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A SUPPORT THEOREM FOR HILBERT SCHEMES OF PLANAR CURVES

LUCA MIGLIORINI AND VIVEK SHENDE

ABSTRACT. Consider a family of integral complex locally planar cuswehose relative Hilbert
scheme of points is smooth. The decomposition theorem dinBen, Bernstein, and Deligne
asserts that the pushforward of the constant sheaf on thteseeHilbert scheme splits as a direct
sum of shifted semisimple perverse sheaves. We will shotmthaummand is supported in pos-
itive codimension. It follows that the perverse filtratiom e cohomology of the compactified
Jacobian of an integral plane curve encodes the cohomofagy/idilbert schemes of points on
the curve. Globally, it follows that a family of such curveglwsmooth relative compactified
Jacobian (“moduli space of D-branes”) in an irreducibleveurlass on a Calabi-Yau threefold
will contribute equally to the BPS invariants in the formtida of Pandharipande and Thomas,
and in the formulation of Hosono, Saito, and Takahashi.

1. INTRODUCTION

In this note acurvewill always beintegral, complete, locally planar, and defined o

Let C be a curve of arithmetic genus The Hilbert scheme of point§(? parameterizes
lengthd subschemes af’; it is complete, integrald-dimensional, and I.c.i._ [AIK, BGS]. If
7 : C — B is a family of curves, there is a relative Hilbert schem@ : Cl¥ — B with
fibres (C!4), = (). Planarity of the curves ensures the existence of famitiestiich the
total space o€ is smooth[[S]; ultimately this is a consequence of the smuesh of Hilbert
scheme of points on a surface. As the mé&p: Cl? — B is proper, the decomposition theorem
of Beilinson, Bernstein, and Deligne [BBD] applies andl” C decomposes as a direct sum of
shifted intersection complexes associated to local systanctonstructible subsets of the base.

Let 7 : C — B denote the restriction of to the smooth locus. The Hilbert schemes of
a smooth curve are its symmetric products, and in partigharmapz!¥ is smooth. Thus
the summand oRﬂ‘ﬂC[d + dim B] with support equal td3 is @ IC(B, Rd+i%£d]((2)[—z’]. As
pointed out by Macdonald [M], the cohomology of the symneeproducts is expressed in
terms of the cohomology of the curves by the formula

[i/2]
@) RFIC = (D (/\Hleac) (—k) = (RXFAC)(d — i) fori<d

Even given this expression, computifig( B, Ri%,[f”C) is a nontrivial matter, about which we
say nothing here. But at IeaBtrLd}C[d + dim B] contains no other summands:

Theorem 1. Letw : C — B be a family of integral plane curves, and let: C — Bits
restriction to the smooth locus. @ is smooth, then

d
R7IC[d + dim B] = @5 1C(B, R*FC)[—i].
i=—d

1This reflects a limitation of the authors rather than a cetyahat the methods do not work in characterigtic
1
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From now on we will use the notation
PRI7ICI + dim B] :=PH' (R7C[d + dim B))
for the perverse cohomology sheaveﬁﬁrﬁd]C[d + dim B].

The central term of Equatidd 1 can be reinterpreted in terhteeofamily of Jacobians of
the curves. Indeed, taking’ : J(C) — B to be the family of Jacobians over the smooth locus,
then there is a (canonical) identification of local systems

2) R7/C = \'(R'7,C)
Consequently,
(3) R'FAC = HR7/C)(—k) = (R**7IC)(d — i) fori<d
k
It can be convenient to express Equatidns (1), (2), ahd (Beriollowing formula:
29 29
co  2d > d N'(R'7.C) > ¢Rir/C
4 qdRz%Ld}C _ =0 _ i=0
@ 22 = O —¢C-1)) ~ (1—qC)(1 - ¢C(-1))

The family of Jacobians can be extended over the singulaslo€ 7 to the compactified

