+ iljl | l ∈ N, i1, · · · il ∈ I, j1, · · · jl ∈ J}
I + J = {i+ j | i ∈ I, j ∈ J}.

The fractional ideals of OK are invertible, that is for every fractional ideal
I, there exists I−1 := {x ∈ K | xI ⊆ OK} such that II−1 = OK . The
set of fractional ideals is equipped with a norm function defined by N (I) =
det(I)/ det(OK). The norm of ideals is multiplicative, and in the case of an inte-
gral ideal, we haveN (I) = |OK/I|. Also note that the norm of x ∈ K is precisely
the norm of the principal ideal (x) = xOK . Algorithms for ideal arithmetic in
polynomial time in the bit size of ∆ are extensively described in [4].

In the following, we will study finitely generated sub OK-module of OK [y].
Let M ⊆ K l be a finitely generated OK-module. As in [3, Chap. 1], we say that
[(ai), (ai)]i≤n, where ai ∈ K and ai is a fractional ideal, is a pseudo-basis for M
if

M = a1a1 ⊕ · · · ⊕ anan.

Note that a pseudo-basis is not unique, and the main result of [6] is precisely
to compute a pseudo-basis of short elements. If the sum is not direct, we call
[(ai), (ai)]i≤n a pseudo-generating set forM . Once a pseudo-generating set [(ai), (ai)]i≤n

for M is known, we can associate a pseudo-matrix A = (A, I) to M , where
A ∈ Kn×l and I = (ai)i≤n is a list of n fractional ideals such that

M = a1A1 + · · ·+ anAn,

where Ai ∈ K l is the i-th row of A. We can construct a pseudo-basis from a
pseudo-generating set by using the Hermite normal form (HNF) over Dedekind
domains (see [3, Th. 1.4.6]). Assume A is of rank l (in particular n ≥ l), then
there exists a n×n matrix U = (ui,j) and n non-zero ideals b1, · · · , bn satisfying

1. ∀i, j, ui,j ∈ b−1
i aj.

2. a = det(U)b for a =
∏

i ai and b =
∏

i bi.
3. The matrix UA is of the form

UA =

























1 0 . . . 0

... 1
. . .

...
...

...
. . . 0

∗ ∗ . . . 1

(0)

























.

4. M = b1ω1 ⊕ · · · ⊕ blωl where ω1, · · ·ωl are the first l rows of UA.

In general, the algorithm of [3] for computing the HNF of a pseudo-matrix
takes exponential time, but as in the integer case, there exists a modular one
which is polynomial in the dimensions of A, the degree of K, and the bit size
of the modulo. Note that in the case of a pseudo matrix representing an OK-
module M , the modulo an integral multiple of the determinantal ideal g(M),
which is generated by all the ideals of the form

det
i1,··· ,il

(A) · ai1 · · · ail ,

where deti1,··· ,il(A) is the determinant of the l× l minor consisting of the rows of
indices i1, · · · , il. The determinantal ideal is a rather involved structure, except
in the case l = n.

4 Johnson-type bound for number fields codes

A Johnson-type bound is a positive number J depending on the distance, the
blocklength and the cardinalities of the Alphabets constituting the code. It
garanties that a “small” number of codewords are in any sphere of radius J .
By “small” number, we mean a number of codewords which is linear in the code
blocklength and the cardinality of the code. In our case, the Johnson-type bound
for number fields codes depends only on the code blocklength and its minimal
distance, and “small” means polynomial in

∑n
i=1 logN (pi).

The Johnson-type bound of [10, Section 7.6.1] remains valid for number field
codes. For any prime ideal p ⊂ OK , the quotient OK/p is a finite field. Thus
the i’th symbol of a codeword comes from an alphabet of size N (pi) = |OK/pi|
and [10, Th. 7.10] can be applied. Let t be the least positive integer such that

t
∏

i=1

N (pi) >

(

2B

d

)d

,

where d = [K : Q] and let

T =
t
∏

i=1

N (pi).

