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A SUPPORT THEOREM FOR HILBERT SCHEMES OF PLANAR CURVES

LUCA MIGLIORINI AND VIVEK SHENDE

ABSTRACT. Consider a family of integral complex locally planar curves whose relative Hilbert
scheme of points is smooth. The decomposition theorem of Beilinson, Bernstein, and Deligne
asserts that the pushforward of the constant sheaf on the relative Hilbert scheme splits as a direct
sum of shifted semisimple perverse sheaves. We will show that no summand is supported in pos-
itive codimension. It follows that the perverse filtration on the cohomology of the compactified
Jacobian of an integral plane curve encodes the cohomology of all Hilbert schemes of points on
the curve. Globally, it follows that a family of such curves with smooth relative compactified
Jacobian (“moduli space of D-branes”) in an irreducible curve class on a Calabi-Yau threefold
will contribute equally to the BPS invariants in the formulation of Pandharipande and Thomas,
and in the formulation of Hosono, Saito, and Takahashi.

1. INTRODUCTION

In this note acurvewill always beintegral, complete, locally planar, and defined overC.1

Let C be a curve of arithmetic genusg. The Hilbert scheme of pointsC [d] parameterizes
lengthd subschemes ofC; it is complete, integral,d-dimensional, and l.c.i. [AIK, BGS]. If
π : C → B is a family of curves, there is a relative Hilbert schemeπ[d] : C[d] → B with
fibres(C[d])b = (Cb)

[d]. Planarity of the curves ensures the existence of families in which the
total space ofC[d] is smooth [S]; ultimately this is a consequence of the smoothness of Hilbert
scheme of points on a surface. As the mapπ[d] : C[d] → B is proper, the decomposition theorem
of Beilinson, Bernstein, and Deligne [BBD] applies andRπ

[d]
∗ C decomposes as a direct sum of

shifted intersection complexes associated to local systems on constructible subsets of the base.
Let π̃ : C̃ → B̃ denote the restriction ofπ to the smooth locus. The Hilbert schemes of

a smooth curve are its symmetric products, and in particularthe mapπ̃[d] is smooth. Thus
the summand ofRπ[d]

∗ C[d + dimB] with support equal toB is
⊕

IC(B,Rd+iπ̃
[d]
∗ C)[−i]. As

pointed out by Macdonald [M], the cohomology of the symmetric products is expressed in
terms of the cohomology of the curves by the formula

(1) Riπ̃[d]
∗ C =

⌊i/2⌋⊕

k=0

(∧i−2kR1π̃∗C

)
(−k) = (R2d−iπ̃[d]

∗ C)(d− i) for i ≤ d

Even given this expression, computingIC(B,Riπ̃
[d]
∗ C) is a nontrivial matter, about which we

say nothing here. But at leastRπ[d]
∗ C[d+ dimB] contains no other summands:

Theorem 1. Let π : C → B be a family of integral plane curves, and letπ̃ : C̃ → B̃ its
restriction to the smooth locus. IfC[d] is smooth, then

Rπ[d]
∗ C[d+ dimB] =

d⊕

i=−d

IC(B,Rd+iπ̃[d]
∗ C)[−i].

1This reflects a limitation of the authors rather than a certainty that the methods do not work in characteristicp.
1
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From now on we will use the notation
pRiπ[d]

∗ C[d+ dimB] := pHi
(
Rπ[d]

∗ C[d+ dimB]
)

for the perverse cohomology sheaves ofRπ
[d]
∗ C[d+ dimB].

The central term of Equation 1 can be reinterpreted in terms of the family of Jacobians of
the curves. Indeed, taking̃πJ : J(C) → B to be the family of Jacobians over the smooth locus,
then there is a (canonical) identification of local systems

(2) Riπ̃J
∗C =

∧i(R1π̃∗C)

Consequently,

(3) Riπ̃[d]
∗ C =

⊕

k

(Ri−2kπ̃J
∗C)(−k) = (R2d−iπ̃[d]

∗ C)(d− i) for i ≤ d

It can be convenient to express Equations (1), (2), and (3) inthe following formula:

(4)
∞∑

d=0

2d∑

i=0

qdRiπ̃[d]
∗ C =

2g∑
i=0

qi
∧i(R1π̃∗C)

(1− qC)(1− qC(−1))
=

2g∑
i=0

qiRiπJ
∗C

(1− qC)(1− qC(−1))

