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Abstract

Foranyn > 3,0 < m < (n —2)/n, and constants n > 0, > 0, a, satisfying
a < B(n —2)/m, we prove the existence of radially symmetric solution of Z=1Av™ +
av+px-Vo =0,v >0, in R", v(0) = n, without using the phase plane method. When
O0<m<(n-2)/n,n>3,and a = 26/(1 —m) > 0, we prove that the radially symmetric

. .. . . . [xPo@)" _ 2(n—1)(n—2-nm)
solution v of the above elliptic equation satisfies limyyjeo “joo— = P In
particular when m = Z_;%' n >3,and a = 26/(1 — m) > 0, the metric gij = v dx? is the

[xPoe) _

steady soliton solution of the Yamabe flow on IR" and we obtain limy e =15 o]

%. When 0 <m < (n —2)/n, n > 3, and 28/(1 — m) > max(a, 0), we prove that
limyy -0 |x|*/Pv(x) = A for some constant A > 0. For B > 0ora =0, we prove that
the radially symmetric solution o™ of the above elliptic elliptic equation converges
uniformly on every compact subset of R" to the solution u of the equation (n—1)A log u+
au+pPx-Vu=0,u>0,inR", u(0) =n,asm — 0.
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0 Introduction

Recently there is a lot of interest in the following singular diffusion equation [A], [DKI],

(],
n-—1
m
which arises in the study of many physical models. When m > 1, (0.1) is called the porous
medium equation which models the the flow of gases through porous medium. When
m =1, (0.0)) is the well known heat equation with diffusivity coefficient equal to (1 —1)/m.
When 0 < m < 1, (0.I)) is called the fast diffusion equation. Interested reader can read the
book by P. Daskalopoulos and C.E. Kenig and the book by J.L. Vazquez for the
most recent results on (0.1).
Foranyne€ Z*,n>3,0 <m < 1,1 > 0, suppose v is the solution of

1wy = Au"  inR" x (0, T) (0.1)

Av"+av+Bx-Vo=0,0>0, inR"
v(0) = 1.
Then as observed by B.H. Gilding and L.A. Peletier and others [DSY], [V1], [V2], the

function

(0.2)

ui(x, t) = to(xtP)
is a solution of (0.1 in R” x (0, o) if

a=—-> (0.3)
and for any T > 0 the function
us(x, 1) = (T — H%0(x(T — t)F)
is a solution of (0.I) in R" x (0, T) if

28+1
1-m

>0 (0.4)

and the function
us(x, t) = e *o(xe P

is an eternal solution of (Q.I) in R" X (—oo, c0) if
_ %
1-m’
On the other hand P. Daskalopoulos and N. Sesum proved that a locally conformally
flat gradient Yamabe soliton with positive sectional curvature must be radially symmetric

and the metric g;; = v dx? satisfies (0.2) or

(0.5)

n-1

((vm)" + ”—;1(0"1)') Fav+ o’ =0,0> 0, (0.6)
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in (0, 00) and
{mm:n 0.7)

v'(0)=0

for some constant 1 > 0 where dx? is the standard metric on R" with m = (n —2)/(n + 2),
n >3, and )
_2p+m
i — (0.8)

for some constants > 0, @, and p; where p; = 0if g;; is a Yamabe steady soliton, p; < 0 if
gij is a Yamabe expander soliton, and p; > 0 if g;; is a Yamabe shrinker soliton.

Since the asymptotic behaviour of the solutions of (0.1 are usually similar to either the
functions uy, u, or us, it is important to study the solutions of (0.2) in order to understand
the behaviour of solutions of (0.I) and the locally conformally flat gradient Yamabe soli-
tons. Existence and uniqueness of radially symmetric solution of (0.2) for «, g, satisfying
(0.4) and

n
O<m<

,n>3, (0.9)

is proved by M.A. Peletier, H. Zhang [PZ] and ]J.R. King [K] using phase plane method
(cf. Proposition 7.4 of [V1]]). Existence of radially symmetric solution of (0.2) for o, § > 0,
satisfying (0.3) and (0.9) is proved on P.22 of [DS]. A sketch of the proof of the existence of
radially symmetric solution of (0.2) for m = (n —2)/(n +2), n = 3, and a, > 0, satisfying
(@.5) is given on P.22-23 of [DS]]. This existence result is also noted without proof in [GaP].