Then, by [9, Lem. 12], the minimal hamming distance of the number fields code
is at least n− t+ 1. Using [10, Th. 7.10], we can show that for a given message
and ε > 0, only a “small” number of codewords satisfy

n
∑

i=1

ai >
√

(t+ ε)n, (1)

where ai = 1 if the codeword and the message agree at the i-th position, ai = 0
otherwise. Thus, if our list decoding algorithm returns all the codewords having

at most n−
√

(t+ ε)n errors then this number is garanteed to be “small”. There-
fore, the Johnson bound appears to be a good objective for our algorithm. Note
that we would derive a different bound by using weighted distances. In particular,

by using the log-weighted hamming distance i.e. d(x, y) =
∑

i:x 6=y mod pi

logN (pi),

the condition would be
∑n

i=1 ai logN (pi) >
√

(logT + ε) logN .

5 General description of the algorithm

In this section, we give a high-level description of our decoding algorithm. We
follow the approach of the general framework described in [10], making the ar-
rangements required in our context. Our code is the set of m ∈ OK such that
‖m‖ ≤ B where B =

∏

i≤k N (pi). We also define N :=
∏

i≤n N (pi). A codeword
m is encoded via

OK −→ OK/p1 × · · · × OK/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Let z1, · · · , zn be non-negative real numbers, and let Z be a parameter. In this
section, as well as in Section 6 and 7, we assume that the zi are integers. We
assume that we received a vector r1, · · · , rn ∈∏iOK/pi. We wish to retrieve all
the codewords m such that

∑

i aizi > Z where ai = 1 if m mod pi = ri and 0
otherwise (we say that m and (ri)i≤n have weighted agreement Z).

We find the codewords m with desired weighted agreement by computing
roots of a polynomial c ∈ OK [y] that satisfies

‖m‖ ≤ B =⇒ ‖c(m)‖ < F, (2)

for an appropriate bound F . A polynomial c satisfying (2) is chosen in the ideal
∏

i≤n Jzi
i ⊆ OK [y] where

Ji = {a(y)(y − ri) + p · b(y) | a, b ∈ OK [y] and p ∈ pi}.

With such a choice of a polynomial, we necessarily have c(m) ∈∏i p
ziai

i , where
ai = 1 if c(m) mod pi = ri, 0 otherwise. In particular, if c(m) 6= 0 this means that
N (c(m)) ≥ ∏

i N (pi)
ziai . In addition, we know from the arithmetic-geometric

inequality that ‖c(m)‖ ≥
√
dN (c(m))1/d. We thus know that if the weighted

agreement satisfies

∑

i≤n

aizi logN (pi) > −d

2
log(d) + d log(F), (3)

which in turns implies
√
d (
∏

iN (pi)
ziai)

1/d
> F , then c(m) has to be zero, since

otherwise it would contradict (2).

Algorithm 1 Decoding algorithm

Input: OK , z1, · · · , zn, B, Z, r1, · · · , rn ∈
∏

iOK/pi.
Output: All m such that

∑

i aizi > Z.
1: Compute l and F .
2: Find c ∈ ∏

i≤n Jzi
i ⊆ OK [y] of degree at most l such that ‖m‖ ≤ B =⇒ ‖c(m)‖ <

F .
3: Find all roots of c and report those roots ξ such that ‖ξ‖ ≤ B and

∑

i aizi > Z.

6 Existence of the decoding polynomial

In this section, we prove the existence of a polynomial c ∈ OK [y] and a constant
F > 0 such that for all ‖m‖ ≤ B, m ∈ OK , we have ‖c(m)‖ ≤ F . This proof is
not constructive. The actual computation of this polynomial will be described
in Section 7. We first need to estimate the number of elements of OK bounded
by a given size.

Lemma 1. Let F ′ > 0 and 0 < γ < 1, then the number of x ∈ OK such that

‖x‖ ≤ F ′ is at least
⌊

πd/2F ′d

2r1+r2−1+γ
√

|∆|Γ (d/2)

⌋

.