The family of Jacobians can be extended over the singular locus of π to thecompactified

Jacobian[AK], πJ : J
d
(C) → B, whose fibreJ

d
(C)b = J

d
(Cb) parameterizes rank one, degree

d torsion free sheaves onC.2 The mapπJ is proper, and for Gorenstein curves there is an
Abel-Jacobi mapAJ : C[d] → J

d
(C) taking a subscheme to the dual of its ideal sheaf.3 For

d > 2g − 2, the mapAJ is aPd−g bundle; thus the statement in Theorem 1 is true in this
range for the mapπJ as well. Over sufficiently small open set,π admits a sectionσ with image
in the smooth locus of the curves; twisting byO(σ) identifies theJ

d
(C) for varyingd and so

πJ
∗C does not depend ond. It can be shown [S, Prop. 14] that smoothness of the relative

compactified Jacobian implies smoothness of all relative Hilbert schemes. Therefore taking IC
sheaves in Equations (1) and (2) yields the following Corollary.

Corollary 2. Letπ : C → B be a family of integral plane curves of arithmetic genusg. If the
relative compactified JacobianJ(C) is smooth, then:

pRi−dπ[d]
∗ C[d+ dimB] =

⌊i/2⌋⊕

k=0

pRi−g−2kπJ
∗C[g + dimB](−k) for 0 ≤ i ≤ d

(ThepRi−d for i > d are determined similarly by duality.)

This corollary has a consequence for the enumerative geometry of Calabi-Yau three-folds,
which we briefly sketch. Gopakumar and Vafa argued in [GV] that the cohomology of the
moduli space ofD-branes (roughly speaking, semistable sheaves supported on curves) on a
Calabi-YauY should give rise tointeger“BPS” invariants, one for each genus and homology
class inH2(Y,Z), which encode the Gromov-Witten invariants ofY . Hosono, Saito, and Taka-
hashi [HST] use intersection cohomology and the tools of [BBD] to give a precise formulation;
however, their proposal is knownnot to give the desired BPS numbers in general [BP]. A dif-
ferent definition of integer BPS invariants is given by Pandharipande and Thomas [PT] using

2It also extends to thegeneralized JacobianJ(C) whose fibreJ(C)b parameterizes line bundles onCb; this is a
commutative group scheme of dimensiong of which the affine part is of dimensionδ(C)b. This is a subscheme of
the compactified Jacobian, and acts on it. Such actions are central to Ngô’s arguments, but play no role here.

3In general, it is better to define the Abel-Jacobi map from theQuot scheme of the dualizing sheaf, see [AK].
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the closely related spaces of “stable pairs”, which for integral planar curves are just the Hilbert
schemes of points. By the work of Behrend [B], the BPS invariants are extracted by a weighted
Euler characteristic of these spaces, the weighting function depending only on the singularities
of the moduli space. For BPS invariants associated toirreduciblehomology classes, it is sen-
sible to discuss the contribution of an individual curve in both theories; if the moduli space of
sheaves onY is smooth along the locus of sheaves supported on a curveC, then the intersection
cohomology considerations may be neglected in [HST], and likewise the weighting function of
Behrend may be neglected in [PT]. In this case, taking Euler characteristics in the Corollary
yields the equality of the contributions of the curveC to these two theories.

Theorem 1 is inspired by the support theorem of B. C. Ngô [N],and is a consequence of it
whend > 2g−2. Nonetheless our proofs – we give two – do not logically depend on his work.

Acknowledgements. Corollary 2 was conjectured during a discussion between theauthors
and Lothar Göttsche. We are indebted to Zhiwei Yun for the suggestion that the induction
procedure of Section 5 be categorified. We also thank Davesh Maulik, Alexei Oblomkov, and
Richard Thomas for enlightening conversations, and Sam Gunningham and Ben Webster for
helpful comments (on MathOverflow) on Proposition 15. A different approach to the main
theorem can be found in the work of Davesh Maulik and Zhiwei Yun [MY], who deduce it,
under additional hypotheses but in arbitrary characteristic, from the support theorem of Ngô.

Conventions. We follow [BBD] in declaringF ∈ Db
c(X) perverse whendimSuppHi(F) ≤

−i, and the same holds for the Verdier dual. That is, ifX is smooth andn dimensional,C[n]
is perverse. In arguments of a topological nature, we omit Tate twists. As mentioned at the
outset, all curves are integral and have singularities of embedding dimension 2. All families of
curves will enjoy a smooth base. For a curveC, we writeδ(C) for the difference between its
arithmetic and geometric genera, which we term thecogenus.

