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Quantum Computing via The Bethe Ansatz
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We recognize quantum circuit model of computation as factorisable
scattering model and propose that a quantum computer is associated
with a quantum many-body system solved by the Bethe ansatz. As an
typical example to support our perspectives on quantum computation,
we study quantum computing in one-dimensional nonrelativistic system
with delta-function interaction, where the two-body scattering matrix
satisfies the factorisation equation (the quantum Yang–Baxter equation)
and acts as a parametric two-body quantum gate. We conclude by com-
paring quantum computing via the factorisable scattering with topolog-
ical quantum computing.

Computers are physical objects, and computations are physical processes.
This sentence becomes one of Deutsch’s famous quotes, and is a helpful guiding
principle to understand Deutsch’s original perspectives on quantum computation
in his two seminal papers [1, 2]. With it, a large-scale quantum computer is a

quantum many-body system, and its motion from an initial state to a final state

is the performance of quantum computation from an input to an output. An
explicit example for this statement is the quantum circuit model of computation
[2], which expresses an output as the result of a sequence of quantum gates on
an input, in which a quantum gate is a unitary transformation with its input
and output and implemented by a quantum process with the initial state and the
final state.

An arbitrary N -qubit unitary quantum gate has the following factorization
property. It can be expressed exactly as a sequence of products of some two-
qubit gates [3], which are generated by the CNOT gate with one-qubit gates [4].
Hence a quantum circuit consists of only two-qubit gates or two-qubit gates with
one-qubit gates. On the other hand, Deutsch [2] denoted an N -qubit quantum
gate by a 2N × 2N scattering matrix (S-matrix) since both are unitary matrices
with the equal number of inputs and outputs, and intuitively viewed quantum
computation performed by an N -qubit quantum gate as an N -qubit quantum
elastic scattering process. Therefore, a quantum circuit model can be viewed

as a factorisable scattering model [5], which is our observation on the physics
underlying the quantum circuit model.
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Suppose that we already have a quantum computer able to perform universal
quantum computation or a specified class of computation tasks. To set up and
operate on such a machine, it is the best to solve the Schrödinger equation of
this many-body system to derive its exact wavefunction and then have its all key
physical properties. That is, a quantum computer is associated with an exactly

solvable quantum many-body system, also because many known exactly solvable
models are integrable models [5] naturally giving rise to factorisable scattering

models.
Almost all known integrable models are solved by the Bethe ansatz [5]. The

ansatz is an assumption on the wavefunction of a quantum many-body system
and is able to transform the problem of solving the Schrödinger equation into the
problem of solving algebraic equations. It was originally proposed by Bethe in
the study of the Heisenberg spin chain, and later was used by many authors to
solve one-dimensional model with δ-function interaction, one-dimensional Hub-
bard model, etc. Our proposal can be hence stated as follows, a quantum circuit

model is associated with a quantum many-body system solved by the Bethe ansatz.
That is, we choose to explore physics of quantum computer with the Bethe ansatz.
In Sutherland’s book [5], the asymptotic Bethe ansatz has the same content as
the factorisable scattering, and so equivalently, we focus on quantum computing
via the factorisable scattering.

Many-body quantum scattering in two dimensional space-time is called fac-

torisable scattering [6] if and only if it has the properties: all collisions are purely
elastic processes; only two-body collisions are allowed; the order of two-body
collisions can be adjusted under the consistency condition. Hence the N -body
factorisable collision is expressed as a sequence of two-body collisions, i.e., the N -
body factorisable scattering matrix (S-matrix) is equal to a product ofN(N−1)/2
two-body S-matrices. The two-body S-matrix satisfies the consistence condition
called the factorization equation, which was firstly discovered by McGuire [6] and
is now often referred to as the quantum Yang–Baxter equation [7].

Nontrivial unitary solutions of the factorization equation, i.e., two-body scat-
tering matrices, have been recognized by the author and his coauthors [8, 9, 10]
as parametric two-body quantum gates from the viewpoint of mathematicians
or mathematical physicists. The author named integrable quantum computing to
stand for quantum computing via non-trivial unitary solutions of the factorisation
equation in his previous paper [11], which can be generalized to represent quan-
tum computing via the Bethe ansatz, i.e., the title of this paper. As an example,
let us focus on integrable quantum computing in one-dimensional nonrelativistic
system with δ-function interaction, and interested readers are invited to refer
to Bose and Korepin’s latest preprint [12] as a preliminary introduction on how
to have the two-body scattering matrix as a quantum gate between two flying
particles.
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Take Yang’s notation [7] for the two-body scattering matrix,

Y 12
12 =

i(p1 − p2)P12 + c

i(p1 − p2)− c

where c denotes interaction strength and c > 0 (c < 0) means repulsive (attrac-
tion) interaction, p1 and p2 represent momenta of two flying particles respectively,
and P12 denotes the permutation operator (the Swap gate) acting on internal
states of these two flying particles 2. Note that the two-body scattering matrix
in the Heisenberg spin chain and the Hubbard model [5] has a similar form of
Y 12
12 , and so our research can be applied to these models in principle.
Define a new variable ϕ in the way,

tanϕ =
p2 − p1

c
, −π

2
< ϕ <

π

2
,

and it gives rise to a new form of the scattering matrix Y 12
12 by

Y 12
12 (ϕ) = −e−2iϕ











1 0 0 0

0 1+e2iϕ

2
1−e2iϕ

2 0

0 1−e2iϕ

2
1+e2iϕ

2 0
0 0 0 1











,

which can be implemented as a parametric two-body gate modulo a phase factor
in the scattering process between a flying qubit and a static qubit [13]. As the
parameter ϕ has the value ±π

4 , i.e., p2 − p1 = ±c, we have a maximal entangling
gate to yield the Bell states with local unitary transformations.