Proof. As in [16, Chap. 5], we use the standard results of Minkowski theory for
our purposes. More precisely, there is an isomorphism

f : KR −→ Rr1+2r2

and a scalar product (x, y) :=
∑

i≤r1
xiyi+

∑

r1<i≤r2
2xiyi on Rr1+2r2 transfering

the canonical measure from KR to Rr1+2r2 . Let λ = f(OK), X := {x ∈ KR |
‖x‖ ≤ F ′}, and m ∈ N. We know from Minkowski’s lattice point theorem that if

Vol(X) > m2d det(λ),

then #(f(x)∩λ) ≥ m. As Vol(X) = 2r2
(

2πd/2F ′d/Γ (d/2)
)

and det(λ) =
√

|∆|,
we have the desired result.

Then, we must derive from Lemma 1 an analogue of [10, Lemma 7.6] in our
context. This lemma allows us to estimate the number of polynomials of degree
l satisfying (2). To simplify the expressions, we use the following notation in the
rest of the paper

αd,∆,γ :=
πd/2

2r1+r2−1+γ
√

|∆|Γ (d/2)
.

Lemma 2. For positive integers B,F ′, the number of polynomial c ∈ OK [y] of
degree at most l satisfying (2) is at least

(

αd,∆,γ

(

F ′

(l + 1)Bl/2

)d
)l+1

.

Proof. Let c(y) = c0 + c1y + · · · + cly
l. We want the ci’s to satisfy ‖cimi‖ <

F ′/(l + 1) whenever ‖m‖ ≤ B. This is the case when ‖ci‖ < F ′/(Bi(l + 1)). By

Lemma 1, there are at least αd,∆,γ

(

F ′/((l + 1)Bi)
)d

possibilities for ci. There-
fore, the number of polynomial c satisfying (2) is at least

(αd,∆,γ)
l+1

(

(

F ′

l + 1

)l+1 l
∏

i=0

B−i

)d

,

which finishes the proof.

Now that we know how to estimate the number of c ∈ OK [y] or degree at
most l satisfying (2), we need to find a lower bound on F to ensure that we can
find such a polynomial in

∏

i J
zi
i . The following lemma is an equivalent of [10,

Lemma 7.7].

Lemma 3. Let l, B, F be positive integers, there exists c ∈ ∏i J
zi
i satisfying (2)

provided that

F > 2(l+ 1)Bl/2 1

(αd,∆,γ)1/d

(

∏

i

N (pi)
(zi+1

2)

)
1

d(l+1)

. (4)

Proof. Let us apply Lemma 2 to F ′ = F/2. There are at least

(

αd,∆,γ

(

F/2

(l + 1)Bl/2

)d
)l+1

polynomial c ∈ OK [y] satisfying ‖m‖ ≤ B ⇒ ‖c(m)‖ < F/2. In addition, we

know from [10, Corollary 7.5] that
∏

i |N (pi)|(
zi+1

2) ≥ |OK [y]/
∏

i J
zi
i |, which

implies that if (4) is satisfied, then necessarily

(

αd,∆,γ

(

F/2

(l + 1)Bl/2

)d
)l+1

>

∣

∣

∣

∣

∣

OK [y]/
∏

i

Jzi
i

∣

∣

∣

∣

∣

.

This means that there are at least two distinct polynomials c1, c2 ∈ OK [y] of
degree at most l such that (c1 − c2) ∈ ∏

i J
zi
i and ‖c1(m)‖, ‖c2(m)‖ < F/2

whenever ‖m‖ ≤ B. The choice of c := c1 − c2 finishes the proof.

7 Computation of the decoding polynomial

Let l > 0 be an integer to be determined later. To compute c ∈ ∏

i J
zi
i of

degree at most l satisfying (2), we need to find a short pseudo-basis of the sub
OK-module M of K l+1 given by

c = c0 + yc1 + · · ·+ ylcl −→ (c0, c1, · · · , cl).

We first compute a peudo-generating set for each Jzi
i , then we compute a pseudo-

basis for their intersection, and we finally call the algorithm of [6] to produce a
short peudo-basis of M from which we derive c.

An algorithm for computing a pseudo-basis of the intersection of two modules
given by their pseudo basis is described by Cohen in [3, 1.5.2]. Applying this
successively for each pseudo-basis of Jzi

i would certainly produce a pseudo-basis
of
∏

i J
zi
i , but it would be likely to be exponential. We present in the following

an algorithm for computing the intersection of n sub OK-modules of K l+1 that
is polynomial in n, l and the bit size of the product of the n determinantal ideals
when the modules are included in Ol+1

K .