Jacobian[AK], =’ : 7%(C) — B, whose fibreJ*(C), = 7%(Cy) parameterizes rank one, degree
d torsion free sheaves affl The mapn”’ is proper, and for Gorenstein curves there is an

Abel-Jacobi mapdJ : €9 — JT%(C) taking a subscheme to the dual of its ideal sReBbr
d > 2g — 2, the mapAJ is alP?~9 bundle; thus the statement in Theorem 1 is true in this
range for the map”’ as well. Over sufficiently small open setadmits a section with image

in the smooth locus of the curves; twisting 8)o) identifies the7d(C) for varyingd and so
7/C does not depend od. It can be shown]S, Prop. 14] that smoothness of the relative
compactified Jacobian implies smoothness of all relatiiedtti schemes. Therefore taking IC
sheaves in Equations| (1) and (2) yields the following Cargll

Corollary 2. Letr : C — B be a family of integral plane curves of arithmetic geusf the
relative compactified Jacobian(C) is smooth, then:

li/2]
PRalC[d + dim B] = @ PR/ Clg + dim B](—k) for0<i<d
k=0
(ThePRi~? for i > d are determined similarly by duality.)

This corollary has a consequence for the enumerative geproeCalabi-Yau three-folds,
which we briefly sketch. Gopakumar and Vafa argued_in[[GV}] the cohomology of the
moduli space ofD-branes (roughly speaking, semistable sheaves suppantedroes) on a
Calabi-YauY should give rise tonteger“BPS” invariants, one for each genus and homology
class inHy (Y, Z), which encode the Gromov-Witten invariantsiof Hosono, Saito, and Taka-
hashi[HST] use intersection cohomology and the tools ofPB® give a precise formulation;
however, their proposal is knowrot to give the desired BPS numbers in general [BP]. A dif-
ferent definition of integer BPS invariants is given by Paargtande and Thomas [PT] using

2t also extends to thgeneralized Jacobiari(C) whose fibreJ(C), parameterizes line bundles 6y this is a
commutative group scheme of dimensipaf which the affine part is of dimensia¥{C);. This is a subscheme of
the compactified Jacobian, and acts on it. Such actions ateat® Ngd’s arguments, but play no role here.

3In general, it is better to define the Abel-Jacobi map fromQuet scheme of the dualizing sheaf, see [AK].
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the closely related spaces of “stable pairs”, which forgnééplanar curves are just the Hilbert
schemes of points. By the work of Behrend [B], the BPS invasare extracted by a weighted
Euler characteristic of these spaces, the weighting fanatepending only on the singularities
of the moduli space. For BPS invariants associatad@ducible homology classes, it is sen-
sible to discuss the contribution of an individual curve attbtheories; if the moduli space of
sheaves oi” is smooth along the locus of sheaves supported on a €irtreen the intersection
cohomology considerations may be neglected in [HST], dtehlise the weighting function of
Behrend may be neglected in [PT]. In this case, taking ElHaracteristics in the Corollary
yields the equality of the contributions of the cuweo these two theories.

Theorend 1 is inspired by the support theorem of B. C. Ngb f¥f is a consequence of it
whend > 2g — 2. Nonetheless our proofs — we give two — do not logically deljpamhis work.

Acknowledgements. Corollary[2 was conjectured during a discussion betweerattieors
and Lothar Gottsche. We are indebted to Zhiwei Yun for thggestion that the induction
procedure of Sectidn 5 be categorified. We also thank Daveahlik] Alexei Oblomkov, and
Richard Thomas for enlightening conversations, and Samm{&gham and Ben Webster for
helpful comments (on MathOverflow) on Propositiod 15. A @iéint approach to the main
theorem can be found in the work of Davesh Maulik and Zhiwen YMY], who deduce it,
under additional hypotheses but in arbitrary characterisbm the support theorem of Ngo.

