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BOUNDS FOR MULTILINEAR SUBLEVEL SETS

VIA SZEMERÉDI’S THEOREM

MICHAEL CHRIST

1. Introduction

Let ℓj : Rd → Rdj be surjective linear transformations, let P : Rd → R

be a real-valued polynomial, and let η ∈ C1
0 (R

d) be a compactly supported,
continuously differentiable cutoff function. For λ ∈ R define the multilinear
oscillatory integral forms

(1.1) Iλ(f1, · · · , fn) =

∫

Rd

eiλP (y)
n∏

j=1

fj ◦ ℓj(y)η(y) dy.

Under what conditions do there exist δ > 0 and C < ∞ such that for all
fj ∈ L∞(Rdj ),

(1.2) |Iλ(f1, · · · , fn)| ≤ C|λ|−δ
∏

j

‖fj‖L∞ for all λ ∈ R?

Under what conditions does there exist a function ρ satisfying ρ(λ) → 0 as
|λ| → ∞ such that for all functions fj ∈ L∞,

(1.3) |Iλ(f1, · · · , fn)| ≤ ρ(λ)
∏

j

‖fj‖L∞ for all λ ∈ R?

The question in the form (1.2) was posed by Li, Tao, Thiele, and this author
in [7], where an affirmative answer was demonstrated under certain dimen-
sional restrictions. Nonoscillatory inequalities of the form

∫ ∏
j |fj ◦ ℓj | .∏

j ‖fj‖Lpj have been studied in [1],[2]. More refined questions about the

optimal exponent δ in (1.2), and about inequalities with
∏

j ‖fj‖L∞ replaced

by
∏

j ‖fj‖Lpj , are of interest, but are at present premature.
Oscillatory integral inequalities of this type have been extensively stud-

ied for n = 2, where one is dealing with bilinear forms 〈Tλ(f1), f2〉. The
associated linear operators Tλ are commonly known as oscillatory integrals
of the second type, and a simple necessary and sufficient condition for (1.2)
to hold (with some unspecified exponent) is known [12]. There is an exten-
sive literature dealing with more specific inequalities involving Lp norms, in
which one seeks the optimal exponent δ as a function of exponents p.
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For n ≥ 3, however, there arises a class of singular oscillatory integrals
which have no direct analogues in the bilinear case. These singular cases
arise when d <

∑
j dj . Generic ordered n-tuples of points (x1, · · · , xn) ∈

×jR
dj then do not contribute to the integral Iλ, which may alternatively be

expressed as

(1.4) Iλ(f1, · · · , fj) =

∫

Σ
eiλP (x)

∏

j

fj(xj)η̃(x) dσ(x)

for a certain linear subspace Σ ⊂ ×jR
dj of positive codimension. Here η̃ is

smooth and has compact support, and σ is Lebesgue measure on Σ. Bilinear
situations which superficially appear to be singular, are always reducible to
nonsingular ones in a certain sense, but this is not so for n ≥ 3, in general.
See §6 below for discussion of this point.

To date little is known about the general singular multilinear case. Some
cases not covered in [7] have been treated, after the essential completion
of the present work, in [6] and [5], but the general case is not accessible
by the methods of those papers alone. There are indications that, as was
emphasized for certain related bilinear problems in [3], (1.2),(1.3) are linked
to combinatorial issues.

An obvious necessary condition [7] for (1.3) is that P should be nonde-
generate, relative to {ℓj}, in the sense that P cannot be expressed in the
form P =

∑n
j=1 pj ◦ ℓj for any measurable functions pj ; this is equivalent [7]

to there being no such representation in which pj are polynomials of degrees
not exceeding the degree of P . For the bilinear case n = 2, nondegeneracy
of P is indeed sufficient for (1.2). The main results of [7] asserted that for
n ≥ 3, nondegeneracy of P implies (1.2), under certain rather restrictive
supplementary hypotheses. In particular, this holds when all dj = d − 1,
and it holds when all dj = 1 provided that n < 2d. No example is known
to us in which a nondegenerate polynomial has been shown not to satisfy
(1.2), let alone (1.3), but the vast majority of cases remain open.

In the present paper we do not answer these basic questions in any cases;
rather, we study a class of weaker inequalities (2.2) which would be implied
by (1.3). We establish these inequalities for all nondegenerate polynomi-
als satisfying a natural rationality hypothesis, whereas only quite restricted
classes of polynomials were treated in [7]. A second main result sheds addi-
tional light on the meaning of nondegeneracy, by establishing its equivalence,
under the rationality hypothesis, with a formally stronger property, which
we call finitely witnessed nondegeneracy. This furnishes an essential link
with additive combinatorics. With this equivalence in hand, the remainder
of the proof is a nearly direct application of a generalization of Szemerédi’s
theorem due to Furstenberg and Katznelson [8].

This second main result is intended to serve as an essential step in an
attack on oscillatory integral bounds. This speculative scheme also involves
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inverse results for Gowers uniformity norms, and is commented on briefly at
the end of the paper.

I am indebted to Diogo Oliveira e Silva for useful comments on the expo-
sition.

2. Results

Let {ℓj : Rd → Rdj} be a finite collection of surjective linear mappings.
For any Lebesgue measurable functions gj which are finite almost every-

where, for any ε > 0, and for any compact subset B ⊂ Rd consider the
sublevel sets

(2.1) Eε(P, g1, · · · , gn) =
{
y ∈ B : |P (y)−

n∑

j=1

gj(ℓj(y))| < ε
}
.

If a real-valued measurable function P satisfies (1.2), then there is an upper
bound for the measures of these sublevel sets, of the form

(2.2)
∣∣Eε(P, g1, · · · , gn)

∣∣ ≤ Cεδ uniformly for all measurable functions gj .

If instead P satisfies (1.3), then there is a corresponding weakened version of
(2.2) in which the right-hand side is replaced by a function of ε which tends
to zero as ε → 0. Because of this connection with multilinear operators, we
call sets Eε of the form (2.1) multilinear sublevel sets.

(2.2) can be deduced from (1.2) (with a smaller value of δ in (2.2) in some
cases). To do so, fix a nonnegative cutoff function h ∈ C∞

0 (R) satisfying
h(t) = 1 whenever |t| ≤ 1. Fix also 0 ≤ ζ ∈ C∞

0 (Rm) such that ζ ≡ 1 on B.
Then

∣∣{x ∈ B : |P (x)−
∑

j

gj(ℓj(x))| < ε}
∣∣ ≤

∫
h[ε−1(P−

∑

j

gj◦ℓj)(x)] ζ(x) dx

= (2π)−1ε

∫

R

ĥ(ελ)

∫
eiλ(P (x)−

∑
j gj(ℓj(x))ζ(x) dx dλ.

Applying (1.2) to the inner integral and continuing in a straightforward
way leads to the sublevel set bounds. (1.3) leads in the same way to a
corresponding variant of (2.2).

Our discussion relies on a different notion of degeneracy than that defined
above. f |S will denote the restriction of a function f to a set S.