Algorithm 2 Intersection of OK-modules

Input: OK -modules M1, · · · ,Mn given by (A1, (a
(1)
i)i≤l+1), · · · , (An, (a

(n)
i)i≤l+1).

Output: A pseudo matrix (H, (ci)i≤l+1) representing ∩iMi

1: g← g(M1) · · · g(Mn), H1 ← A1, (ci)i≤l+1 ← (a1i)i≤l+1.
2: for 2 ≤ k ≤ n do

3: Let Bk be the pseudo matrix given by

Bk =













Ak Ak (0)

(0) Hk−1













,

and the ideals (di)i≤k(l+1) := ai1, · · · , ail+1, c1, · · · , c(k−1)(l+1).
4: Let (Hk, (ci)i≤k(l+1) be the Hermite normal form of (Bk, (di)i≤k(l+1)) modulo g

(by using [3, Alg. 1.6.1]).
5: end for

6: Let H be the upper left (l + 1) × (l + 1) minor of Hn.
7: return (H, (ci)i≤l+1).

Proposition 1. Let M1, · · · ,Mn be OK-modules of K l+1 given by

(A1, (a
(1)
i)i≤l+1), · · · , (An, (a

(n)
i)i≤l+1),

where the a
j
i are integral ideals of OK and the Ai have integral coefficients, then

Algorithm 2 computes a pseudo-basis for ∩iMi in polynomial time in n, l and
in the bit size of g := g(M1) · · · g(Mn).

Proof. We notice that ∀k ≤ n, g(Hk) =
∏k

i=1 g(Mi) since it is clear that in the
square case, the Hemite normal form computation preserves the determinantal
ideal. Therefore, since the a

j
i are assumed to be integral and since the Ai have

integral coefficients, g is an integral multiple of g(Hk) for every k ≤ n. Thus, the
use of [3, Alg. 1.6.1] modulo g in Step 4 is valid, and from [6, Th. 1] we know
that it is polynomial in n, l and the bit size of g.

We can see by induction that for all k ≤ n, the pseudo-matrix defined by the
upper left (l + 1)× (l + 1) minor of Hk and c1, · · · , cl+1 represent ∩i≤kMi. The
first iteration over k is a direct application of [3, Alg. 1.5.1]. Let M,N are two
modules over a Dedekind domain given by A, (ai)i≤l+1 and B, (bi)i≤l+1, and let
C be the pseudo-matrix given by

(

A A
0 B

)

,

and c1, · · · , c2(l+1). Then the upper left (l + 1) × (l + 1) minor for the HNF of
C, together with c1, · · · , cn represent M ∩N . Now if we assume our property for
some k < n, then Bk+1 has the shape

Bk+1 =





















Ak+1Ak+1

(0) H ′
1

(0)

H ′
3 H ′

2





















,

whereH ′
2 ∈ K(k−1)(l+1)×(k−1)(l+1) is lower-triangular and (H ′

1, (ci)i≤l+1) rep-
resent ∩i≤kMi (by induction).

The HNF of Bk+1 is obtained by using [3, Alg. 1.6.1]. The treatment of
columns (k + 1)(l + 1) to 2(l + 1) + 1 leaves H ′

2 and c(k+1)(l+1), · · · , c2(l+1)+1

unchanged since they are already in HNF. Then the treatment of columns 2(l+1)
to 1 consists of computing the HNF of the pseudo-matrix

Ck+1 :=

(

Ak+1 Ak+1

0 H ′
1

)

, (a
(k+1)
1 , · · · , a(k+1)

l+1 , c1, · · · , cl+1),

and of reducing the rows of H ′
3 with these Ck+1. Let

(

UCk+1, (di)i≤2(l+1)

)

be

the HNF of (Ck+1, I), where U ∈ K2(l+1)×2(l+1), and H ′
4 be the matrix defined

by

U

(

Ak+1 Ak+1

0 H ′
1

)

=

(

H ′
4 (0)

(∗) (∗)

)

,

then by induction, we know that the pseudo-matrix

(H ′
4, (di)i≤l+1)

represents ∩i≤k+1Mi.