2. BACKGROUND ON RELATIVE HILBERT SCHEMES AND VERSAL DEFORMATIONS

The Hilbert schemes of points on integral planar curves are singular, but not hopelessly so:

Theorem 3. [AIK, BGS]. LetC be a complete integral planar curve. ThenC [d] is integral,
complete,d-dimensional, and locally a complete intersection.

We systematically employ versal deformations of curve singularities. We will always mean
this in the sense of analytic spaces, see [GLS] for a thoroughtreatment. The base of a versal
deformation of a plane curve singularity is smooth. Ifπ : C → B is a family of curves, we
say it is locally versalat b if it induces versal deformations of all the singularities of Cb, or
equivalently if the tangent map to the product of the first order deformations of the singularities
of B is surjective. Such families have in particular the following properties:

Theorem 4. [DH, T]. Let π : C → B be a family of curves. The cogenus is an upper
semicontinuous function onB. Local versality is an open condition, and in a locally versal
family the locus of curves of cogenus at leastδ is equal to the closure of the locus ofδ-nodal
curves. In particular, the locus of curves of cogenusδ has codimensionδ.

Any curve singularity can be found on a rational curve; for anexplicit construction see e.g.
[L]. Moreover, if C → B is a family of curves, then locally nearb ∈ B one can find a different
family C′ → B such thatC′

b is rational with the same singularities asCb and the two families
induce the same deformations of the singularities of the central fibre.
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Proposition 5. [FGvS]. The map from the base of a versal deformation of an integral locally
planar curve to the product of the versal deformations of itssingularities is a smooth surjection.

Corollary 6. Letπ : C → B be a family of curves. Fixb ∈ B, and letCb be the normalization
of Cb. Then there exists a neighborhoodb ∈ U ⊂ B and a familyπ′ : C′ → U such thatC′

b is
rational with the same singularities asCb, andC andC′ induce the same deformations of these
singularities onU , and in particular have the same discriminant locus. Moreover, onU , we
have an equality of local systemsR1π̃∗C = R1π̃′

∗C
⊕

H1(Cb), the latter summand meaning the
constant local system with the specified fibre.

Proof. Let C ′ be a rational curve with the same singularities asCb; let C′ → V(C ′) a versal
deformation ofC ′, and letV(Cb) be the product of the versal deformations of the singularities
of Cb. The mapV(C ′) → V(Cb) is a smooth surjection, so we may choose a local section over
some neighborhoodU . Possibly shrinkingU , we compose the mapsU → V(Cb) → V(C ′) and
pull backC′ to obtain a family of rational curvesπ′ : C′

B → B.
ShrinkU further so that the inclusionCb → C|U is a homotopy equivalence. LetV be the

summand ofR1π̃∗C whose fibre at̃b is the kernel of the composition of the specialization
mapH1(Cb̃) → H1(Cb) with the pullback to the normalizationH1(Cb) → H1(Cb). This is a
symplectic summand, letV⊥ be its orthogonal complement. AsV contains all vanishing cycles,
the Picard-Lefschetz formula ensureV⊥ has trivial monodromy and thus extends extends to a
trivial local system overB with fibreV⊥

b = H1(Cb). On the other hand,V depends only on the
deformation of the singularities, which is the same inC andC′. �

To make use of such a replacement, it is necessary to know thatthe relative Hilbert scheme
C′[d] is smooth ifC[d] is. This follows from results of the second author on the smoothness of
relative Hilbert schemes [S], which we now review.

Proposition 7. [S, Prop. 14]Letπ : C → B be a family of curves. IfC[d] is smooth, thenC[n] is
smooth for anyn ≤ d.

Theorem 8. Let C → B be a family of curves. Forb ∈ B, let I be the image ofTbB in the
product of the first-order deformations of the singularities ofCb. Then:

(1) The smoothness ofC[d] alongC[d]
b depends only onI.

(2) If C[d] is smooth alongC[d]
b , thendim I ≥ min(d, δ).

(3) If dim I ≥ d andI is general among such subspaces,C[d] is smooth alongC[d]
b .

(4) [FGvS]C[d] is smooth alongC[d]
b for all d if and only ifI is transverse to the image of

the “equigeneric ideal”. It suffices forI to be generic of dimension at leastδ.