Definition 2.1. Let d, d1, · · · , dn be arbitrary positive integers. Let P :
Rd → C be a polynomial, and let ℓj : Rd → Rdj be linear transformations
for 1 ≤ j ≤ n. P is said to be nondegenerate with a finite witness, relative
to {ℓj}, if there exists a finite set S ⊂ Rd such that P |S does not belong to
the span of the set of all functions (fj ◦ ℓj)|S .

The union is taken over all indices j and all functions fj before the span

is formed. An equivalent formulation is that there exist a finite set S ⊂ Rd
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and scalars cs such that

(2.3)
∑

s∈S

csP (s) 6= 0

but

(2.4)
∑

s∈S

csfj(ℓj(s)) = 0 for all indices j and all functions fj.

For generic finite sets S the mapping ℓ1(s)|S is injective (unless ℓ1 ≡ 0),
whence no such scalars can exist.

The usefulness of discrete characterizations of nondegeneracy in the con-
text of oscillatory integral theory was recognized and exploited in [3].

From the theorem of Furstenberg and Katznelson we will deduce:

Proposition 2.1. Suppose that a real-valued polynomial P is nondegenerate
with a finite witness, with respect to a finite collection of surjective linear
transformations ℓj : R

d → Rdj . Then there exists a function Θ satisfying

(2.5) lim
ε→0+

Θ(ε) = 0

such that for every ε > 0 and any measurable functions fj,

(2.6) |Eε(P, f1, · · · , fn)| ≤ Θ(ε).

In discussing the relation between these two notions of nondegeneracy,
we will employ the following auxiliary concept. A related, though distinct,
concept was shown in [4] to be natural in the context of a different question
about multilinear operators.

Definition 2.2. Let ℓj : R
d → Rdj be finitely many linear transformations.

The collection {ℓj} is said to be rationally commensurate if there exist in-

vertible R-linear transformations A : Rd → Rd and Aj : Rdj → Rdj such

that with respect to the standard bases of Rd and of Rdj , the linear trans-
formations ℓ̃j = A−1

j ◦ ℓj ◦ A are all represented by matrices with integer
entries.

Remark 2.1. It is easy to see that in the rationally commensurate case,
if P fails to be nondegenerate with a finite witness, then there can be no
sublevel set bound of the form (2.6),(2.5). Indeed, we may change variables
to arrange that each ℓj maps Zd to Zdj . Let a bounded set B ⊂ Rd and
ε > 0 be given, and choose r = r(ε) > 0 so that |P (x)−P (y)| < ε whenever
|x − y| < r/2. Fix ρ > 0 such that |ℓj(z)| ≤ ρ|z| for all j and all z ∈ Rd.

Consider the lattice rZd = {rn : n ∈ Zd}. For each index j, ℓj(rZ
d) ⊂ Rdj

is again a lattice. Let Lr = rZd ∩B.
By assumption, there exist functions fj such that P (y) =

∑
j fj(ℓj(y)) for

all y ∈ Lr. Since ℓj(Lr) ⊂ rZdj , there exists a constant c0 > 0, independent
of r, such that for any z 6= z′ ∈ Lr and each index j, either |ℓj(z)− ℓj(z

′)| ≥
c0r, or ℓj(z) = ℓj(z

′).
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Only the values of fj on ℓj(Lr) come into play. Redefine fj so f(x) ≡

fj(ℓj(y)) for all x in the ball B(y, cr) ⊂ Rdj of radius cr centered at each
point y ∈ ℓj(Lr), where c is a positive constant, independent of r, sufficiently
small to ensure that these balls are pairwise disjoint for distinct values of y.

The identity P (y) =
∑

j fj(ℓj(y)) still holds at each point of Lr for these

modified functions fj. Moreover, if x ∈ Rd and |x − y| ≤ c′r for some
y ∈ Lr, where c′ is another sufficiently small positive constant independent
of r, then |P (x)−

∑
j fj ◦ℓj(x)| < ε+ |P (y)−

∑
j fj ◦ℓj(x)|. By construction,

fj ◦ℓj(x) = fj ◦ℓj(y). Thus |P (x)−
∑

j fj ◦ℓj(x)| < ε whenever the distance

from x to Lr is < c′r. The measure of the set of all such points x ∈ B does
not tend to zero as ε → 0, contradicting (2.6). �

Finitely witnessed nondegeneracy clearly implies nondegeneracy. Although
we do not know whether the converse holds in general, it is true in the ra-
tional case, which is one of the two main results of this paper:

Theorem 2.2. Let P : Rd → C be a polynomial, and let ℓj : Rd → Rdj

be a finite collection of surjective linear transformations. If {ℓj} is ratio-
nally commensurate, and if P is nondegenerate relative to {ℓj}, then P is
nondegenerate with a finite witness relative to {ℓj}.

Most of the work in this paper is devoted to proving this purely algebraic
fact. Theorem 2.2 implies Remark 2.1 in a stronger form, for degeneracy of
P means that there exist functions fj for which P −

∑
j fj ◦ℓj ≡ 0, and then

Eε = B for all ε > 0.
Proposition 2.1 and Theorem 2.2 together yield our other main result.

Theorem 2.3. Let a polynomial P be nondegenerate with respect to a fi-
nite rationally commensurate collection of surjective linear transformations.
Then there exists a function Θ satisfying

(2.7) lim
ε→0+

Θ(ε) = 0

such that for every ε > 0 and all measurable functions fj,

(2.8) |Eε(P, f1, · · · , fn)| ≤ Θ(ε).

It deserves emphasis that oscillatory integral bounds of the type (1.2)
which imply this conclusion were proved in [7] in several cases, without any
hypothesis of rational commensurability. Natural questions which remain
are whether the commensurability hypothesis is superfluous, and whether Θ
may always be taken to be of power law form Cεδ. The proof here certainly
does not give power law bounds, since it relies on a result of Szemerédi type.

The proof of Theorem 2.3 is sufficiently robust to yield also the following
variant. A corresponding extension of one of the results of [7] was established
by Greenblatt [9].

Theorem 2.4. Let P be a C∞ real-valued function defined in a neighbor-
hood of x0 ∈ Rd. Let {ℓj} be a rationally commensurate finite collection of
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surjective linear transformations ℓj : Rd → Rdj . Suppose that some Taylor
polynomial for P at x0 is nondegenerate with respect to {ℓj}. Then there
exist a neighborhood U of x0 and a function Θ satisfying limε→0+ Θ(ε) = 0
such that for every ε > 0 and all measurable functions fj,

(2.9)
∣∣{x ∈ U : |(P −

∑

j

fj ◦ ℓj)(x)| < ε
}∣∣ ≤ Θ(ε).

Another extension concerns periodic sublevel sets, in which P −
∑

j fj ◦ℓj
is viewed as taking values in R/2πZ, rather than in R. For simplicity, let P
be a polynomial. Define

‖y‖ = distance (y, 2πZ)

for y ∈ R.

(2.10) E†
ε,λ(P, f1, · · · , fn) = {x ∈ B : ‖λP (x)−

∑

j

fj(ℓj(x))‖ < ε}.