Conventions. We follow [BBD] in declaringF € D%(X) perverse whedim SuppH*(F) <
—i, and the same holds for the Verdier dual. That isYifs smooth anc: dimensional C[n]

is perverse. In arguments of a topological nature, we ontg faists. As mentioned at the
outset, all curves are integral and have singularities dfeziding dimension 2. All families of
curves will enjoy a smooth base. For a cutvewe writed(C') for the difference between its
arithmetic and geometric genera, which we termdbgenus

2. BACKGROUND ON RELATIVE HILBERT SCHEMES AND VERSAL DEFORMATIONS

The Hilbert schemes of points on integral planar curvesiagugar, but not hopelessly so:

Theorem 3. [AIK] BGS]. LetC be a complete integral planar curve. Théf! is integral,
completed-dimensional, and locally a complete intersection.

We systematically employ versal deformations of curve gliagties. We will always mean
this in the sense of analytic spaces, see [GLS] for a thortnggltment. The base of a versal
deformation of a plane curve singularity is smoothxlt C — B is a family of curves, we
say it islocally versalat b if it induces versal deformations of all the singularitiefisdy, or
equivalently if the tangent map to the product of the firseomkformations of the singularities
of B is surjective. Such families have in particular the follog/properties:

Theorem 4. [DH| T]. Letw : C — B be a family of curves. The cogenus is an upper
semicontinuous function oB. Local versality is an open condition, and in a locally vdrsa
family the locus of curves of cogenus at leas$ equal to the closure of the locus &hodal
curves. In particular, the locus of curves of cogenlsas codimension.

Any curve singularity can be found on a rational curve; foreaplicit construction see e.g.
[L]. Moreover, ifC — B is a family of curves, then locally nearc B one can find a different
family C" — B such that; is rational with the same singularities @sand the two families
induce the same deformations of the singularities of thérakfibre.
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Proposition 5. [FGvS]. The map from the base of a versal deformation of an integiclly
planar curve to the product of the versal deformations dfibgjularities is a smooth surjection.

Corollary 6. Letw : C — B be a family of curves. Fik € B, and letC, be the normalization
of C,. Then there exists a neighborhobd U C B and a familyr’ : C" — U such thatC; is
rational with the same singularities @, andC andC’ induce the same deformations of these
singularities onU, and in particular have the same discriminant locus. MoerponU, we
have an equality of local systerRs$7,C = R'7.C @ H'(Cy), the latter summand meaning the
constant local system with the specified fibre.

Proof. Let C’ be a rational curve with the same singularitiegslet ' — V(C’) a versal
deformation ofC’, and letV(C,) be the product of the versal deformations of the singuésiti

of C,. The mapV(C’) — V(Cy) is a smooth surjection, so we may choose a local section over
some neighborhool. Possibly shrinkind/, we compose the magps — V(C,) — V(C') and

pull backC’ to obtain a family of rational curves : C; — B.

Shrink U further so that the inclusiofi, — C|y is a homotopy equivalence. L&tbe the
summand ofR'7,C whose fibre ab is the kernel of the composition of the specialization
mapH'(C;) — H!(C,) with the pullback to the normalizatioH' (C,) — H'(C,). This is a
symplectic summand, I8t be its orthogonal complement. Ascontains all vanishing cycles,
the Picard-Lefschetz formula ensuvé has trivial monodromy and thus extends extends to a
trivial local system ove3 with fibre V;* = H!(C;). On the other hand; depends only on the
deformation of the singularities, which is the samé€iandC’. O

To make use of such a replacement, it is necessary to knowhtha¢lative Hilbert scheme
C' is smooth ifC'¥ is. This follows from results of the second author on the sitmoess of
relative Hilbert schemes[S], which we now review.

Proposition 7. [S, Prop. 14)etr : C — B be a family of curves. £ is smooth, theg! is
smooth for any: < d.

Theorem 8. LetC — B be a family of curves. Fob € B, let I be the image of;, B in the
product of the first-order deformations of the singulastefC,. Then:

(1) The smoothness 6% alongC/” depends only oi.

(2) If €' is smooth alon@,”, thendim I > min(d, 6).