Remark: In the previous proof, the HNF of the upper left 2(l + 1) × 2(l + 1)
minor of Bk has to be recovered from the HNF of Bk itself since we need to
perform this operation modulo an integral multiple of the determinantal ideal.
We know such a multiple for Bk, but not for its upper left 2(l + 1) × 2(l + 1)
minor whose determinantal ideal might be fractional.

Algorithm 3 Computation of the determinantal ideal

Input: Pseudo-matrix A, (ai)i≤l+1, where A and the ai are integral. Bound L ≥
maxi,j,σ |σ(Ai,j)|.

Output: g(A, (ai)).
1: Lp ←

√
dLl+1(l + 1)(l+1)/2.

2: Let p ∈ N be the smallest prime above Lp and (pi, ei)i≤g such that (p) =
∏

i≤g p
ei
i .

3: for pi | (p) do
4: Compute det(A) mod pi.
5: end for

6: Recover det(A) mod (p) via

OK/pe11 × · · · × OK/p
eg
g −→ OK/(p)

(det(A) mod p
e1
1 , · · · ,det(A) mod p

eg
g) 7−→ det(A) mod (p).

7: g← det(A)a1 · · · al+1.
8: return g.

Before presenting the overall strategy for computing our decoding polynomial
c, let us isolate the step consisting of the computation of the determinantal
ideal of Jzi

i . Algorithm 3 computes the determinantal ideal in polynomial time
in d, l and the bit size of L. In Step 1 we first compute an upper bound on
|σ(det(A))| for the d complex embeddings of K via Hadamard’s inequality and
then we deduce a bound Lp on ‖ det(A)‖. If α1, · · · , αd is an integral basis for
OK , and (ai)i≤d are integers such that det(A) =

∑

i≤d aiαi, then necessarily
maxi |ai| ≤ Lp. Then, the unique representant of the class of det(A) mod (p)
whose integral coefficients have their absolute value bounded by p is det(A). Note
that for the purpose of a practical implementation, one might prefer computing
det(A) modulo several wordsize primes and recover its value via the chinese
remaindering theorem rather than finding directly its value modulo a unique
prime larger than Lp. Let us now present the overall strategy for computing the
decoding polynomial.

Proposition 2. Algorithm 4 is correct and runs in polynomial time in log(N),
l, d, and log |∆|.

Proof. The loop between Step 1 and Step 8 of Algorithm 4 consists of comput-
ing a pseudo-basis for Jzi

i along with its determinantal ideal. These steps are
polynomial in K, l, d and log |∆|. All we need to prove is that L is indeed an
upper bound on maxk,g,σ |σ(Ai k,g)| where σ : K → C runs over the d complex

embeddings of K. Every rk can be written rk =
∑

g≤d b
(k)
g αg where (αg)g≤d

is an integral basis of OK . In addition, according to [6, Lem. 1], we may as-

sume that ‖αg‖ ≤
√
d2d

2/2
√

|∆|. Trivially, we see that our canonical choice for

a representative of a class modulo pk satisfies |b(k)g | ≤ N (pk). We thus have

∀σ, k, |σ(rk)| ≤ ‖rk‖ ≤ N (pk)
√
d2d

2/2
√

|∆| ≤ N
√
d2d

2/2
√

|∆|.

Algorithm 4 Computation of the decoding polynomial

Input: (pi, zi)i≤n, l, N , B, F such that ∃c ∈ ∏

i J
zi
i of degree at most l satisfying (2)

for F , and the encoded message (r1, · · · , rn) ∈
∏

iOK/pi.

Output: c ∈ ∏

i J
zi
i satisfying (2) for F ′ = 2

dl
2
√
l + 1

(

22+d(6+3d)d3|∆|2+ 11
2d

)

F of

degree at most l.

1: L← 2ld
2/2

(

2l
l

)

N l|∆|l/2.
2: for i ≤ n do

3: z̃i ← min(zi, l).
4: For 0 ≤ j ≤ z̃i: a

i
j ← p

zi−j
i , ai

j ← (y − ri)
j .

5: For 1 ≤ j ≤ l − zi: a
i
j ← OK , ai

j ← yj(y − ri)
zi .