Let us assume that the cutoff function η appearing in (1.1) is nonnegative,
and write |E| =

∫
E η for any measurable set E ⊂ Rd. A uniform bound

for multilinear oscillatory integrals of the form |Iλ(f1, · · · , fn) ≤ C|λ|−δ for
some δ ∈ (0, 1) implies uniform bounds of the form

(2.11)
∣∣|E†

ε,λ| − c0ε
∣∣ ≤ Cεδ|λ|−δ,

where c0 =
∫
Rd η(x) dx. Similarly a uniform decay bound |Iλ(f1, · · · , fn)| ≤

Θ(λ), where Θ(λ) → 0 as |λ| → ∞, implies uniform bounds

(2.12)
∣∣|E†

ε,λ| − c0ε
∣∣ ≤ θ(ε, |λ|−1)

where θ(s, t) → 0 as min(s, t) → 0+. Conversely, such inequalities im-
ply uniform decay bounds for oscillatory integrals. Thus it is natural to

seek suitable uniform upper bounds for |E†
ε,λ| for nondegenerate polynomial

phases P .

Theorem 2.5. Suppose that a polynomial P is nondegenerate, relative to a
rationally commensurate set {ℓj} of surjective linear mappings. Let B ⊂ Rd

be a bounded set. Then there exists a positive function Θ satisfying Θ(t) → 0
as t → 0+ such that for all measurable functions fj and all |λ| ≥ 1,

(2.13)
∣∣{x ∈ B : distance

(
λP (x)−

∑

j

fj(ℓj(x)), 2πZ
)
< ε}

∣∣ ≤ Θ(ε).

In short, |E†
ε,λ| ≤ Θ(ε). This is of course weaker than the bound (2.12), so

falls short of establishing the conjectured bound for multilinear oscillatory
integrals.
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3. Proof of Proposition 2.1

Proposition 3.1. Let B ⊂ Rd be a bounded region, and let S ⊂ Rd be a
finite set which contains 0. There exists a positive function Θ satisfying
Θ(r) → 0 as r → 0+, depending only on S and on B, with the following
property: For any Lebesgue measurable set E ⊂ B and any r > 0, either (i)
there exist x ∈ B and t ≥ r such that x+ tS ⊂ E, or (ii) |E| ≤ Θ(r).

Proof. Denote by #(A) the cardinality of a set A. According to a theorem
of Furstenberg and Katznelson [8], for any finite set S ⊂ Zd there exists a
positive function θ, satisfying θ(N) → 0 as N → ∞, such that for any set
A ⊂ {1, 2, · · · , N}d, either there exist 0 6= n ∈ Z and x ∈ Zd such that
x+ nS ⊂ A, or #(A) ≤ θ(N)Nd.

Proposition 3.1 follows rather directly from this result. Under the ad-
ditional assumption that the set S in the hypothesis is contained in Zd,
the reduction goes as follows: Let N be a large positive integer chosen so
that 1

2r ≤ N−1 < r. Define Ω = {ω = (ω1, · · · , ωd) ∈ Rd : 0 ≤ ωj <

N−1 for all 1 ≤ j ≤ d}, and define LN,ω = N−1Zd + ω = {N−1n + ω : n ∈

Zd}. Let E ⊂ B, and suppose that conclusion (i) of Proposition 3.1 fails to
hold. Decompose E = ∪ω∈ΩEω where Eω = E∩LN,ω. Then for any nonzero
integer j and point x ∈ LN,ω, the set x+jN−1S is not contained in Eω. Ap-

plying the theorem of Furstenberg and Katznelson to Ẽω = {Ny : y ∈ Eω}
yields the bound #(Eω) ≤ Ndθ(N). Consequently

(3.1) |E| =

∫

Ω
#(Eω) dω ≤ N−d sup

ω
#(Eω) ≤ θ(N),

establishing Proposition 3.1 under the auxiliary hypothesis.
The general case of Proposition 3.1 follows from a particular case of the

theorem of Furstenberg and Katznelson by the following lifting argument.
IntroduceRM = Rd×RS with coordinates (x, t), where t = (ts : s ∈ S) ∈ RS.
Let es ∈ RS be the unit vector corresponding to the s-th coordinate. Define
E† = E × RS .

Introduce the shear transformation T : RM → RM defined by

(3.2) T (x, t) = (x−
∑

σ∈S

tσσ, t),

and let E‡ = T (E†). Then for any r > 0, t ∈ RS, s ∈ S, and x ∈ Rd,

(3.3) x+ rs ∈ E if and only if T (x, t) + (0, res) ∈ E‡.

Indeed, x+ rs ∈ E is equivalent to (x+ rs, t+ res) ∈ E†. Next

T (x+ rs, t+ res) = (x+ rs−
∑

σ∈S

tσσ − rs, t+ res)

= (x−
∑

σ

tσσ, t+ res) = T (x, t) + (0, res),
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whence

x+ rs ∈ E ⇔ (x+ rs, t+ res) ∈ E†

⇔ T (x+ rs, t+ res) ∈ E‡ ⇔ T (x, t) + (0, res) ∈ E‡.

Let S‡ = {(0, es) : s ∈ S} ⊂ RM . Suppose now that E satisfies the
restriction that x+rS ⊂ E implies r ≤ ε. Then E‡ satisfies a corresponding
restriction: if z ∈ RM and if z + rS‡ ⊂ E‡, then r ≤ ε. Indeed, there exists
a unique point (x, t) satisfying T (x, t) = z. By (3.3), z + rS‡ ⊂ E‡ if and
only if x+ rS ⊂ E.

For almost every x ∈ Rd, we now have a set E∗ = {(w, t) ∈ E‡ : w =
x and |t| ≤ 1}, contained in a fixed bounded subset of RS , such that for
any z ∈ RS, if z + res ∈ E∗ for every s ∈ S then r ≤ ε. As was shown
above, this forces |E∗ ∩B′| ≤ Θ(ε) for any fixed bounded set B′. Therefore
|E| ≤ CΘ(ε) by Fubini’s theorem. �

Proof of Proposition 2.1. Suppose that P is nondegenerate with a finite wit-
ness. Fix a finite set S and scalars {cs : s ∈ S} such that

∑
s∈S csF (s) = 0

whenever F takes the form
∑

j fj ◦ ℓj, but
∑

s∈S csP (s) = 1. In Proposi-
tion ?? it was convenient to assume that 0 ∈ S; here if 0 is not already an
element of S, we may adjoin it, setting c0 = 0.

Let fj be arbitrary measurable functions; for convenience we assume that
fj is defined on all of R1. Set

h(y, r) =
∑

s∈S

cs
(
P (y + rs)−

∑

j

(fj ◦ ℓj)(y + rs)
)

Eε = {y ∈ B : |
(
P −

∑

j

fj ◦ ℓj
)
(y)| < ε}.

Then

h(y, r) =
∑

s∈S

cs
(
P (y + rs)−

∑

j

(fj ◦ ℓj)(y + rs)
)
≡

∑

s∈S

csP (y + rs)

is a polynomial function of (y, r) ∈ Rd × R. The set S and coefficients cs
were constructed in part to ensure that this polynomial does not vanish
identically. Hence, by an elementary argument which is left to the reader,
there exist A < ∞, δ > 0, and C < ∞ such for any sufficiently small ρ > 0,
B ⊂ Rd may be partitioned into the union of O(ρ−d) dyadic cubes Qj of
sidelength ρ, together with a remainder set B \ ∪jQj , in such a way that

(i) |B \ ∪jQj| ≤ Cρδ and (ii) for each j, each x ∈ Qj, and each r ∈ (0, ρ],
|h(x, r)| ≥ rA.