(3) If dim I > d and [ is general among such subspac@¥, is smooth along@’

(4) [FGVS]C! is smooth along/” for all d if and only if] is transverse to the image of
the “equigeneric ideal”. It suffices fof to be generic of dimension at least

[d]
b -

Proof. Item (1) holds because, as shownlin [SIFif (X, z) — (V,0) is a versal deformation
of a curve singularity, then for any subscheme A, set theoretically supportedatthe germ
(X [2]) is smooth. We explain in detail: takea subscheme «ifgd} which decomposes as=
[] 2 into subschemes of lengtidssupported at points. Let (C;, ¢;) — (V;,0) be miniversal
deformations of the curve singulariti€s,, ¢;) and (B,b) — [](V;,0) a map along which
the (multi-)germ[ [(Cy, ¢;) pulls back. Then analytically locally the (multi-)gerﬂu(cgdi], [zi])
pulls back fromH(ddi}, [z:]) along the same map. As the fibres (@di], [z]) — (V;,0)
are reduced of dimensiafy and the total space is smooth, the smoothness of the pullback
depends only on the image @fB in [[7,V;, which is well defined as th&,; were taken
miniversal. The miniversal deformation of the germ of a euav a smooth point being trivial,
only the singularities contribute. To check (2), we may bygdsume the map,B — I is an



A SUPPORT THEOREM FOR HILBERT SCHEMES OF PLANAR CURVES 5

isomorphism and then identify locally with its image in some representatiizeof [](V;, 0).
Shrink B until it can be written a3 x D for some polydis®; by openness of smoothness we
may shrinkD further untilCl¥| ... is smooth for alk € D. By Theoreni$4, some points i

will correspond to curves with(C,) nodes; choose so the sliceB x e contains such a point
p. If d < 0, there is a point € C}f” be a point naming a subscheme supportetiraides. The
Zariski tangent spac@ZC,[)d] is 2d dimensional, s«ﬁlgd} cannot be smoothed out over a base of
dimension less thad. Item (3) appears in [S] as Theorem B. Item (4) is stated inviE|Gor

the compactified Jacobian; it follows f6F! for d > 0 because this fibres smoothly over the
Jacobian, and for lowet by Proposition l7. O

Corollary 9. If C — B is a family of curves witl? smooth, then fos < d, the locus of
curves with cogenusis of codimension at leastin B.

Proof. Suppose not; leB’ be a generi@ — 1 dimensional smooth subvariety &, then the
restrictionC¥ x 5 B’ is smooth and3’ intersects the locus of curves of cogenudThis con-
tradicts (2) of Theorerm 8. O

Remark. Corollary(9 explains why we do not require &tegularity” assumption as in JN] —
in the case of Hilbert schemes and Jacobians, it follows Bomothness of the total space.

3. ESTIMATES
The following is a variation on the “Goresky-MacPhersorguality” of [N], Section 7.3.

Lemma 10. Let7 : X — Y be a locally projective morphism of smooth varieties witle4r
ducible fibres of dimensiom. Then

H'(PRI7,Cldim X]) =0 fori >n—dimY — |j| and i > —dimY
In particular, every summand &, C is supported on a subvariety of codimensiom.

Proof. Since the estimate is symmetricjrand, by relative hard Lefschet/7,C[dim X | ~

PR~ 7,C[dim X], we may assumg > 0. We check at a poiny € Y, where by [BBD],
H!(PR/m.C[dim X]), is a summand off’ 7 +dmX (X 'C). This vanishes for dimension rea-
sons ifi +j +dimX =7+ j+dimY +n > 2dim X, = 2n. Finally, as the fibres are
irreducible, R*"7,C ~ C. This top dimensional cohomology is already accounted fothle
summand’R"r,C[dim X] and thus the vanishing fgr = i is ensured. The final statement
follows because a summand supported on a subvayiety the IC sheaf associated to some
local system on an open subsetYdfand consequently the stalk of the cohomology sheaf in
degree— dim Y’ is non zero on a general point &Y; this is prohibited by the stated estimate
whendimY — dim Y’ > n. O