6: Let
(

Ai, (a
i
j)j≤l+1

)

be the pseudo matrix representing Jzi
i .

7: Compute g(Jzi
i) with Algorithm 3 used with the bound L.

8: end for

9: Compute a pseudo-basis [(ci), (ci)]i≤l+1 of M = ∩iJ
zi
i modulo g =

∏

i g(J
zi
i) with

algorithm 2.
10: Deduce a pseudo basis [(di), (di)]i≤l+1 of the module M ′ given by

(v0, v1, · · · , vl) ∈M ⇐⇒ (v0, v1 ·B, · · · , vl · (B)l) ∈M ′.

11: Let [(bi), (bi)]i≤l+1 be a short peudo-basis of M ′ obtained with the reduction al-
gorithm of [6].

12: Let x1, x2 be a short basis of b1 obtained with [6, Th. 3].
13: return c ∈M corresponding to x1b1 ∈M ′.

The coefficients of A are given by those of polynomials of the form (y − rk)
g

where g ≤ l. They are bounded by

max
σ,k,g

|σ(Ai k,g)| ≤
(

2l

l

)

(max
σ,k

|σrk|)l ≤ 2ld
2/2

(

2l

l

)

N l|∆|l/2.

Givem the bounds on ‖ det(Ai)‖, we clearly see that g =
∏

g(Jzi
i) has bit size

polynomial in log(N), l, d and log |∆|, which implies that step 9 is polynomial
in all these values.

By assumption, we know the existence of e ∈ ∏

i J
zi
i of degree at most l

satisfying (2) for F . We even argued in the proof of Lemma 2 that we could
assume

∀j ≤ l, ‖ej‖ ≤ F

(l + 1)Bj
.

The size of the vector e′ corresponding to e in the module M ′ defined in Step 10
satisfies ‖e′‖ ≤ F/

√
l + 1, and so does the first minima λ1(M

′), that is λ1(M
′) ≤

‖c′‖ ≤ F/
√
l + 1. Note that we use ‖e‖ =

√
∑

i ‖e‖2 to define the size of an

element of an OK-module. From [6, Th. 3], we know that N (b1) ∈ [2−O(d2), 1]
and that

‖x1‖ ≤ 4 · 24d|∆|4/d
(

max
i≤d

‖αi‖
)4

N (b1)
4/d

≤ 22(1+d(2+d))d2|∆|2(1+ 2
d).

In addition, ‖b1‖ can be bounded by using [6, Cor. 3]

‖b1‖ ≤ 2
d(l+1)

2

√
l+ 12

3d
2 |∆| 3

2d

(

max
i≤d

‖αi‖
)2

λ1(M
′)

≤ 2d(
l+1
2 + 3

2+d)
√
l + 1d|∆| 3

2dλ1(M
′).

We thus have that

‖x1b1‖ ≤
(

22+d(l+12
2 +3d)d3|∆|2+ 11

2d

)

F,

and therefore, for every m ∈ OK such that ‖m‖ ≤ B, the polynomial c ∈ M
corresponding to x1b1 ∈ M ′ satisfies

‖c(m)‖ ≤
√
l + 1‖x1b1‖ ≤

√
l + 1‖x1‖‖b1‖ ≤ 2

dl
2

√
l + 1

(

22+d(6+3d)d3|∆|2+ 11
2d

)

F.

8 Good weight settings

To derive our main result, we need to consider weights zi > 0 in R rather than
Z. Let

βd,∆,γ :=
d3−

d
2 23(1+d(2+d))|∆|2+ 11

2d

αd,∆,γ
1
d

,

then by combining (3), (4) and Algorithm 4, we know that given (r1, · · · , rn) ∈
∏

i≤n OK/pi, l > 0, B =
∏

i≤k N (pi) and integer weights zi > 0, Algorithm 4
returns a polynomial c of degree at most l such that all m ∈ OK satisfying
‖m‖ ≤ B and

∑

i≤n

aizi logN (pi) ≥
l

2
log(2d

2

Bd) +
3d

2
log(l + 1)

+
1

l + 1

∑

i≤n

(

zi + 1

2

)

logN (pi) + log βd,∆,γ , (5)

(where ai = 1 if m mod pi = ri, 0 otherwise) are roots of c. In the following,
we no longer assume the zi to be integers. However, we will use our previous
results with the integer weights z∗i := ⌈Azi⌉ for a sufficently large integer A to
be determined.