In [DS] P. Daskalopoulos and N. Sesum also proved thatif m = (n —2)/(n +2),n > 6
and a, B > 0, satisfy (0.5), then the radially symmetric solution of (0.2) satisfies

log |x|

e

log |x|

|x|?

<o(x)'™ <G, as x| — oo (0.10)

for some constants C, > C; > 0.
In this paper we will extend the result of and give a new simple rigorous proof of
the existence of radially symmetric solutions of (0.2) for any n > 0 and «, 8, n, m, satisfying

_2
0<ms£;ﬂ n>3, 0.11)

and

p(n-2)
m

a < and >0 (0.12)

without using the phase plane method. Note that if (0.11)) holds, then (0.12) holds if > 0

and
2

a <
1-m

hold. For
>0 or a=0, (0.13)



we prove that the radially symmetric solution v of ([@.2) converges uniformly on every
compact subset of R” to the solution u of the equation

(n-1)Alogu+au+px-Vu=0,u>0, inR"
(0.14)
u(0) =n
as m — 0. When a, B, m, satisfy (0.9) and
a=28/(1-m)>0, (0.15)
we prove that the radially symmetric solution v of (0.2)) satisfies
IxPo(x)'™"  2(n—1)(n—2—nm) 0.16)

Wos  loglt] Bl —m)

When m = (n —2)/(n + 2) and (@.I5) hold, this result says that the locally conformally flat
gradient steady Yamabe solitons g;; = viidy?, n > 3, has exact decay rate

[ Po) T (n-1)(n - 2)
lim = .

Moo loglx| p

(0.17)

In Theorem 3.2 of J.L.Vazquez by using phase plane method proved that if (0.3) and
(0.9) holds, then the radially symmetric solution v of (0.2) satisfies

lim |x|*"Po(x) = A (0.18)

|x| =00

for some constant A > 0. In this paper we will extend this theorem and use a modification
of the technique of to give a new simple proof of the result that if (0.9) and

7 2—ﬁm > max(a, 0) (0.19)

hold and v is the radially symmetric solution of (0.2), then (0.18) for some constant A > 0.

The plan of the paper is as follows. In section 1 we will prove the existence of radially
symmetric solutions of (0.2) when (0.11) and (0.12) hold. We will also prove the singular
limit of the radially symmetric solution of (0.2) as m — 0. In section 2 we will prove the
exact decay rate (0.16) of the radially symmetric solution of (0.2) when (0.9) and (0.I5)
hold. In section 3 we will prove the decay rate (0.18) of the radially symmetric solution of

(@.2) when (0.9) and (0.19) hold. We let
k= E ifa#0.
o

and we will assume that (0.11) holds for the rest of the paper.



1 Existence and singular limit of solutions

In this section we will prove the existence of radially symmetric solutions of (0.2) and the
singular limit of radially symmetric solutions of (0.2) as m — 0.

Lemma 1.1. Let m, a # 0, B # 0, satisfy (0.11) and

% <n-2. (1.1)

Forany Ry > 0 and 1 > 0, let v be the solution of (Q.6), (0.7), in (0, Ro). Then
v+kro'(r) >0 in[0,Ry) (1.2)

and

{v’(r) <0 in(0,R) ifa>0 (1.3)

v'(r)>0 in(0,Ry) ifa<O.
Proof: Let hy(r) = v(r) + krv'(r). By (L), (n — 2) > m/k. Then by direct computation,