Proof. Item (1) holds because, as shown in [S], ifπ : (X , x) → (V, 0) is a versal deformation
of a curve singularity, then for any subschemez ⊂ X0 set theoretically supported atx, the germ
(X [d], [z]) is smooth. We explain in detail: takez a subscheme ofC[d]

b which decomposes asz =∐
zi into subschemes of lengthsdi supported at pointsci. Let (Ci, ci) → (Vi, 0) be miniversal

deformations of the curve singularities(Cb, ci) and (B, b) →
∏
(Vi, 0) a map along which

the (multi-)germ
∏
(Cb, ci) pulls back. Then analytically locally the (multi-)germ

∏
(C

[di]
b , [zi])

pulls back from
∏
(C

[di]

i , [zi]) along the same map. As the fibres of(C
[di]

i , [zi]) → (Vi, 0)
are reduced of dimensiondi and the total space is smooth, the smoothness of the pullback
depends only on the image ofTbB in

∏
T0Vi, which is well defined as theVi were taken

miniversal. The miniversal deformation of the germ of a curve at a smooth point being trivial,
only the singularities contribute. To check (2), we may by (1) assume the mapTbB → I is an
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isomorphism and then identify locallyB with its image in some representativeB of
∏
(Vi, 0).

ShrinkB until it can be written asB ×D for some polydiscD; by openness of smoothness we
may shrinkD further untilC[d]|B×ǫ is smooth for allǫ ∈ D. By Theorem 4, some points inB
will correspond to curves withδ(Cb) nodes; chooseǫ so the sliceB × ǫ contains such a point
p. If d ≤ δ, there is a pointz ∈ C

[d]
p be a point naming a subscheme supported atd nodes. The

Zariski tangent spaceTzC
[d]
p is 2d dimensional, soC[d]

p cannot be smoothed out over a base of
dimension less thand. Item (3) appears in [S] as Theorem B. Item (4) is stated in [FGvS] for
the compactified Jacobian; it follows forC[d] for d ≫ 0 because this fibres smoothly over the
Jacobian, and for lowerd by Proposition 7. �

Corollary 9. If C → B is a family of curves withC[d] smooth, then forδ ≤ d, the locus of
curves with cogenusδ is of codimension at leastδ in B.

Proof. Suppose not; letB′ be a genericδ − 1 dimensional smooth subvariety ofB, then the
restrictionC[d] ×B B′ is smooth andB′ intersects the locus of curves of cogenusδ. This con-
tradicts (2) of Theorem 8. �

Remark. Corollary 9 explains why we do not require a “δ-regularity” assumption as in [N] –
in the case of Hilbert schemes and Jacobians, it follows fromsmoothness of the total space.

3. ESTIMATES

The following is a variation on the “Goresky-MacPherson inequality” of [N], Section 7.3.

Lemma 10. Let π : X → Y be a locally projective morphism of smooth varieties with irre-
ducible fibres of dimensionn. Then

Hi(pRjπ∗C[dimX ]) = 0 for i ≥ n− dimY − |j| and i > − dim Y

In particular, every summand ofRπ∗C is supported on a subvariety of codimension< n.

Proof. Since the estimate is symmetric inj and, by relative hard Lefschetz,pRjπ∗C[dimX ] ≃
pR−jπ∗C[dimX ], we may assumej ≥ 0. We check at a pointy ∈ Y , where by [BBD],
Hi(pRjπ∗C[dimX ])y is a summand ofHi+j+dimX(Xy,C). This vanishes for dimension rea-
sons if i + j + dimX = i + j + dimY + n > 2 dimXy = 2n. Finally, as the fibres are
irreducible,R2nπ∗C ≃ C. This top dimensional cohomology is already accounted for by the
summandpRnπ∗C[dimX ] and thus the vanishing forj = i is ensured. The final statement
follows because a summand supported on a subvarietyY ′ is the IC sheaf associated to some
local system on an open subset ofY ′ and consequently the stalk of the cohomology sheaf in
degree− dimY ′ is non zero on a general point ofY ′; this is prohibited by the stated estimate
whendimY − dimY ′ ≥ n. �

Lemma 11. Letπ : C → B be a family of curves such thatC[d] is smooth. Then fori > 0, the
sheafHi(IC(B,Rjπ̃

[d]
∗ C)[− dimB]) is supported on the locus of curves of cogenus> i.