Proposition 3. Let ε > 0, non-negative reals zi, B =
∏

i≤k N (pi), and an

encoded message (r1, · · · , rn) ∈
∏

i OK/pi, then our algorithm finds all the m ∈
OK such that ‖m‖ ≤ B and

∑

i≤n

aizi logN (pi) ≥

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2i logN (pi) + εz2max



,

where ai = 1 if m mod pi = ri, 0 otherwise.

Proof. Note that we can assume without loss of generality that zmax = 1. Let
z∗i = ⌈Azi⌉ for a sufficently large integer A, which thus satisfies Azi ≤ z∗i <
Azi + 1. The decoding condition (5) is met whenever

∑

i≤n

aizi logN (pi) ≥
l

2A
log(2d

2

Bd) +
3d

2A
log(l + 1)

+
A

2(l + 1)

∑

i≤n

(

z2i +
3

A
zi +

2

A2

)

logN (pi) +
1

A
log βd,∆,γ .

(6)

Let Zi := z2i +
3
Azi +

2
A2 for i ≤ n and

l :=









A

√

∑

i≤n Zi logN (pi)

log(2d2Bd)









− 1.

We assume that A ≥ log(2d
2

Bd), which ensures that l > 0. For this choice of l,
condition (6) is satisfied whenever

∑

i≤n

aizi logN (pi) ≥
3d

2A
log



A

√

∑

i≤n Zi logN (pi)

log(2d2Bd)
+ 1





+

√

√

√

√

√log(2d2Bd)





∑

i≤n

Zi logN (pi)



+
1

A
log βd,∆,γ . (7)

Assume that A ≥ 10 logN
ε and A ≥ log βd,∆,γ

logN , then for N large enough, the right

side of (7) is at most

O

(

log logN

logN

)

+

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2i logN (pi) +
ε

2





≤

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2i logN (pi) + ε





The degree l of our decoding polynomial c is therefore polynomial in logN , 1
ε ,

d and log |∆|. By [1, 2.3], we know that the complexity to find the roots of c
is polynomial in d, l and in the logarithm of the height of c, which we already
proved to be polynomial in the desired values.

Corollary 1. Let ε > 0, k < n and prime ideals p1, · · · pn satisfying N (pi) <
N (pi+1) and logN (pk+1) ≥ max(2dk logN (pk), 2d

2), then with the previous no-

tations, our algorithm finds a list of all codewords which agree with a received

word in t places provided t ≥
√

k(n+ ε).

Proof. The proof is similar to the one of [10, Th. 7.14]. The main difference

is that we define δ := k − log(2d
2
Bd)

logN (pk+1)
which satisfies δ ≥ 0 since by assump-

tion logN (pk+1) ≥ max(2dk logN (pk), 2d
2). We apply Proposition 3 with zi =

1/ logN (pi) for i ≥ k+1, zi = 1/ logN (pk+1) for i ≤ k, and ε′ = ε/ logN (pk+1).
It allows us to retrieve the codewords whose number of agreements t is at least

√

√

√

√

log(2d2Bd)

logN (pk+1)

(

log(B)

logN (pk+1)
+

n
∑

i=k+1

N (pk+1)

logN (pi)
+ ε′

)

≤ δ +

√

√

√

√

log(2d2Bd)

logN (pk+1)

(

log(2d2Bd)

logN (pk+1)
+

n
∑

i=k+1

N (pk+1)

logN (pi)
+ ε

)

.

This condition is met whenever t ≥ δ +
√

(k − δ)(n− δ + ε). From the Cauchy-
Schwartz inequality, we notice that

√

k(n+ ε) ≥
√

(k − δ)(n− δ + ε),

which proves that our decoding algorithm works when t ≥
√

k(n+ ε).