Choose ρ = ε1/2A. If x ∈ B and x+ rS ⊂ Eε then

(3.4) |h(x, r)| ≤
∑

s∈S

cs
∣∣(P −

∑

j

fj ◦ ℓj
)
(x+ rs)

∣∣ ≤ C
∑

s∈S

ε,
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which implies that rA . #(S)ε if x ∈ ∪jQj and r ≤ ρ, where #(S) denotes
the cardinality of S. Therefore

(3.5) |Eε ∩Qj| ≤ |Qj|Θ(Cε1/A/ρ),

by Proposition 3.1 applied to a dilate of Qj. Here the C depends on the
cardinality of S, which is a constant in this context.

Summing over j yields

(3.6) |Eε| ≤ |B \ ∪jQj |+
∑

j

|Eε ∩Qj | ≤ Cεδ/2A + |B|Θ(Cε1/2A),

which is a bound of the desired form. �

4. Proof of Theorem 2.2

Even if P is nondegenerate, the restriction of P to a generic finite set S
will be degenerate relative to {ℓj}. Indeed, if the restriction of some ℓi to S
is injective, then any function on S takes the form fi ◦ ℓi. Thus S is a more
promising candidate to be a witness, if all of the mappings ℓj are far from
being injective on S. This motivates the use of finite lattices as witnesses;
the hypothesis of rational commensurability will ensure a strong failure of
injectivity for suitable lattices.

MZd will denote the set of all (x1, . . . , xd) ∈ Zd for which each coordinate
is divisible by M .

Recall that any finitely generated torsion-free Z-module M is isomorphic
to Zn for some unique n; n is called the rank of M. Any submodule of Zn

is finitely generated and torsion-free. By the rank of a homomorphism of Z-
modules, we mean the rank of its range; only finitely generated and torsion-
free ranges will arise in this paper. LetM ⊂ Zn be a sub-Z-module of rank r,
and choose elements e1, · · · , er ∈ M such that the mapping (x1, · · · , xr) 7→
x · e = x1e1 + · · · + xrer defines a bijection of Zr onto M. If q : M → C

is a polynomial, in the sense that q can be represented as a finite linear
combination over C of the monomials x · e 7→ xγ11 · · · xγnn with each exponent
γj a nonnegative integer, then such a representation is unique.

The analysis will make use of difference operators. For any vector y, Dy

denotes the operatorDyf(x) = f(x+y)−f(x). These operators all commute
with one another. If L is a linear mapping then

(4.1) Dy(f ◦ L) =
(
DL(y)(f)

)
◦ L.

A version of Leibniz’s rule is

(4.2) Dv(fg) = Dv(f) · g + fv ·Dv(g) where fv(x) = f(x+ v).

We will need the following elementary property of polynomials, whose
proof is omitted.

Lemma 4.1. For any d, r there exists N < ∞ such that for any polynomial
P : Rd → C of degree ≤ r, if P (x) ≡ 0 for all x ∈ Zd satisfying |x| ≤ N ,
then P (x) = 0 for all x ∈ Rd.
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The next lemma describes solutions of certain difference equations.

Lemma 4.2. Let (vj) ⊂ Zn be any finite list of nonzero vectors, not nec-
essarily distinct, and let D be the difference operator D =

∏
j Dvj . Then

there exist C, r < ∞, a positive integer M , and finitely many Z-module ho-
momorphisms ℓγ : Zn → Znγ where nγ < n, such that for any sufficiently
large N < ∞ and any function f : Zn → C which satisfies D(f)(x) = 0 for
all x ∈ Zn satisfying |x| ≤ N , there exists a representation

(4.3) f(x) =
∑

γ

qγ(x)(hγ ◦ ℓγ)(x)

valid for all x ∈ MZn satisfying |x| ≤ N − C, where the qγ : Zn → C are
polynomials of degrees at most r, and hγ : Znγ → C are some functions.

Sketch of proof. Proceed by induction the number of factors Dvj . Thus sup-
pose it to be given DDw(f) = 0 vanishes for all x in the region indicated,
where w 6= 0 and D is as above. Applying the induction hypothesis gives
a representation Dw(f)(x) =

∑
γ qγ(x)(hγ ◦ ℓγ)(x) of the above form, for

x ∈ MZn satisfying |x| ≤ N −C.
It is awkward to proceed further, because w need not lie in MZn. How-

ever, DwD(f) = DDw(f) vanishes for |x| ≤ N , from which it follows that
DDMw(f) = DMwD(f) also vanishes for |x| ≤ N − C(|w|); note that M
depends only on {vj}, not on f . Thus we may suppose from the outset that
w ∈ MZn.

It is straightforward to solve the equation Dw(F )(x) =
∑

γ qγ(x)(hγ ◦

ℓγ)(x) with a solution F in the desired form (4.3), in the region MZn ∩ {x :
|x| ≤ N − C}, with the initial condition that F vanishes on a suitable
submodule of rank n = 1 which does not contain w. This equation is solved
term-by-term, distinguishing the terms for which ℓγ(w) = 0 from those for
which ℓγ(w) 6= 0.

Finally since Dw(f − F ) ≡ 0 on an appropriate domain, it must take the
form h ◦ ℓ, where ℓ has rank n− 1 and ℓ(w) = 0. �

Lemma 4.3. Let A be a finite set of indices, Lα : Zd → Zdα be Z–linear
mappings, and let fα be arbitrary functions. Let P : Zd → C be a polynomial
which takes the form

(4.4) P (x) =
∑

α∈A

(fα ◦ Lα)(x) for all x ∈ Zd satisfying |x| ≤ N .

If N is sufficiently large then there exist polynomials pα and positive integers
M,N∗ such that

(4.5) P (x) =
∑

α

(
pα ◦ Lα

)
(x)

for all x ∈ MZd satisfying |x| ≤ N∗. N∗ → ∞ as N → ∞, while M
and the degrees of the pα remain uniformly bounded, provided that the linear
mappings Lα and the degree of P remain fixed.
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The functions fα in such a decomposition P =
∑

α fα ◦ Lα are not nec-
essarily polynomials. There are also cases in which they are necessarily
polynomials, but are not necessarily unique.

A related result was established in [7]: If a polynomial P admits a decom-
position P (x) =

∑
α fα ◦ Lα on Rd, where the fα are merely distributions,

then it admits such a decomposition with those distributions replaced by
polynomials. The simple proof given in [7] does not seem to adapt directly
to the present discrete setting.

By admissible data we mean the collection of mappings Lα, and the degree
of P . It will be important, in both the proof and application of Lemma 4.3,
that N∗,M and the degrees of pα depend only on admissible data. We will
say that a polynomial has bounded degree if its degree is bounded above
by a quantity which depends only on admissible data. Likewise, by a large
finite submodule of Zn we mean, in the context of Lemma 4.3, the set of all
x = (x1, · · · , xn) ∈ Zn such that |x| ≤ N ♯ and each coordinate xj is divisible

by some M ♯, where N ♯ → ∞ while M ♯ remains uniformly bounded, as the
parameter N given in the hypotheses tends to ∞. N ♯,M ♯ are permitted to
depend on admissible data. This is of course an abuse of language, since
these “submodules” are not closed under addition.