—-2)— ’ —2)— k
Y [ Gt LT A Lrvl—m)hl 02200 S0 in Ry, (14)
r v n-1 r
Let 8 .
f(r) = v(r)" texp (m f po(p)" dp) . (1.5)
0
By (L.49),
("2 £y () =0 Y0 <7 < Ry
= 2N fE(r) >0 YO<r<Rg
= h(r)>0 YO0 <r <Ry
and (L.2) follows. By (0.6), (0.7), and (1.2),
n-11 . ., <0 in(0,Ry) ifa>0
o @)= _“hl{ >0 in(O,R) ifa<0
10"y <0 in(0,Ry) ifa>0
=
@Y >0 in(0,Ry) ifa<0
and follows. |

Theorem 1.2. Let n > 0 and let a, B € R, m, satisfy (0.11)) and (0.12). Then there exists a unique
solution v of (0.6), (0.7), in (0, o0). Moreover the function

wi (r) = rPo(r)* (1.6)

satisfies w}(r) > 0 for all r > 0.



Proof: We will use a modification of the proof of Theorem 1.3 of to prove the theorem.
If a = 0, the constant function v(r) = 7 is the unique solution of ({0.6), (0.7), in (0, o) and
then w(r) = 12 satisfies w'(r) > 0 for any r > 0. Hence we may assume a # 0 in the
proof.

We next note that uniqueness of solution of (0.6), (0.7), in (0, c0) follows by standard
O.D.E. theory. Hence we only need to prove existence of solution of (0.6), (0.7), in (0, o).
Local existence of solution of (0.6), (0.7), in a neighbourhood of the origin follows by
standard O.D.E. theory.

Let (0, Ry) be the maximal interval of existence of solution of (0.6), (0.7). Suppose
Ry < oo. Then there exists a sequence {r;}>,, r; / Rg as i — oo, such that either

i=1/
[0'(r;))] > c0asi— o0 or o(r)\0asi— oo or ov(r)— ocoasi— oo.
By (@12), (L) holds. Hence by Lemma .1}
W, (r) = 2rv™ + 2kr*v* o' = 21 v+ kro') >0 VO <7 < R,. (1.7)

We now divide the proof into two cases.
Casel: a > 0.

By D),
wi(r) = o* > wi(Ro/2) >0 YRy/2 <r <Ry
= 0(r) > (R?wi(Ro/2))¥ VRy/2 <7 < Ry. (1.8)

By Lemma[l.Ilv’ < 0 on (0, Ry). Hence

0<o(r)<o0)=n VYO0<r<R,. (1.9)
By (0.6), (0.7), and (L.9),
Tln—1 1 rnl_l (rn—l(vm)/)/ — —(OCU + ﬁf’v,) in (0’ RO)

= m-Dr"l@") = -m (afo‘ p”_lv(p) dp + ﬁfo‘ p"v'(p) dp) in (0, Ry)

= (n-1)©"/m) =—Ppro(r) + (ni:la) fr p”_lv(p) dp in (0, Ry) (1.10)
0
m=1y,,/ ( |7’l‘8 B al) .
= m-=1Dor)" ' <|B+ - Rov(0) in (0, Ry)
’ ( |1/lﬁ — Oél) 2-m :
= m-HP'" <[+ " Rov(0) in (0, Ry). (1.11)

By ([L.8), (1.9), (L.1I), a contradiction arises. Hence no such sequence {r;}?, exists. Thus
Ry = oo and there exists a unique solution of (0.6), (0.7), in (0, o).
Case 2: a < 0.



By Lemmal[L.1]
0<v'(r) < % in (0, Ry). (1.12)

By (L12) and an argument similar to the proof of case 2 of Theorem 1.3 of [Hs], there exists
a constant C > 0 such that

0<v'(r) < Co(r) YO<r<R,.