Proof. We check at some pointb ∈ B and writeδ for the cogenus ofCb. By semicontinuity
of cogenus, in some neighborhood all curves have cogenus≤ δ; we shrinkB to this neighbor-
hood and show thatHi(IC(B,Rjπ̃

[d]
∗ C)[− dimB]) = 0 for all i ≥ δ. ShrinkingB further if

necessary, letπ′ : C′ → B be the family of curves constructed in Corollary 6, which we recall
has the property thatC′

b is rational,R1π̃∗C = R1π̃′
∗C⊕ H1(Cb), and by item (1) of Theorem 8,

C′[d] is smooth. Taking exterior powers and comparing with Equation (1), we see thatRjπ̃
[d]
∗ C

is a sum ofR≤j π̃
′[d]
∗ C; it will therefore suffice to check the assertion for the family C′.
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Noteδ is the common arithmetic genus of the fibres ofπ′. From Equation (1), all summands
of Riπ̃

′[d]
∗ C appear already as summands ofRiπ̃

′[min(d,δ)]
∗ C. As C′[min(d,δ)] is smooth by Propo-

sition 7, we may as well assumed ≤ δ. By relative hard Lefschetz, it suffices to check the
assertion forj ≤ d. But nowj ≤ d ≤ δ ≤ i, thus by the previous lemma, we are done. �

Remark. Being an IC sheaf ensures that the above mentioned cohomology is supported on
somesubspace of codimensioni + 1. The force of the lemma is to show this subspace lies
inside the codimensioni+1 locus of curves of cogenusi+1. Experimental evidence suggests
that the support ismuchsmaller, and it would be interesting to have a precise characterization.

Lemma 12. Let π : C → B be a family of curves,B′ ⊂ B a smooth closed subvariety, and
π′ : C′ → B′ the restricted family. AssumeC[d] andC′[d] are smooth. Denote bỹπ andπ̃′ the re-
spective smooth loci of the maps. ThenIC(B,Riπ̃

[d]
∗ C)|B′[dimB′−dimB] = IC(B′,Riπ̃

′[d]
∗ C).

Proof. By induction on the codimension ofB′ in B, we are reduced to proving the statement
for B′ a Cartier divisor inB. By [BBD], Cor. 4.1.12, the complexK := IC(B,Riπ̃

[d]
∗ C)|B′[−1]

is a perverse sheaf. By proper base change,K is a summand ofRπ′[d]
∗ C[d + dimB′]. As C′[d]

is smooth,K must be the sum of IC complexes, and by Corollary 9 the locus ofcurves of
cogenusδ ≤ d appears in codimensionδ in B′. By Lemma 11 and the fact that the fibre isd-
dimensional,dim SuppHi(K) < −i for i 6= − dimB′. Therefore no summand ofK is an IC
complex associated to a local system supported in positive codimension inB′, and the claimed
isomorphism follows from the obvious fact that, on the smooth locus,K coincides with the
(shifted) local systemRiπ̃

′[d]
∗ C[dimB′]. �

Corollary 13. Let π : C → B be a family of curves, andπ′ : C′ → B′ its restriction to a
smooth subvariety of the base; assumeC[d] and C′[d] are smooth. LetF be the summand of
Rπ

[d]
∗ C[d + dimB] not supported on all ofB, and similarlyF ′ for B′. If B′ 6⊂ SuppF , then

F ′ = F|B′[dimB′ − dimB].

4. PROOF VIA REDUCTION TO RATIONAL CURVES

Proposition 14. Letπ : C → B be a family of curves of cogenus bounded byδ. Then Theorem
1 holds ford ≤ δ.

Proof. Suppose not; letC → B be a counterexample over a base of minimal dimension. Let
b ∈ B be any point in the support of a summandF of Rπ[d]

∗ C not supported on all ofB. If
δ(b) is the cogenus ofCb, then by Theorem 8 and Corollary 13, the restriction of the family to a
general slice of dimensionδ(b) passing throughb remains a counterexample. Therefore we may
assumeδ = δ(b) = dimB. By Lemma 10, the support ofF is of codimension< d ≤ δ, thus it
intersects a generalδ − 1 dimensional slice ofB. Again by Corollary 13, the restricted family
remains a counterexample, contradicting the assumption ofminimal dimensionality. �

Now let π : C → B be a family of curves; shrinking to a neighborhood of someb ∈ B, let
π′ : C′ → B be the replacement family of Corollary 6. Then from Equation(4), we see