Conclusion of proof of Theorem 2.2. If P is not nondegenerate with a finite
witness, then Lemma 4.3, applied to the polynomials x 7→ P (Nx), asserts
that for any open ball B ⊂ Rd centered at the origin, for each sufficiently
large integer N , P |B∩MN−1Zd can be expressed in the form

∑
j Qj ◦ ℓj,

where the polynomials Qj may potentially depend on N , but have uniformly
bounded degrees. By Lemma 4.1, applied again to x 7→ P (MN−1x) for a
certain constant M , this implies that P −

∑
j Qj ◦ ℓj vanishes identically on

Rd. Thus P is degenerate relative to {ℓj}. �

In the proof of Lemma 4.3, the quantity M appearing in its conclusion will
repeatedly be replaced by a larger multiple of itself throughout an inductive
procedure. All of these quantities will be denoted by the same symbol M ,
with the understanding thatM is always bounded above by a quantity which
depends only on admissible data.

Proof of Lemma 4.3. Lemma 4.3 will be proved by an inductive scheme
which involves more general representations of P . To set this up, suppose
that P : Zd → C is a polynomial which takes the form

(4.6) P (x) =
∑

α∈A

∑

j

(Qα,j ◦ Lα) · (hα,j ◦ ℓα,j)(x)

for all x ∈ Zd satisfying |x| ≤ N . Here A is a finite set of indices, j ranges
over a finite set of indices for each α ∈ A, Lα, ℓα,j are Z–linear mappings

from Zd to some Zn(α) and Zn(α,j), respectively,

nullspace (Lα) ⊂ nullspace (ℓα,j),



12 MICHAEL CHRIST

hα,j are arbitrary functions, and Qα,j are polynomials with domains Zn(α,j).
Admissible data are now the collection of mappings Lα, ℓα,j , and the degrees
of P,Qα,j. Suppose finally that there exists at least one pair (α, j) for which
ℓα,j has positive rank; otherwise (4.6) would already be a representation of
the desired form.

As the conclusion of the inductive step, we claim that if N is sufficiently
large then there exist polynomials Q∗

α,k, linear mappings ℓ∗α,k, functions h
∗
α,k,

and integers M,N∗, such that

(4.7) P (x) =
∑

α∈A

∑

k

(Q∗
α,k ◦ Lα) · (h

∗
α,k ◦ ℓ

∗
α,k)(x)

for all x ∈ MZd satisfying |x| ≤ N∗. Here A is the same index set as in
(4.6), k ranges over a finite index set for each α ∈ A, and nullspace (Lα) ⊂
nullspace (ℓ∗α,k). The index sets over which k ranges need not coincide with

those over which j ranges in (4.6), and in practice will be larger. Moreover
as N → ∞, N∗ → ∞ while M and the degrees of the Q∗

α,k remain uni-
formly bounded, provided that the admissible data remain fixed. Finally,
and essentially, we claim that there exists such a representation (4.7) which
is simpler than the given one (4.6), in the sense that either the maximum
(over all pairs α, k) of the ranks of the ℓ∗α,k is strictly less than the maximum
rank of all ℓα,j , or that the two maxima are equal and that the number of
index pairs (α, k) for which ℓ∗α,k has maximal rank is strictly less than the

number of pairs (α, j) for which ℓα,j has maximal rank.

At each stage of the induction, a hypothesis on Zd leads to a conclusion
only on some MZd, but then MZd can be reidentified with Zd in the follow-
ing step. Finitely many induction steps bring us to the situation in which
every ℓα,j has rank zero. In that case, each hα,j ◦ ℓα,j is a constant. For each
α,

∑
j(Qα,j ◦Lα) · (hα,j ◦ ℓα,j) is the composition of a single polynomial with

Lα, so (4.6) has the desired form and the proof would be complete. Thus in
order to prove the lemma, it suffices to carry out this induction step.

Supposing that some ℓα,j has nonzero rank, choose some (α0, j0) such that

ℓα0,j0 has maximal rank. Equivalently, nullspace (ℓα0,j0) ⊂ Qd has minimal
dimension among all such nullspaces, as vector spaces over Q.

Let (β, k) be an arbitrary order pair of indices. If

(4.8) nullspace (ℓβ,k) 6= nullspace (ℓα0,j0)

then by minimality, nullspace (ℓβ,k) is not a subset of nullspace (ℓα0,j0). For
each such pair (β, k) choose some vector

yβ,k ∈ Zd ∩ nullspace (ℓβ,k) \ nullspace (ℓα0,j0).

Define

(4.9) D =
∏

(β,k)

Dyβ,k
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where the composition product is taken over all ordered pairs of indices
(β, k) satisfying (4.8). Then

D(f ◦ ℓβ,k) ≡ 0 on Zd

for all (β, k) satisfying (4.8), for all functions f . Indeed, Dyβ ,k annihilates
all such functions, and the factors in (4.9) all commute.

Consequently there exists a positive integer a such that

(4.10) Da
(
(Qβ,k ◦ Lβ) · (f ◦ ℓβ,k)

)
≡ 0

for all (β, k) satisfying (4.8); a may be chosen to depend only on the degrees
of the given polynomials Qα,j . This follows from Leibniz’s rule (4.2). For

Db
v annihilates any polynomial of degree strictly less than b, for any vector

v, and Qα,j ◦ Lα is a polynomial on Zd whose degree does not exceed that
of Qα,j.

We may also choose a sufficiently large to ensure that Da(P ) ≡ 0. There-
fore

(4.11)

′∑

α,j

Da
(
(Qα,j ◦ Lα) · (hα,j ◦ ℓα,j)

)
≡ 0,

where the notation
∑′

α,j indicates that the sum is taken over all pairs (α, j)
which satisfy

(4.12) nullspace (ℓα,j) = nullspace (ℓα0,j0).

(4.11) holds at all points x ∈ Zd which satisfy |x| ≤ N − C, where C
depends only on the vectors yβ and the exponent a, thus only on permissible
quantities; in particular, C is independent of N .

Define U ⊂ Zd to be the nullspace of ℓα0,j0 . Choose a sub-Z-module

V ⊂ Zd which is complementary to U in the sense that U, V are linearly
independent over Q, and U ∪ V spans Qd over Q. Then U + V contains
MZd, for some positive integer M which depends only on ℓα0,j0 . We write
(u, v) to denote an arbitrary point (u, v) = u+ v = (u, 0) + (0, v) ∈ U + V .

For each pair (α, j) satisfying (4.12), (hα,j ◦ℓα,j)(u, v) ≡ (hα,j ◦ℓα,j)(0, v).
The factor (Qα,j ◦ Lα)(u, v) potentially depends on both variables, but any
dependence on v can be incorporated into hα,j since ℓα,j is injective on V
for all pairs (α, j) satisfying (4.12). Thus there are representations

(Qα,j ◦Lα)(u, v) · (hα,j ◦ℓα,j)(u, v) =
∑

r

(Q̃α,j,r ◦Lα)(u, 0) · (h̃α,j,r ◦ℓα,j)(0, v)

where r runs over a finite index set which depends on (α, j), and the Q̃α,j,r

are polynomials. Both the cardinalities of these index sets, and the degrees
of these polynomials, are bounded above by quantities which depend only
on admissible data.