Lemma 11. Letr : C — B be a family of curves such thét? is smooth. Then for > 0, the
sheaft'(IC(B, Rj%Ld](C)[— dim B)) is supported on the locus of curves of cogenus

Proof. We check at some poirtt € B and writed for the cogenus of,. By semicontinuity
of cogenus, in some neighborhood all curves have cogenysve shrinkB to this neighbor-
hood and show thak!(IC(B, R’7/C)[— dim B]) = 0 for all i > &. Shrinking B further if
necessary, let’ : C' — B be the family of curves constructed in Corollaty 6, which weall
has the property tha is rational R'7,C = R!7.C @ H!(C,), and by item (1) of Theorei 8,
¢’ is smooth. Taking exterior powers and comparing with Equefll), we see that/7. C
is a sum ofR=/7C; it will therefore suffice to check the assertion for the fandl’.
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Note¢ is the common arithmetic genus of the fibresrtofFrom Equation[(1), all summands
of RiF\C appear already as summandgof,™™*IC. As ¢/min(d9)] js smooth by Propo-
sition[4, we may as well assunae< §. By relative hard Lefschetz, it suffices to check the
assertion forj < d. Butnow; < d < ¢ < i, thus by the previous lemma, we are done. [

Remark. Being an IC sheaf ensures that the above mentioned cohggpn@supported on
somesubspace of codimensiant+ 1. The force of the lemma is to show this subspace lies
inside the codimensioit 1 locus of curves of cogenust 1. Experimental evidence suggests
that the support immuchsmaller, and it would be interesting to have a precise chearaation.

Lemma 12. Let7w : C — B be a family of curvesB’ ¢ B a smooth closed subvariety, and
7' : C' — B’ the restricted family. Assuni&’ andC’'¥ are smooth. Denote Gyand7’ the re-
spective smooth loci of the maps. Thex 3, R%L“”C) |p[dim B’—dim B| = IC(5/, Ri%ﬂd]C).

Proof. By induction on the codimension @&’ in B, we are reduced to proving the statement
for B’ a Cartier divisor inB. By [BBD], Cor. 4.1.12, the complek := IC(B, Ri%id](jﬂB,[—l]

is a perverse sheaf. By proper base chagés a summand oni[d]C[d + dim B']. As '

is smooth,K must be the sum of IC complexes, and by Corolldry 9 the locusuofes of
cogenus < d appears in codimensiahin B’. By Lemma_ll and the fact that the fibredis
dimensionaldim Supp #'(K) < —i for i # —dim B’. Therefore no summand & is an IC
complex associated to a local system supported in posivigigreension inB’, and the claimed
isomorphism follows from the obvious fact that, on the srhdotus, K coincides with the
(shifted) local syster 7/ C[dim B']. O

Corollary 13. Letw : C — B be a family of curves, and’ : ' — B’ its restriction to a
smooth subvariety of the base; assud@fe and C'Y are smooth. LefF be the summand of
Rde}(C[d + dim B] not supported on all of3, and similarly 7 for B'. If B" ¢ Supp F, then
F' = F|p/[dim B’ — dim B].

4. PROOF VIA REDUCTION TO RATIONAL CURVES

Proposition 14. Letr : C — B be a family of curves of cogenus boundedb¥hen Theorem
[ holds ford < 4.