(5)
∞∑

d=0

2d∑

i=0

qdRiπ̃[d]
∗ C =

(
∞∑

d=0

2d∑

i=0

qdHi(Cb
[d]
)

)
⊗




2δ(Cb)∑

i=0

qi
∧iR1π̃′

∗C





As the final term is manifestly symmetric aboutqδ, the series is determined by its firstδ terms.
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To finish the proof of Theorem 1, it would suffice to show that

(6)
∑

qdH∗(C
[d]
b ) =

(∑
qdH∗(Cb

[d]
)
)
ZC(q)

for a generating polynomial of vector spacesZC(q) of degree2δ with coefficients symmetric
aroundqδ. Indeed, then the fibre atb of both sides of the equality asserted in Theorem 1 would
be determined in the same way by their values forC [≤δ], which by Proposition 14 are equal.

However, we know no direct way to establish Equation 6, although of course it will follow as
a consequence of Theorem 1. Instead, we prove the product formula and check the symmetry
in the Grothendieck group of varieties, in which we denote byL the class of the affine line.
This is still sufficient, because theweight polynomialboth factors through the Grothendieck
group of varieties and serves to witness the non-existence of summands ofRπ[d]

∗ C[dimB]. For
K a complex of vector spaces carrying a weight filtration, we write the weight polynomial
w(K) :=

∑
i,j t

i(−1)i+j dimGriWHj(K). For a varietyZ, we abbreviatew(Z) for w(H∗
c(Z)).

Proposition 15. Suppose given a proper mapf : X → Y between smooth varieties, and some
summandF of Rf∗C[dimX ]. If, for all y ∈ Y , we havew(Fy[− dimX ]) = w(Xy), then
F = Rπ∗C[dimX ].

Proof. LetRf∗C[dimX ] = F
⊕

G; we must show that ifw(Gy) = 0 for all y ∈ Y , thenG = 0.
G is a direct sum of shifted complexes of the formIC(Li), with Li a local system supported
on a locally closed subset ofB underlying a pure variation of Hodge structures. Then fory a
general point of the support of one with highest weight, the vanishing of the weight polynomial
forces the vanishing of the local system. �

Let C be a curve,Csm its smooth locus, andC its normalization. Forp ∈ C, we write
(C, p)[n] for the subvariety ofC [n] parameterizing subschemes set-theoretically supported at p;
our notation is meant to recall that it depends only on the germ of C at p. Let b(p) be the
number of analytic local branches ofC nearp. Splitting subschemes according to their support
gives the following equality in the Grothendieck group of varieties:

∑
qn[C [n]] =

∑
qn[(Csm)[n]]

∏

p∈C\Csm

∑
qn[(C, p)[n]](7)

=
(∑

qn[C
[n]
]
)



∏

p∈C\Csm

(1− q)b(p)
∑

qn[(C, p)[n]]


(8)

This is the desired product formula. It remains to show that the final term of Equation 8 is
symmetric aroundqδ. After passing to Euler characteristics, this is shown in [PT] using Serre
duality; the argument below is similar.

Proposition 16. Let C be a Gorenstein curve of cogenusδ, with smooth locusCsm andb(p)
analytic local branches at a pointp ∈ C. Define

ZC(q) :=
∏

p∈C\Csm

(1− q)b(p)
∑

qn[(C, p)[n]]

ThenZC(q) is a polynomial inq of degree2δ. Moreover, writingL for the class of the affine
line, we haveZC(q) = (q2L)δZC(1/qL).

Proof. By Equation 8, we may assumeC is a rational curve of arithmetic genusg; note in this
caseZ(C) = (1 − q)(1 − qL)

∑
qd[C [d]]. Fix a degree 1 line bundleO(1) on C. We map

C [d] → J
0
(C) by by associating the idealI ⊂ OC to the sheafI∗ = Hom(I,OC) ⊗ O(−d);
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the fibre isP(H0(C, I∗)). ForF a rank one degree zero torsion free sheaf, we write the Hilbert
function ashF(d) = dimH0(C,F ⊗ O(d)). Then since over the strata with constant Hilbert
function, the map from the Hilbert schemes to the compactified Jacobian is the projectivization
of a vector bundle, we have the equality

∑
qd[C [d]] =

∑
h[{F | hF = h}]

∑
qd[Ph(d)−1].