Then
v(0) < v(r) < v(0)exp (CRy) VYO <r <Ry (1.13)

and
0 <o'(r) < Cu(0)exp (CRy) VYO <r<Ry. (1.14)

By (L.I3) and (L.14), a contradiction arises. Hence no such sequence {r;}?°, exists. Thus
Ry = oo and there exists a unique solution of (0.6), (0.7), in (0, o). By case 1, case 2, and
(L7) the lemma follows. |

Theorem 1.3. Let n > 0 and m, n, o, B, satisfy (Q.11) and (Q.I3) and let o™ be the radially
symmetric solution of @.2). Then v\™ converges uniformly on every compact subset of R" to the
solution of (0.14) as m — 0.

Proof: 1f & = 0, then v = 1 on R” which satisfies (0.14) and we are done. Hence we may
assume that @ # 0. Then by (0.11) and (0.13) there exists a constant m| € (0, (n — 2)/n)
such that (0.12) holds for any 0 < m < m]. Without loss of generality we may assume that
0 < m < mj,in the proof. Note that v™(x) = v"(|x]) satisfies (0.6) and (0.7) in (0, ). Let
{m;}2, be a sequence such that 0 < m; < m( for all i € Z* and m; — 0 asi — co. We now
divide the proof into two cases.

Case1: a > 0.

By the proof of Theorem [[.2], 0™ satisfies (1.9), (L.10), and (LIT)) in (0, c0). Hence

0<o™(r)<n Vr=0, (1.15)

(n— 1)@ /m)’ = —pro™(r) + (ﬁl:n—;a) j: p" " (p)dp in (0, c0)

oyt -1 -1
m m

- _ P fr (m) nﬁ—af’ 1 f n—1_(m) .
"1, (pydp +—— (], P (p)dp|do  in (0,00), (1.16)

and for any ry > 0,

(n-1) ‘%v(m)(r) Inp — il

)172—er VO<r< To

S([E+

= |Z)(m)(1’1) - U(m)(i’z)l < C17’0|7’1 - 7’2| YO<r,mn<n (117)



where
C1 = (n—1)7' 2B + (Jal/n)) max(1, ).

By LI5) and (L.I7), the sequence {v} is equi-Holder continuous on every compact
subset of [0, c0). By the Ascoli Theorem the sequence {v(’”")}fzl has a subsequence which we

may assume without loss of generality to be the sequence itself that converges uniformly
on every compact subset of [0, o) to some continuous function u as i — oo and u(0) = 1.

By (L1D),

[u(r) — u(0)] < Ciror YO <r<r

u(r) — u(0)
——

= limsup <Crg VYrg>0

r—0

=10,
U8

= lim

asryg — 0.
r—0

Hence u is differentiable at » = 0 with u’(0) = 0. Thus

u@=n, u'0)=0 (1.18)
hold. By (L17),
o™ (r) > v"(0) — (n/2) = n/2 Y0 <r < min(1,1/(2C}))
= u(r)=n/2 YO0<r<min(l,n/(2C;)) asm =m; — oco. (1.19)

By (L.I9) there exists a maximal interval (0, R;) such that u(*) > 0 in (0,R;). Suppose
R; < co. Then u(R;) = 0. For any 0 < 6 < Ry, since

inf u(r):=c¢y>0,
0<r<R; -6

there exists ip € Z* such that
0" (r) 2 c/2 YO <r<Ry—08,i> i (1.20)
By (1.15), (1.20), and the mean value theorem,

o) (rymi — 1

1

— log u(r)| =le* log v™) — log u(r)|

<e“|1og ) — log u(r)| + [e* — 1|| log u(r)|
<e"M|log o) — log u(r)| + le* — 1||log u(r)|
—0 uniformly on [0,R; - 0] asi— o (1.21)

for some ¢&; satistying |&;| < m;M for any i € Z* where M = max(|log 1|, |1log(co/2)). Putting
m = m; in (L16) and letting i — oo, by (.21,

onl_l ( f r o"u(p) dp) do in(0,Ry). (1.22)
0

(11—1)10gu(r):—,8f0 pu(p)dp+(nﬁ—a)f0
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Since the right hand side of (L.22) is a differentiable function of r € [0,R;), u(r) is a
differentiable function of r € [0, R;). Differentiating (1.22) with respect to 7,