Proof. Suppose not; lef — B be a counterexample over a base of minimal dimension. Let
b € B be any point in the support of a summandof R7C not supported on all oB3. If

d(b) is the cogenus dfy, then by Theorern|8 and Corolldry|13, the restriction of thmeilfato a
general slice of dimensiar(b) passing throughremains a counterexample. Therefore we may
assume = 0(b) = dim B. By Lemmd_10, the support ¢f is of codimension< d < ¢, thus it
intersects a general— 1 dimensional slice of3. Again by Corollary_ 1B, the restricted family

remains a counterexample, contradicting the assumptiamirafnal dimensionality. O

Now letr : C — B be a family of curves; shrinking to a neighborhood of same B, let
7' . C' — B be the replacement family of Corolldry 6. Then from Equatid we see

oo 2d oo  2d 25(Cyp)
®) > D d'RFIC - <qudH"(C_b[d])> @ | Y dANRTC

d=0 =0 d=0 i=0 i=0

As the final term is manifestly symmetric abagt the series is determined by its fifsterms.
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To finish the proof of Theorem 1, it would suffice to show that

(6) > ') = (Z qu*(C_b[d])> Zc(q)

for a generating polynomial of vector spacgs(q) of degree2j with coefficients symmetric

aroundg’. Indeed, then the fibre atof both sides of the equality asserted in Theorém 1 would

be determined in the same way by their values6r!, which by Proposition 14 are equal.
However, we know no direct way to establish Equalibn 6, aitfoof course it will follow as

a consequence of Theorém 1. Instead, we prove the prodmetif@and check the symmetry

in the Grothendieck group of varieties, in which we denotélbihe class of the affine line.

This is still sufficient, because theeight polynomiaboth factors through the Grothendieck

group of varieties and serves to witness the non-existeimenomands onid](C[dim BJ. For

K a complex of vector spaces carrying a weight filtration, wéemhe weight polynomial

w(K) =, #"(=1)"*/ dim Gy, H/ (K). For a varietyZ, we abbreviateo(Z) for w(H;(Z)).

Proposition 15. Suppose given a proper mgp X — Y between smooth varieties, and some
summandF of Rf,C[dim X]. If, for all y € Y, we havew(F,[— dim X]) = w(X,), then
F = Rm.C[dim X].

Proof. LetR f,C[dim X] = F € G; we must show that ib(G,) = O forally € Y, theng = 0.

G is a direct sum of shifted complexes of the fot@(L;), with L; a local system supported
on a locally closed subset &f underlying a pure variation of Hodge structures. Thenyfar
general point of the support of one with highest weight, teishing of the weight polynomial
forces the vanishing of the local system. O

Let C' be a curveC*™ its smooth locus, and’ its normalization. Fop € C, we write
(C, p)I" for the subvariety o> parameterizing subschemes set-theoretically suppotted a
our notation is meant to recall that it depends only on thengef C' at p. Let b(p) be the
number of analytic local branches ©fnearp. Splitting subschemes according to their support
gives the following equality in the Grothendieck group ofigges:

(7) d et = S e I Yo erie.nt

peC\Cs™

(8) = (ZQ”[CMD( 11 (1—61)1’(”261"[(0,2?)[”]])

peC\Cs™

This is the desired product formula. It remains to show thatfinal term of Equatiohl 8 is
symmetric around’. After passing to Euler characteristics, this is shown ifi] [sing Serre
duality; the argument below is similar.

Proposition 16. Let C' be a Gorenstein curve of cogendiswith smooth locug’*™ and b(p)
analytic local branches at a point€ C. Define

Zo(g) = [ @-a0"@> q¢"[(C.p)")]
pEC\Csm
ThenZ:(q) is a polynomial ing of degree2). Moreover, writingL for the class of the affine
line, we haveZ(q) = (¢?L)° Z¢(1/qL).
Proof. By Equatior 8, we may assundéis a rational curve of arithmetic gengsnote in this
caseZ(C) = (1 — q)(1 — ¢qL) 3" ¢[C!¥]. Fix a degree 1 line bundl®(1) on C. We map
cld — 7°(C)) by by associating the idedl C Oc to the sheaf* = Hom(I, O¢) ® O(—d);
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the fibre isP(H°(C, I*)). For F arank one degree zero torsion free sheaf, we write the Hilber
function ashz(d) = dim H°(C, F ® O(d)). Then since over the strata with constant Hilbert
function, the map from the Hilbert schemes to the compadtifaecobian is the projectivization
of a vector bundle, we have the equalty¢?[C¥] = S, [{F | hr = h}] Y ¢?[PHD-1].