9 Conclusion

We derived an analogue of the CRT list decoding algorithm for codes based on
number fields. Our method allows to reach the Johnson bound. We followed the
approach of [10, Ch. 7] that provides a general frameworks for list decoding of
algebraic codes, along with its application to CRT codes. The modifications to
make this strategy efficient in the context of number fields are substantial. We
needed to refer to the theory of modules over a Dedekind domain, and carefully
analyse the process of intersecting them, as well as finding a short basis. Our
algorithm is polynomial in d, log(N) and in log |∆|. The only regret we can have
is that we need to assume logN (pk+1) ≥ max(2dk logN (pk), 2d

2), which is the
only difference with the result of [10, Ch. 7] on CRT codes.

We could not conclude on whether the numer field codes can allow better
decoding settings than CRT codes. So far, we have shown that they were effective
and at least as good as CRT codes. Other types of decoding could be tried.
In addition, more fundamental questions could be raised, for example on the
performances of the dual code of a number field code.

References

1. A. Ayad, A lecture on the complexity of factoring polynomials over global fields,
International Mathematical Forum 5 (2010), no. 10, 477–486.

2. D. Boneh, Finding smooth integers in short intervals using crt decoding, Proceed-
ings of the thirty-second annual ACM symposium on Theory of computing (New
York, NY, USA), STOC ’00, ACM, 2000, pp. 265–272.

3. H. Cohen, Advanced topics in computational algebraic number theory, Graduate
Texts in Mathematics, vol. 193, Springer-Verlag, 1991.

4. H. Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics, vol. 138, Springer-Verlag, 1991.

5. H. Cohn and N. Heninger, Ideal forms of coppersmith’s theorem and guruswami-
sudan list decoding, Proceedings of Innovations in computer science, 2011.

6. C. Fieker and D. Stehlé, Short bases of lattices over number fields, Algorithmic
Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19-
23, 2010. Proceedings (G. Hanrot, F. Morain, and E. Thomé, eds.), Lecture Notes
in Computer Science, vol. 6197, Springer, 2010, pp. 157–173.

7. A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function
fields attaining the Drinfeld-vlǎduţ bound, Invent. Math. 121 (1995), no. 1, 211–
222.

8. O. Goldreich, D. Ron, and M. Sudan, Chinese remaindering with errors, Proceed-
ings of the thirty-first annual ACM symposium on Theory of computing (New
York, NY, USA), STOC ’99, ACM, 1999, pp. 225–234.

9. V. Guruswami, Constructions of codes from number fields, IEEE Transactions on
Information Theory 49 (2003), no. 3, 594–603.

10. V. Guruswami, List decoding of error-correcting codes: Winning thesis of the 2002
acm doctoral dissertation competition (lecture notes in computer science), Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

11. V. Guruswami, A. Sahai, and M. Sudan, Soft-decision decoding of chinese remain-
der codes, Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (Washington, DC, USA), IEEE Computer Society, 2000, pp. 159–168.

12. V. Guruswami and M. Sudan, Improved decoding of reed-solomon and algebraic-
geometric codes, IEEE Symposium on Foundations of Computer Science, vol. 5,
1999, pp. 28–39.

13. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with
rational coefficients, Mathematische Annalen 261 (1982), no. 4, 515–534.

14. H. Lenstra, Codes from algebraic number fields, Mathematics and computer sci-
ence II, Fundamental contributions in the Netherlands since 1945 (North-Holland,
Amsterdam) (M. Hazewinkel, J.K. Lenstra, and L.G. L.T. Meertens, eds.), CWI
Monograph, vol. 4, 1986, pp. 94–104.

15. D. Mandelbaum, On a class of arithmetic codes and a decoding algorithm (cor-
resp.), IEEE Transactions on Information Theory 22 (1976), 85–88.

16. J. Neukirch, Algebraic number theory, Comprehensive Studies in Mathematics,
Springer-Verlag, 1999, ISBN 3-540-65399-6.

17. M. A. Shokrollahi and H. Wasserman, List decoding of algebraic-geometric codes,
IEEE Transactions on Information Theory 45 (1999), no. 2, 432–437.

18. M. A. Tsfasman and Th. Zink, Modular curves, shimura curves, and goppa codes,
better than varshamov-gilbert bound, Mathematische Nachrichten 109 (1982), 21–
28.