M(f) ﬁ—

= —Bru(r) + fp” 'u(p)dp in(0,Ry) (1.23)

n— 1 ’
= (n—l)(r ):—ocf p"u(p)dp - ﬁf p"u'(p)dp in (0, Ry). (1.24)

Since the right hand side of (1.24) is a differentiable function of r € [0, Ry), u'(r)/u(r) is a
differentiable function of r € [0, R;). Differentiating (1.24) with respect to r,

wyY n-1u ST .
(n—l)(;) 2 - )nl( - ) = —au—pr’ in(0,Ry). (1.25)
Hence u is a classical solution of (I.25) and satisfies (I.18). By Theorem 1.3 of and a
rescaling there exists a unique positive solution u of (L.25) in [0, o) that satisfies (1.18). By
uniqueness of solution,

ury=u(r) YVO<r<R; = uR)=uR)>0

and contradiction arises. Hence R; = oo and u(r) > O for all » > 0. By the above argument
the solution u satisfies (1.25) and (.18) and u(r) = u(r) is the a unique positive solution u
of (I.25) in [0, o) that satisfies (I.18). Since the sequence {m;}?°, is arbitrary, v converges
uniformly on every compact subset of R” to the solution u of (0.14) as m — 0.
Case 2: a < 0.

By the proof of Theorem [[.2} v satisfies (.I0) and (T.12) in (0, ). We choose m €
(0, my] such that

% <@t <2 YOo<m<mg (1.26)
and let ry = min((8C217)‘%, (8Con)™!) where C; = (28 + (lal/n))/(n — 1). Let
rm=sup{d’>0:0(r)<2n Y0O<r<ol
By (@.7), 7, > 0. We claim that
rm=1y Y0 <m< my. (1.27)

Suppose ([1.27) does not hold. Then there exists m’ € (0, my] such that r,, < ro. Then by
(L.I0) and (1.26),

dv(m,) —a (M 1-m’
() <— ﬁrv(r)+ — fp” v(p)dp|v(r)™ VO 71 <1y
0
(m”)
‘dvr (| <1 =17 @B + (lal/m)@)*™'r = 8Can’r MO <7 <1y (1.28)
= o) <n+4Cnry <30/2 YO <7 <71y (1.29)



By (I.29) and continuity there exists a constant &; > 0 such that v")(r) < 21in [0, 7, + 61].
This contradicts the choice of r,,. Hence no such m’ exists and (.27) holds. By (L.12) and

(.28),

(m)

d
0< Ur (r) <8ConfPro=n YO <r<ry,0<m<my (1.30)
= n<o"F)<2n YO<r<r,0<m<m. (1.31)
By (L.12) and (L.31),
™ (1) < (1) < 0" (o) (r/ro)H V> 10,0 < m < mg
= 1 <o) <2n(r/ro)8  Vr> 1,0 <m < my. (1.32)

By (1.12), (1.30), (1.31) and ([L.32), for any r; > 0 there exists a constant M,, > 0 such that

dot™
<
0= dr
n <o) <M, YO<r<r,0<m<m.

< <r< <
(<M, YO<r<r,0<m<my (1.33)

By (L.33) the sequence {m;}?°, is equi-Holder continuous on every compact subset of [0, o).
By the Ascoli theorem the sequence {m,};°, has a subsequence which we may assume
without loss of generality to be the sequence itself that converges uniformly to some
continuous function u on every compact subset of [0,00) as i — co. By an argument
similar to the proof of case 1 u is the a unique positive solution u of (L.25) in [0, o) that
satisfies (I.18). Since the sequence {m;}, is arbitrary, v converges uniformly on every

compact subset of R" to the solution u of (0.14) as m — 0 and the theorem follows. O
2p
2 Exact decay rate fora = — >0

In this section we will prove the exact decay rate (0.16)) for the radially symmetric solution

v of (0.2) when (0.9) and (0.15) hold. We let

hr)=v+ —Lp()  and  w(r) = rPo(r) "
Lemma 2.1. Let n > 0, and «a, B, m, satisfies (0.11) and

26

1-m

> a> 0. 2.1)

Let v be the radially symmetric solution of (0.2). Then h(r) > 0 for any r > 0 and w’'(r) > 0 for
any r > 0.