Introduce another symbol α = i tanϕ, the scattering matrix Y 12
12 has the form

Y 12
12 = − 1

1 + α
(1− αP12)

which is a rational solution of the factorisation equation and has been associated
with the Werner state, see the author and his coauthors’ paper [9] for the detail.
Therefore, the entangling properties of the scattering matrix Y 12

12 can be explored
with the help of the entangling properties of the Werner state. In addition, the
Werner state is invariant under SU(2)×SU(2), and so the scattering matrix Y 12

12

does. This too much symmetry decides the scattering matrix Y 12
12 not to be a

universal quantum gate [3] generating all unitary transformations.
In terms of ϕ, the scattering matrix Y 12

12 has an exponential form of P12,

Y 12
12 (ϕ) = ei(π−ϕ)e−iϕP12 , −π

2
< ϕ <

π

2

2The permutation operator P12 is noted for identical bosonic particles or distinguishable
particles, while −P12 is used for identical fermionic particles. Bose and Korepin’s notation
on the two-body scattering matrix [12] is obtained from ours by multiplying the permutation
operator P12 and exchanging the positions of p1 and p2.
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which suggests that it is impossible to have an exact Swap gate P12 directly by
taking ϕ = π

2 but possible to approximate the Swap gate by taking p2 − p1 ≫ c,
i.e., ϕ = π

2 + ǫ with infinitesimal parameter ǫ in the way

Y 12
12 (

π

2
+ ǫ) = P12 +O(ǫ).

Fortunately, there exists the other way to have an exact Swap gate modulo a
phase factor by use of the

√
Swap gate. As p2 − p1 = c, the scattering matrix

Y 12
12 has the form

Y 12
12 (

π

4
) = i

√

Swap,

with the
√
Swap gate given by

√

Swap = P+ + iP
−
, P+ =

1 + P12

2
, P

−
=

1− P12

2
,

which implements the Swap gate modulo a phase factor in the way

P12 = −Y 12
12 (

π

4
) · Y 12

12 (
π

4
).

As Loss and DiVincenzo [14] pointed out: two
√
Swap gates with three one-

qubit gates yield the CNOT gate, and hence we can perform universal quantum
computation via the scattering matrix Y 12

12 (
π
4 ) with local unitary transformations

on flying qubits.
In terms of the Heisenberg interaction ~S1 · ~S2 between two spin-1/2 particles,

the Swap operator P12 has a form

P12 = 2~S1 · ~S2 +
1

2
,

and the two-body scattering matrix Y 12
12 (ϕ) can be expressed as a time evolution

U12(ϕ) of the Heisenberg interaction modulo a phase factor,

Y 12
12 (ϕ) = −e−i 3

2
ϕU12(2ϕ), U12(ϕ) = e−iϕ~S1·

~S2

which means that Y 12
12 and U12 are two equivalent parametric two-body quantum

gates in the quantum circuit model. Obviously U12 is not a universal two-qubit
gate [3], but DiVincenzo et al., [15] can set up universal quantum computation
only using the exchange interaction U12 if a qubit is encoded as a two-dimensional
subspace of eight-dimensional Hilbert space of three spin-1/2 particles. Similarly,
we encode the entire quantum circuit model as a part of the factorisable scattering
model and are also able to perform universal quantum computation by only using
the two-body scattering matrix Y 12

12 .
Let us conclude by making remarks on the comparison between integrable

quantum computing [8, 9, 10, 11] and topological quantum computing [16]. Firstly,
the factorisation equation leads to the braid group relation with spectral param-
eter [8], and so nontrivial unitary solutions of the factorisation equation may not
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form a unitary braid representation but is able to form a unitary braid represen-
tation at special value of spectral parameter. Since its two-qubit quantum gates
can be chosen as a braiding gate or not, integrable quantum computing is viewed
as topological-like quantum computing, which is a sort of hybrid quantum com-
puting between ordinary quantum computing and topological quantum computing.
Secondly, Kitaev’s toric codes [16] form degenerate groundstates of Hamiltonian
of the stabilizer formalism of quantum error correction codes, whereas quantum
error correction codes, for example, the Shor nine-qubit codes, can be determined
by the unitary evolution of a Hamiltonian associated with the factorisation equa-
tion [11]. Thirdly, topological quantum computing is fault-tolerant due to non-
trivial topological aspects such as nontrivial boundary conditions, whereas the
fault-tolerance of integrable quantum computing is promised by the integrabil-
ity (for example, scattering without diffractions [5]) of the associated quantum
many-body system.
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