Fix h = hF for someF . Evidentlyh is supported in[0,∞), and by Riemann-Roch and
Serre duality is equal tod+ 1− g in (2g − 2,∞). Inside[0, 2g − 2], it either increases by 0 or
1 at each step. Letφ±(h) = {d | 2h(d− 1)− h(d − 2)− h(d) = ±1}; evidentlyφ− ⊂ [0, 2g]
andφ+ ⊂ [1, 2g − 1], and

Zh(q) := (1− q)(1− qL)
∑

qd[Ph(d)−1] =
∑

d∈φ−(F)

qdLh(d)−1 −
∑

d∈φ+(F)

qdLh(d−1)

This is a polynomial inq of degree at most2g, hence so isZC(q).
Now let G = F∗ ⊗ ωC ⊗ O(2 − 2g), andh∨ = hG. By Serre duality and Riemann-Roch,

h∨(d) = h(2g − 2 − d) + d + 1 − g, so in particular,d ∈ φ±(h
∨) ⇐⇒ 2g − d ∈ φ±(h). It

follows thatq2gLgZh(1/qL) = Zh∨(q). As ZC(q) =
∑

h[{F | hF = h}]Zh(q), we obtain the
final stated equality. �

This completes the (first) proof of Theorem 1.

5. PROOF BY REDUCTION TO NODAL CURVES

Lemma 17. If Theorem 1 holds for all versal families of curves, then it holds for all families.

Proof. By Corollary 13, the hypothesis implies that Theorem 1 holdsfor any subfamily of a
versal family. Now letπ : C → B be a family such that the theorem fails; letF be the summand
of π[d]

∗ C whose support is not all ofB, and letb ∈ B be a point such thatFb 6= 0. Letφ : B →
V(Cb) be a map to the miniversal deformation, and letB′ ⊂ B be a smooth closed subvariety
such thatdφb|B′ is injective. By item (1) of Theorem 8,C[d]|B′ is still smooth. According
to Corollary 13, choosingB′ 6⊃ SuppF ensures that the restricted family still provides a
counterexample in any neighborhood ofb. Shrinking still further, the mapB′ → V(Cb) may be
taken to be the embedding of a smooth subvariety, giving a contradiction. �

We now prove Theorem 1 for the versal family. The argument is an induction on the cogenus,
which depends crucially on the properties of the versal family identified in Theorems 4 and 8.
For clarity, we separate topological generalities from thespecific properties of the versal family.

Definition 18. Let X be a smooth complex analytic space with a constructible stratification
X =

∐
Xi such thatXi is everywhere of codimension≥ i. We writeN(

∐
Xi) for the full

subcategory ofDb
c(X) whose objectsF have the following property.

For x ∈ Xi, for generic, sufficiently small, polydiscsX ⊃ Di×D ⊃ Di×0 ∋ x,
for sufficiently smallǫ ∈ D, the restriction

Fx = RΓ(Di × 0,F|Di×0) = RΓ(Di × D,F|Di×D) → RΓ(Di × ǫ,F)

is an isomorphism.

Lemma 19. N(
∐

Xi) is a thick triangulated subcategory ofDb
c(X), i.e., it is closed under

shifts, triangles, and taking summands.

Lemma 20. LetX+ ⊂ X be an open subset such thatXi \ X+ is of codimension> i. Then
the restrictionN(

∐
Xi) → Db

c(X
+) is faithful.
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Proof. ConsiderF ∈ N(X,Σ) such thatF|X+ = 0. We must showFx = 0 for all x ∈ X.
Suppose by inductionFx = 0 for x ∈ X<i and considerx ∈ Xi \ X+. Evidently (Xi \
X+) ∪ X>i is of codimension> i, so the genericDi × ǫ from the definition ofN(X,Σ)
passing nearx misses this locus completely. Thus by assumption and the induction hypothesis,
Fx = RΓ(Di × ǫ,F) = 0. �

Proposition 21. Let π : C → B be a locally versal family of curves. LetBi be the locus of
curves of cogenusi. ThenRπ[d]

∗ C[dimB] ∈ N(
∐

Bi).