10



Proof: By direct computation,

) n—2—mn v p 1-m
h (7) +( (1 — )7’ (1 m)v + (ﬂ _ 1)7’"0 )h
n-=2-mn v 1 2B >
== P n—l(l— —oz)rv >0 Vr>0. (2.2)

Let f be given by (L.3). Then by 2.2),

n=2—-mn

(;f T-m f(r)h(r)) >0 = ]’1(1’) >0 Vr>0.

Hence
w'(r) = 2ro(r)"h(r) >0 VYr>0

and the lemma follows. O
Let n > 0, and let m, a, B, p1, satisfy (Em) and (0.9). Suppose v is a radially symmetric

solution of (0.2). Lets = logr and v; = wT= 5. Then v; satisfies

2—-(n+2)m 2m(n — 2 — nm) mp mpq

n
mss ms_ m — 2.
(0])ss + - (@)) A= mp v 0, (1—m)( D v =0 (2.3)

in (—o0, 00) and w satisfies
1-2m w?> n-2-n+2)m B pr , 2(n-2-nm)
s = S s — s — 24
@ 1-m w 1-m @ n—1ww n—lw " 1- w (24)

in (—oo, 00) or equivalently

N R — 2 N
w1 (14 P2 Dm0, 1-2m W poww, p1w 2n—2-pmw
1-m r 1-m w n-1r n—17r2 1-m r?
(2.5)
in (0, o0). When p; = 0, 2.3), 2.4), and (2.5) reduce to
" n-2-m+2)m, . 2m(n —2 — nm) mp .
(07 )ss + 1—m (01')s — 1= m) vy +1’l 1 U1 =0 in(-00,0), (2.6)
1-2 2 on-2-(n+2 2(n—2
Wss = 1_;1-%—11 1_(1:71 )mws—nflwws+w in (—oo,00) (2.7)
and
. — 2 .2 2 -
w0+ 140 2-(n+2)m\w, 1 zm-&+ pww, 2(n- nm)g _0 (28
1-m r 1l-m w n-1r 1-m
in (0, c0).

11



Lemma 2.2. Let ) > 0 and let m, a, B, satisfy (0.9) and (Q.I5). Let v be the radially symmetric
solution of (0.2). Then there exist constants C; > 0, C; > 0, C3 > 0, such that

rw,(r)
< > .
o) <C; VvVr=0 (2.9)
and
C <rw(r)<C; Vr>1. (2.10)
Moreover
w(r) > 00  asr — oo, (2.11)

Proof: Note that v1(—0) = v14(—00) = 0 and by Lemma2.1]v; ; > 0 on (-0, 00). Let

_n=2-(n+2)m 2m(n — 2 — nm)

bo 1—m and b] = (1 — m)2 (212)
If by > 0, then by (2.6),
m m m m rwr(r) (1 - m)bl
(@) —bioy <0 = (@) <bf = R Vr>0
and (2.9) follows.
If bo < 0, by m,
(01)ss + bo(0])s — 1o} < 0. (2.13)
Letp = (v]")s/7}". Then by @.13),
@ ()2
o= i = Slholp + b= p? = =(p = (bol/2)” + by + (65/4). (2.14)
1 1
Let 3
b = max (1, (b + B3 + [bol ).
We claim that
p(s) <b, VYseR (2.15)
Suppose (2.15) does not hold. Then there exists sy € R such that p(sy) > b,. Since
ot oom ws  om rw,  2m 1—-m ro(r)
p_mvl_l—mw_l—mw_l—m( 2 v(r))' (2.16)

p(s = —o0) = 2m/(1 —m). Lets; = inf{s" < sy : p(s) > b, Vs" < s <sp}. Then —o0 <51 < s,
p(s) > by for any s € (s1,50), and p(s1) = bp. By 2.14), ps(s) < 0 for any s € (s1,50). Hence
p(so) < p(s1) = ba. Thus contradiction arises and follows. Then by and (2.16),
2.9) holds with C; = by/m.