Let K be the maximum degree of all the polynomials Q̃α,j,r. Decompose

Q̃α,j,r = Q†
α,j,r +Rα,j,r where Q†

α,j,r is homogeneous of degree K, while the
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remainders Rα,j,r have degrees strictly less than K. By Leibniz’s rule (4.2),

(4.13) 0 ≡

′∑

α,j

∑

r

(Q†
α,j,r ◦ Lα)(u, 0) · D

a
(
(h̃α,j,r ◦ ℓα,j)(0, v)

)
+R(u, v)

for all (u, v) ∈ U+V satisfying |(u, v)| ≤ N−C, where C < ∞ depends only
on admissible data, and R can be expressed as a polynomial in u of degree

≤ K − 1, whose coefficients are functions of v. Each term (Q†
α,j,r ◦Lα)(u, 0)

is a homogeneous polynomial of degree K.
Since the degrees of all polynomials in play here are bounded uniformly

in N , it follows from (4.13) and Lemma 4.1 that

(4.14) 0 ≡

′∑

α,j

∑

r

(Q†
α,j,r ◦ Lα)(u, 0) · D

a
(
(h̃α,j,r ◦ ℓα,j)(0, v)

)
,

again for all (u, v) ∈ U + V satisfying |(u, v)| ≤ N − C.
There are now two cases. In Case 1,

(4.15) Da
(
(h̃α,j,r ◦ ℓα,j)(0, v)

)
≡ 0

for all (0, v) ∈ V satisfying |v| ≤ N−C, for each pair (α, j) satisfying (4.12).
By (4.1),

Da
(
(h̃α,j,r ◦ ℓα,j)

)
= (D′

α,j(h̃α,j,r)
)
◦ ℓα,j

where

D′
α,j =

∏

β,k

Da
ℓα,j(yβ,k)

,

with the product taken over all pairs (β, k) satisfying (4.8). Since ℓα,j(yβ,k) 6=

0, Lemma 4.2 asserts that for each such pair (α, j), the restriction of h̃α,j
to ℓα,j(V ) can be decomposed as a finite sum of terms, each of which is
the product of a polynomial of uniformly bounded degree with a function
of the form h♯ ◦ ℓ♯ ◦ ℓα,j for some Z–linear mapping ℓ♯ whose rank is strictly

less than the rank of ℓα,j, and some function h♯ whose domain is the range

of ℓ♯. This representation holds on the set of all (0, v) ∈ MV satisfying
|v| ≤ cN − C, where M, c,C depend only on admissible data. Any polyno-
mial composed with ℓα,j can be rewritten as a polynomial composed with Lα,

since nullspace (Lα) ⊂ nullspace (ℓα,j) by hypothesis. Since MZd ⊂ U + V
for some positive integer M , we have reduced matters to a situation which
satisfies the hypothesis of the induction step on a large finite submodule of
Zd.

Consider next Case 2, in which there exists at least one pair (α, j) for
which (4.15) fails to hold. Choose γ, i, r and some (0, v1) ∈ V such that

(D′
γ,i(h̃γ,i,r)

)
◦ ℓγ,i(0, v1) 6= 0. Specialize (4.14) to v = v1 and solve the

resulting equation for (Q†
γ,i,r ◦ Lγ)(u, 0) as a C-linear combination of the

other (Q†
α,j,s ◦ Lα)(u, 0). The term (Q†

γ,i,r ◦ Lγ)(u, 0) · D
a
(
h̃γ,i ◦ ℓγ(0, v)

)
is
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thus expressed as a C-linear combination of hybrid terms

(Q†
α,j,s ◦ Lα)(u, 0) · D

a
(
h̃γ,i,s ◦ ℓγ,i(0, v)

)

for all (u, v) in a large finite submodule of U + V . However, since ℓα,j
∣∣
V

is

injective, each h̃γ,i,s◦ℓγ,i(0, v) can be reexpressed in the form h♭α,j,s◦ℓα,j(0, v),
and thus each hybrid term is reexpressed as

(Q†
α,j,s ◦ Lα)(u, 0) · D

a
(
h♭α,j,s ◦ ℓα,j(0, v)

)
.

The result is that the degree of at least one of the polynomials Q̃α,j,r has
been decreased, and the degrees of none have increased. This process can be
iterated until either Case 1 eventually arises, or all Q̃α,j,r have degree zero.
In the former event, the proof is complete by induction.

In the latter event, the sum
∑′

α,j

(
Qα,j ◦Lα

)
·
(
hα,j ◦ℓα,j

)
which appeared

in the initial representation of P can be rewritten more simply as a single

term h†α0
◦ ℓα0

. The relation (4.11) becomes simply Da
(
h†α0

◦ ℓα0

)
≡ 0. This

again makes Lemma 4.2 applicable, so h†α0
can be represented, on a large

finite submodule of its domain, as a finite sum of products of polynomials of
bounded degrees multiplied by functions composed with linear mappings of
ranks strictly less than the rank of ℓα0

, all of which factor through ℓα0
, and

hence through Lα0
. Thus matters are again reduced to a prior induction

step, completing the proof. �

Remark 4.1. Suppose that dj = 1 for all 1 ≤ j ≤ n, so that ℓj : R
d → R1,

and that kernel(ℓi) 6= kernel(ℓj) whenever i 6= j. If P : Rd → R is a
polynomial, and if P =

∑
j fj ◦ ℓj for certain distributions fj defined in

R1, then necessarily each fj is a polynomial. Moreover, the degree of fj is
majorized by a quantity depending only on d, n and the degree of P . This
fact holds without the hypothesis of rational commensurability; it can be
proved by a variant of the reasoning used in the proof of Theorem 2.2, with
difference operators replaced by differential operators

∏
k 6=j(vk · ∇)ak where

ℓk(vk) = 0 for all k 6= j but ℓj(vj) 6= 0, and with the exponents ak chosen
so that the degree of the operator exceeds the degree of P .

However, without the restriction dj = 1, the fj need not be polynomials;
0 can be represented as f1(x2, x3) + f2(x1, x3) + f3(x1, x2) in many ways.
This difficulty is responsible for much of the complexity in the above proof.

5. Two extensions

We discuss here the proofs for two extensions, Theorems 2.4 and Theo-
rem 2.5. The former concerns C∞ phases which are not necessarily polyno-
mials, but satisfy a finite order nondegeneracy condition.

Proof of Theorem 2.4. Let P be a C∞ real-valued function satisfying the
hypothesis, and let a small ε > 0 be given. Fix a large positive integer N , to
be specified below. Let ρ > 0 be a function of ε, to be determined. Partition
a neighborhood of U into cubes Qk, each of sidelength ρ. For each k let Pk
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be the Taylor polynomial of degree N −1 for P at the center point ck of Qk.
Then

(5.1) |(P − Pk)(x)| ≤ CρN for all x ∈ Qk.