Fix h = hz for someF. Evidentlyh is supported irff0, o), and by Riemann-Roch and
Serre duality is equal td+ 1 — g in (29 — 2, 00). Inside[0, 2g — 2], it either increases by 0 or
1 at each step. Let.(h) = {d|2h(d — 1) — h(d — 2) — h(d) = £1}; evidentlyp_ C [0, 2¢]
and¢, C [1,2g — 1], and

Zh(q) = (1 — q)(l — q]L) Z qd[]Ph(d) Z quh(d Z qdlh(d 1)

degp_ dep (F)

This is a polynomial iny of degree at mostg, hence so |§c(q).

Now letG = F* @ we ® O(2 — 2¢g), andhY = hg. By Serre duality and Riemann-Roch,
hV(d) = h(2g —2 —d) +d+ 1 — g, soin particulard € ¢.(hY) < 29 —d € ¢.(h). It
follows that¢®/1LYZ;,(1/qL) = Zyv(q). As Zc(q) = Y, [{F | hx = h}|Zx(q), we obtain the
final stated equality. O

This completes the (first) proof of Theorémn 1.

5. PROOF BY REDUCTION TO NODAL CURVES
Lemma 17. If Theoreni 1l holds for all versal families of curves, thenalds for all families.

Proof. By Corollary[13, the hypothesis implies that Theorem 1 hdtisany subfamily of a
versal family. Now letr : C — B be a family such that the theorem fails; JEbe the summand
of 71/C whose support is not all @8, and letb € B be a point such thaf, # 0. Let¢ : B —
V(Cp) be a map to the miniversal deformation, and®B&tC B be a smooth closed subvariety
such thatd¢,|p is injective. By item (1) of Theorernl &'z is still smooth. According
to Corollary[13, choosing?’ » Supp.F ensures that the restricted family still provides a
counterexample in any neighborhoodofShrinking still further, the map’ — V(C,) may be
taken to be the embedding of a smooth subvariety, giving &@diction. O

We now prove Theorem 1 for the versal family. The argumem isduction on the cogenus,
which depends crucially on the properties of the versal ffaidentified in Theoremsl4 arid 8.
For clarity, we separate topological generalities fromgecific properties of the versal family.

Definition 18. Let X be a smooth complex analytic space with a constructiblditation
X = [[X; such thatX; is everywhere of codimension i. We writeD(] [ X;) for the full
subcategory ob?(X') whose object§ have the following property.

For z ¢ X;, for generic, sufficiently small, polydisds > D' xID D DI x0 > z,
for sufficiently smalk € D, the restriction

Fr=RI(D' x 0, Flpixg) = R[(D' x D, Flpixp) — RT(D" x €, F)
is an isomorphism.

Lemma 19. N(]] X;) is a thick triangulated subcategory &f’(X), i.e., it is closed under
shifts, triangles, and taking summands.

Lemma 20. Let X* C X be an open subset such th&t \ X is of codimension- i. Then
the restriction)(] ] X;) — Db(X ) is faithful.
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Proof. ConsiderF € M(X, ¥) such thatF|x+ = 0. We must showF, = 0 for all z € X.
Suppose by inductiod, = 0 for x € X_, and consider: € X; \ X*. Evidently (X; \
X*) U X, is of codimension> i, so the generi@®’ x ¢ from the definition of (X, )
passing near misses this locus completely. Thus by assumption and thestiwh hypothesis,
F,=RI(D! x ¢, F) = 0. O

Proposition 21. Let 7 : C — B be a locally versal family of curves. Lé&; be the locus of
curves of cogenus ThenRxC[dim B] € (][] B)).