Proof. We check at someb ∈ Bδ. The definition ofN is local on the base; as̃π is proper, after
shrinkingB the inclusionC[d]

b →֒ C[d] becomes a homotopy equivalence. Any sufficiently small
polydiscλ ∈ Dδ×D ⊂ Λ will induce homotopy equivalencesC[d]

b → C[d]|Dδ×0 → C[d]|Dδ×D. By
item (3) of Theorem 8, a generic choice ensures that the latter two spaces are smooth, possibly
after further shrinking the discs; by openness of smoothness we can shrinkD still further so that
the projectionC[d]

Dδ×D
→ D is smooth. It follows that, possibly after shrinkingDδ further, that

H∗(C
[d]

Dδ×D
) = RΓ(Dδ × D, π

[d]
∗ C) → RΓ(Dδ × ǫ, π

[d]
∗ C) = H∗(C

[d]

Dδ×ǫ
) is an isomorphism. �

Proposition 22. Theorem 1 holds for all locally versal families of curves.

Proof. Let π : C → B be a locally versal family of curves, and letBi be the locus of curves
of cogenusi. Let F be any summand ofRπ[d]

∗ C supported on a proper subvariety ofB. Then
by Lemma 19 and Proposition 21,F ∈ N(

∐
Bi). By Theorem 4 [DH, T], the locus of nodal

curves is dense in eachBi; thus by Lemma 20 we need only check that the restriction ofF to
the locus of nodal curves is zero, i.e., that Theorem 1 holds for families of nodal curves. �

Lemma 23. Theorem 1 holds for locally versal families of nodal curves.

Proof. Let π : C → B be such a family. Letb ∈ B be the base point, let{c1, · · · cδ} ⊆ Cb be the
nodal set of the central curveCb, and denote byr its geometric genus. ShrinkB if necessary,
we can assume:

(1) the discriminant locus is a normal crossing divisor∆ = ∪Di with i = 1, · · · , δ, where
Di is the locus in which thei−th nodeci is preserved.

(2) If b0 is such thatCb0 is nonsingular, the vanishing cycles{ζ1, · · · , ζδ} in Cb0 associated
with the nodes ofCb are disjoint.

As the curveCb is irreducible, the cohomology classes inH1(Cb0) of these vanishing cycles are
linearly independent, and can then be completed to a symplectic basis.

Let Ti be the generators of the (abelian) local fundamental groupπ1(B \ ∆, b0) whereTi

corresponds to ”going aroundDi”. Then the monodromy defining the local systemR1π̃∗C on
B\∆ is given via the Picard-Lefschetz formula, and, in the symplectic basis above, has a Jordan
form consisting ofδ Jordan blocks of length 2. From this it is easy to compute the invariants
of the local systems obtained applying any linear algebra construction toR1π̃∗C, such as those
who appear inRiπ̃

[d]
∗ C. Let SSi,[d] be the linear algebra operation, described by Formula 1,

such thatRiπ̃
[d]
∗ C = SSi,[d]R1π∗C. Denote byj : B \∆ → B the open inclusion.

We have a natural isomorphism
(
SSi,[d]H1(Cb0)

)π1(B\∆,b0)
= H−dimB(IC(B,Riπ̃[d]

∗ C))b

between the monodromy invariants onSSi,[d]H1(Cb0) and the stalk atb of the first non-vanishing
cohomology sheaf of the intersection cohomology complex ofRiπ̃

[d]
∗ C. The decomposition
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theorem in [BBD] then implies thatH∗(C
[d]
b ) contains the Hodge structure

H
[d] :=

⊕

i

(
SSi,[d]H1(Cb0)

)π1(B\∆,b0)

as a direct summand, with the weight filtration defined in the standard way by the logarithms
of the monodromy operators (see [CK]).

It is easy to computeH[d] explicitly; presumablyH∗(C
[d]
b ) can be computed by elementary

methods and shown to match; this would complete the proof. Inthe absence of such a calcu-
lation, we use Proposition 15 and instead compare weight polynomials. On the one hand, we
compute

∑
qdw(H[d]) = (1− q + t2q2)δ(1 + tq)2r/(1− q)(1− t2q).

On the other hand, whenC = P
1
+ is a rational curve with a single node, Riemann-Roch

ensures that the Abel map is a projective bundle for anyd ≥ 1; whend = 1 we have[J
0
(P1

+)] =

[P1
+] = L. Thus we get the formula

∑
qd[(P1

+)
[d]] = (1 − q + q2L)/((1 − q)(1 − qL)).

Comparison with Equation (8) gives
∑

qd[C
[d]
b ] =

(∑
qd[Cb

[d]
]
)
(1− q + q2L)δ; taking weight

polynomials gives the desired result. �

This completes the (second) proof of Theorem 1.
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