Define Lk(y) = ck + ρy, and P̃k = Pk ◦ Lk. ℓj ◦ Lk is now affine linear
rather than linear, but for any function fj we can write fj ◦ ℓj ◦ Lk =

f̃j ◦ ℓj where f̃j is an appropriate translate and dilate of fj, depending on

j, k. If N is sufficiently large then P̃k as a mapping whose domain is the
unit cube centered at the origin, is nondegenerate relative to the (affine)
linear transformations ℓj ◦ Lk. Our hypotheses do not guarantee that these
polynomials are nondegenerate uniformly in k in any sense, but as in the
proof of Proposition 2.1, if ρ is chosen to be an appropriate positive power of
ε then the identity

∑
s∈S cs(P̃k−

∑
j fj◦ℓj)(x+rs) = hk(x, r) = h(Lk(x), ρr)

can be exploited to obtain a bound for most k, while the sum of the measures
of the remaining cubes Qk is small. �

Theorem 2.5 is a stronger result, in which P −
∑

j fj ◦ ℓj is regarded as

taking values in the quotient space R/2πZ. Sublevel sets are then typically
larger, yet turn out to satisfy the same upper bounds. Recall the notation
‖t‖ = distance (t, 2πZ). The following simple fact will be used in the proof
of this theorem.

Lemma 5.1. There exists C < ∞ such that for any C2 function φ : [0, 1] →
R satisfying φ′(t) ≥ 1 and φ′′(t) ≥ 0 for all t ∈ [0, 1],

|{t ∈ [0, 1] : ‖φ(t)‖ ≤ δ}| ≤ Cδ log(1/δ)

for all δ ∈ (0, 12 ].

Proof. By van der Corput’s lemma,
∫ 1
0 eiλφ(t) dt = O(|λ|−1) as |λ| → ∞, for

λ ∈ R. For any small δ > 0 there exists a nonnegative 2π–periodic function
η which satisfies η(t) ≥ 1 whenever ‖t‖ ≤ δ, and |η̂(n)| ≤ Cδ(1+ δ|n|)−2 for
all n ∈ Z, with C < ∞ independent of δ. Then

∫ 1

0
η(φ(t)) dt =

∫ 1

0

∑

n

η̂(n)einφ(t) dt

≤
∑

n∈Z

Cδ(1 + δ|n|)−2(1 + |n|)−1

≤ Cδ log(1/δ).

�

In the next lemma, x ∈ Rd, while r ∈ R.

Lemma 5.2. Let h = h(x, r) be a polynomial
∑m

k=0 pk(x)r
k where the pk

are polynomials in x, and pm is a nonzero constant. Fix a bounded ball B.
There exist c, C,A ∈ R+ such that for all δ ∈ (0, 1] and all λ ∈ R satisfying
|λ| ≥ 1,

(5.2) |{(x, r) ∈ B × (0, 1] : ‖λh(x, r)‖ ≤ δrA}| ≤ Cδc.
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This can be deduced from the preceding lemma. The details are left to
the reader.

Outline of proof of Theorem 2.5. This follows from a small modification of
the arguments already indicated. If P is nondegenerate then after a change
of variables, all the ℓj can be represented by matrices with integer entries,

and there exist a finite set S ⊂ Zd and coefficients cs ∈ Z satisfying (2.3)
and (2.4). Indeed, the construction already given yields a finite witness set

S ⊂ Zd. For such a set, the vector space of all (cs)s∈S ∈ R|S| satisfying (2.4)
is the null space of a certain matrix with integer entries, hence is spanned
over R by elements of ZS.

By taking the coefficients cs to be integers and repeating the above rea-

soning as in the above discussion of sublevel sets, we conclude that E†
ε,λ can

contain no finite point configuration x+ rS for which the pair (x, r) satisfies

(5.3) distance (λh(x, r), 2πZ) ≥ Cε,

where h(x, r) =
∑

s∈S csP (x + rs) is a polynomial in r of positive degree,
whose coefficients are polynomial functions of x and whose leading coefficient
is independent of x.

The set of all (x, r) satisfying (5.3) is more complicated than the corre-
sponding set in the proof of Proposition 2.1, so some additional preparation
is needed before the theorem of Furstenberg and Katznelson can be applied.
Fix any bounded set B ⊂ Rd.

A short calculation using (5.2) with the substitutions r = tj/N and δrA =

N−A−A′

shows that there exist A < ∞ and c > 0 such that whenever |λ| ≥ 1,
for any N ≥ 1 and any j ∈ {1, 2, · · · , N},

|{(x, t) ∈ B × [12 , 1] : ‖λh(x, tj/N)‖ ≤ N−A′−A}| ≤ CN1−cA′

.

Choose A′ so that N2−cA′

≡ N−1. By applying Fubini’s theorem and taking
unions of exceptional sets over all the N parameters j ∈ {1, 2, · · · , N}, we
lose a factor of N and hence conclude that for any |λ| ≥ 1, there exists
t ∈ [12 , 1] such that

‖λh(x, tj/N)‖ ≥ cN−A−A′

for all j ∈ {1, 2, · · · , N} and all x ∈ B \ E ,

where the exceptional set E satisfies

|E| ≤ CN2−cA′

= CN−1.

In combination with (5.3), this permits the theorem of Furstenberg and
Katznelson to be applied, in the same spirit as in the proof of Proposition 2.1
above. �

A strong variant, to the effect that there is a uniform sublevel set estimate
of this form with λ = 1 for all polynomials P of bounded degree that are
uniformly nondegenerate, follows in the same way. A key point is that the
proof of Theorem 2.2 produces a finite witness set S which is independent
of P , so long as P has bounded degree.
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Remark 5.1. It remains an open question whether the multilinear oscil-
latory integral inequalities (1.2) or (1.3) hold for all nondegenerate poly-
nomial phases P , without additional hypotheses. In the rationally com-
mensurate case, Theorem 2.5 does rule out certain strong counterexam-
ples to (1.3). Such a strong counterexample, for some sequence of val-
ues of λ tending to +∞, has each function fj(y) = fj,λ(y) of the form

fj,λ(y) = e−iφj,λ(y) for some measurable real-valued phase φj,λ, with the
phases satisfying distance (λP (y) −

∑
j φj,λ(ℓj(y)), 2πZ) < δ(λ) for all y

outside a set Eλ, where δ(λ) → 0 as λ → +∞ through the given sequence,
and the measure dµ(y) = η(y) dy satisfies µ(Eλ) → 0 as λ → +∞. In such
a situation, the Iλ(f1, · · · , fn) would not tend to zero.

6. Discussion

Bilinear case. The bilinear case has been intensively studied. Recall first
the nonsingular situation, in which the mapping y 7→ (ℓ1(y), ℓ2(y)) of R

d to
Rd1 ×Rd2 is a bijection. In this case, Iλ(f1, f2) can be written as

∫
eiλP (x,y)f(x)g(y)η(x, y) dx dy,

where P is a real-valued polynomial. A necessary and sufficient for (1.2) is
that there exist nonzero multi-indices α, β for which ∂α+βP/∂xα∂yβ does
not vanish identically; equivalently, P is not a sum of one function of x plus
another function of y.