Proof. We check at somg € B;. The definition of)t is local on the base; asis proper, after
shrinking B the incIusiorL’IEd] — Cl¥ becomes a homotopy equivalence. Any sufficiently small
polydiscA € D x D ¢ A will induce homotopy equivalenc€s” — C4|ys.o — C¥|ps,p. By
item (3) of Theoreml8, a generic choice ensures that the lattespaces are smooth, possibly
after further shrinking the discs; by openness of smoothwescan shrink still further so that

the projectiorflg?m — I is smooth. It follows that, possibly after shrinkifiiy further, that
H*(Cgﬁw) = RI(D’ x D, 7C) = RO(D? x €, 7lC) = H*(Cﬂ[ﬂxg) is an isomorphism. [

Proposition 22. Theoreni L holds for all locally versal families of curves.

Proof. Let 7 : C — B be a locally versal family of curves, and 18t be the locus of curves
of cogenus. Let 7 be any summand @r’c supported on a proper subvariety®f Then
by Lemmd_18 and Propositianl2F, € M(] [ B;). By Theoreni4[[DH, T], the locus of nodal
curves is dense in eadBy; thus by Lemma 20 we need only check that the restrictiai ob
the locus of nodal curves is zero, i.e., that Thedrém 1 had&milies of nodal curves. [

Lemma 23. Theoreni L holds for locally versal families of nodal curves.

Proof. Letw : C — B be such afamily. Let € B be the base point, Idt4, - - - ¢s} C C, be the
nodal set of the central curég, and denote by its geometric genus. Shrink if necessary,
we can assume:

(1) the discriminant locus is a normal crossing divigaoe= UD; withi = 1,--- 6§, where
D; is the locus in which the—th nodec; is preserved.
(2) If by is such that’,, is nonsingular, the vanishing cyclés,, - - - , (s} in C,, associated

with the nodes of, are disjoint.

As the curvel, is irreducible, the conomology classesih(C,, ) of these vanishing cycles are
linearly independent, and can then be completed to a symnphesis.

Let 7; be the generators of the (abelian) local fundamental graup \ A, by) whereT;
corresponds to "going around;”. Then the monodromy defining the local syst&hr,C on
B\ Ais given via the Picard-Lefschetz formula, and, in the sygufit basis above, has a Jordan
form consisting o Jordan blocks of length 2. From this it is easy to compute tkariants
of the local systems obtained applying any linear algebrstraction toR 7, C, such as those
who appear iR7IC. Let SS%@ be the linear algebra operation, described by Formula 1,
such thaR'7/C = SS*dR'x,C. Denote byj : B\ A — B the open inclusion.

We have a natural isomorphism

(SSz',[d]Hl (Cbo))m(B\A,bo) — gq—dimB (IC(B, Ri%Ld](j))b

between the monodromy invariants 86> H' (C,, ) and the stalk &t of the first non-vanishing
cohomology sheaf of the intersection cohomology compleﬁﬁﬁd](i. The decomposition
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theorem in[[BBD] then implies that*(C/”) contains the Hodge structure
H[d} — @ (SSi,[d}Hl(CbO))ﬂl(B\AvbO)

as a direct summand, with the weight filtration defined in tia@dard way by the logarithms
of the monodromy operators (see [CK]).

It is easy to comput@ll? explicitly; presumablyH* (C},d]) can be computed by elementary
methods and shown to match; this would complete the proothdrabsence of such a calcu-
lation, we use Propositidn 115 and instead compare weiglynpatials. On the one hand, we
computed” ¢ro(HI) = (1 — ¢ + £2¢*)°(1 + tq)* /(1 — q)(1 — *q).

On the other hand, whe@i = P! is a rational curve with a single node, Riemann-Roch

ensures that the Abel map is a projective bundle foraryl; whend = 1 we have[jO(IP}F)] =

[P1] = L. Thus we get the formuld_ ¢?[(P1)1)] = (1 — ¢ + ¢®L)/((1 — ¢)(1 — qL)).

Comparison with Equatiofi(8) givés, ¢*[C\] = (Z q° [C_b[d]]) (1 — g+ ¢°LL)°; taking weight

polynomials gives the desired result. O
This completes the (second) proof of Theofém 1.
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