Next consider the singular bilinear situation. Iλ(f, g) can always be ex-
pressed in the form

∫
eiλP (x,y,z)f(x, z)g(y, z)η(x, y, z) dx dy dz, where x, y

range over Euclidean spaces of arbitrary dimensions, and z over a space of
positive dimension. Such an expression satisfies (1.2) if and only if there
exist α, β 6= 0 such that ∂α+βP/∂xα∂yβ does not vanish identically as a
function of all three variables. For on one hand, if all such mixed partial
derivatives do vanish identically, then P (x, y, z) can be decomposed in the
form p(x, z)+q(y, z). The resulting factors eiλp and eiλq can be incorporated
into f, g respectively, and there is consequently no valid inequality (1.2). On
the other hand, if some such mixed partial derivative does not vanish iden-
tically, then integration with respect to x, y for fixed z sets up a nonsingular
problem for a bilinear form. The result of the preceding paragraph gives a
bound

Cmin
(
1, |Q(z)|−1|λ|−δ

)
‖f(·, z)‖∞‖g(·, z)‖∞

for some exponent δ > 0 and some polynomial Q which does not vanish
identically. (1.2) easily follows by integration with respect to z.

The conclusion is that any formally singular bilinear situation can be
reduced to nonsingular ones by freezing some of the coordinates, exploiting
oscillation, then integrating with respect to the frozen coordinates.

Higher order case. In contrast, the singular multilinear forms of higher
order studied in this paper are not in general reducible to nonsingular ones
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in this way. As an example, define P : R3 → R to be P (x1, x2, x3) = x23. Fix
a large positive integer N , to be specified below. For j ∈ {1, 2, 3, · · · , N}
choose nonzero unit vectors vj = (v1j , v

2
j , v

3
j ) ∈ R3, none of which is a scalar

multiple of another, all satisfying

(6.1) (v3j )
2 = (v1j )

2 + (v2j )
2.

Define ℓj(x) = x · vj = x1v
1
j + x2v

2
j + x3v

3
j , and consider

Iλ(f1, f2, · · · , fN ) =

∫

R3

eiλP (x)
N∏

j=1

fj(ℓj(x)) η(x) dx

where η ∈ C∞
0 is a cutoff function which does not vanish identically. This

multilinear operator is singular, since the integral is taken over R3 but the
sum of the dimensions of the target spaces of the mappings ℓj is N . The

differential operator L = ∂2

∂x2
3

− ∂2

∂x2
1

− ∂2

∂x2
2

annihilates fj ◦ ℓj for all j, by

virtue of the equations (6.1), but does not annihilate P . Therefore P is
nondegenerate relative to {ℓj : 1 ≤ j ≤ N}.

Consider the restriction of P and the ℓj to any two-dimensional affine
subspace V . Let wj be the projection of vj onto the unique parallel trans-
late of V which contains 0. For x ∈ V , x · vj = x · wj plus a constant
independent of x. V may identified with R2, and the integral over V is
then expressed as

∫
R2 e

iQ(y)
∏N

j=1(f̃j(y ·wj)) η̃(y) dy, where the phase Q is a
quadratic polynomial.

We claim that {vj} can be chosen so that for every affine two-dimensional
subspace V of R3, P |V is degenerate, relative to {ℓj |V }. Thus there is no in-
equality of the form (1.2), nor any sublevel set bound of the form (2.8),(2.7),
relative to V . Therefore the method of reduction to lower dimension by
“slicing” is not applicable.

To establish the claim, observe first that any quadratic polynomial Q :
R2 → R is necessarily degenerate, relative to any family of three or more
mappings of the form Lj(y) = y · wj which satisfy the requirement that
none of the vectors wj is a scalar multiple of any of the others. This is
seen by permuting the indices j and changing coordinates so that w1 =
(1, 0), w2 = (0, 1), and w3 = (a, b) with both a, b nonvanishing. Then any
quadratic polynomial in (y1, y2) can be expressed as a linear combination of
{y1, y2, y

2
1 , y

2
2 , (ay1 + by2)

2}.
It remains only to show that N and {vj : 1 ≤ j ≤ N} can be chosen both

to satisfy (6.1) and so that for every two-dimensional subspace V ⊂ R3,
some subcollection of three of the associated vectors {wj : 1 ≤ j ≤ N} has
no element equal to a scalar multiple of any other element. Define

vj = (v1j , v
2
j , v

3
j ) = 2−1/2(cos(2π/N), sin(2π/N), 1).

If N is sufficiently large then the required property clearly holds, for other-
wise one can obtain a contradiction by letting N → ∞ and exploiting the
compactness of the Grassmann manifold of all subspaces V .



20 MICHAEL CHRIST

Slack. There are at least two places in the analysis at which available infor-
mation has been only partially exploited. Firstly, only translates and dilates
of a single finite point configuration were used to establish the sublevel set
bounds, while our algebraic discussion showed that translates and dilates of
a rather large family of configurations are actually excluded from sublevel
sets. Secondly, the identity

∑
s cs(P −

∑
j fj ◦ ℓj)(x+ rs) = h(x, r) was used

merely to obtain an inequality
∑

s |(P −
∑

j fj ◦ ℓj)(x+ rs)| ≥ c|h(x, r)|.

Connection with Gowers uniformity norms. The first step in the alge-
braic proof of the existence of finite witness sets is to apply a finite difference
operator to P−

∑
j(fj◦ℓj) which annihilates eiλP and every term fj◦ℓj but a

single one. This operation has an analytic counterpart for multilinear oscil-
latory integrals. Write Iλ(f1, · · · , fm) = 〈Tλ(f1, · · · , fm−1), fm〉 for certain
multilinear operators Tλ. Then |Iλ(f1, · · · )|

2 . ‖fm‖2L2

∫
|Tλ(f1, · · · , fm−1)|

2,
and it suffices to obtain an upper bound for the integral. This leads to the
elimination of fm, the replacement of P by a polynomial of lower degree,
and the replacement of each remaining fj by fj(y + ℓj(v))fj(y), with an
additional integration with respect to v ∈ nullspace (ℓm). One can iterate
this operation until only f1 remains, and then if necessary, iterate finitely
many additional times until no oscillatory factor eiλP remains.

Suppose for simplicity that all the target spaces Rdj are one-dimensional.
One then obtains a bound of the type (1.3) unless the Gowers uniformity
norm ‖f1‖Uk(Rd1 ) is bounded below by η(λ)‖f1‖L∞ for a certain k, where

η(λ) → 0 very slowly as |λ| → ∞. The index k which arises depends both on
the degree of P , and on the number of functions fj. This argument applies
for each index j, so by multilinearity, the estimation of Iλ reduces to the
case in which none of the functions fj/‖fj‖L∞ has very small uniformity
norm.

Thus an appropriate description of functions whose uniformity norms are
not small should lead to a proof of (1.3). Certain descriptions are now
known [10],[11]. Their thrust is that if ‖f‖Uk is not small relative to ‖f‖L∞ ,
then f can be decomposed into a controlled sum of functions which resemble
eiQ for polynomials Q of bounded degree, plus a remainder with small Uk

norm. The results available when this paper was written were apparently
quantitatively too weak to yield power decay bounds, but the more recent
inverse theorems of Green, Tao, and Ziegler [10],[11] may be more fruitful.
See [13] for an introduction to these matters.
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