12



Let

:2(n—2—nm) B

_ _ -1 _ -
; w= o andas = max(bl, 1= 2ml/(1 - k(1)

a
1-m

Since w; > 0 for any s € R, w(s) > w(1) for any s > 1. Then by 2.7),
Wy > a1((1 — aywy)w — as(ws + w?)) Vs > 1. (2.17)
Suppose ws < C) := min(1, (2a,)7!, w(1)/(8a3)) for all s > 1. Then by 2.17),
wee > mw(1)/4>0 Vs> 1. (2.18)

Hence ws; — o0 as s — oo and contradiction arises. Thus there exists s; > 1 such that
ws(s1) > C,. Suppose there exists s, > s; such that ws(s;) < C),. Let s3 = inf{s’ < s, : wy(s) <
C, Vs <5 <s). Thens; < s3 < s, and wy(s3) = C,. Then by the above argument (2.18)
holds in (s3,s). Hence wy(s2) > ws(s3) = C, and contradiction arises. Thus w,(s) > C,
for any s > s;. Since wy(s) > 0 for all s € R, the left hand side of (2.I0) holds with
C, = min(C,, miny,j ws(s)) > 0 and (2.11) holds.

e p BL—m)
-m
M=oy d 6= Eo Ty
By .7) and 2.9),
- (Ibo| — asw)ws + ayw(1 — (a2/3)w;) + (1 — m) " w,[(1 = 2m)C; —asw] if0<m < 1/2
* 7 (Ibo| = agw)ws + a1w(1 — (ay/3)ws) if1/2<m< (n-2)/n.
(2.19)
By (2.10)) there exists a constant sy > 0 such that
w > max((l - 2m)C1/a5, |b0|/a4) Vs > S0- (220)
By (219 and 220),
Wss < amw(l — (az/3)ws) Vs > s. (2.21)
We claim that there exists a constant s} > sy such that
ws < C} = max(5/ay, 2ws(sg)) Vs >s;. (2.22)

Suppose (2.22) does not hold. Then there exists a constant s, > sy such that
ws(sy) > C5.

Let s; = inf{s) < ty < s, : wy(s) > C, Yty < s < s5}. Then sy < s} < s, ws > C] for
any s, < s < s, and wy(s;) = C;. Then by 22I) ws < 0 in (s}, s5). Hence wy(s)) <
ws(s;) = C; and contradiction arises. Thus no such constant s) exists and there exists a
constant s > sy such that 222) holds. Then the right hand side of (2.10) holds with
Cs = max(C}, maxqos; ws(s)) > 0. O
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Theorem 2.3. Let 1 > 0 and let m, a, B, satisfy (0.9) and (Q.15). Let v be the radially symmetric
solution of (0.2). Then (Q.16) holds.

Proof: Let q(r) = rw,(r),
_2(n—=2-nm)(n-—1)

l/‘lo— (1—m)‘8 7 ql:q_aO/
and let by be given by (2.12). By (2.8),
i, Wi
(P ¥y = - /j - S @ = q) ¥r>0 (2.23)
by B w _1-2m ¢
= q,+7q+n_17(q—ao)— T 7o Vr>0

B w 1-2m ¢* by
Za = LI . 2.24
n—qul 1-m rw r r>0 ( )

bo
= Qi+ 7q1 +

Since

() ¥ = 1 (Po(r) M) - 20%0(r) " h(r) = 2r T o(r)" (1 il _2’” : rZ(S))

= limr"g(w(r) 5 =0,

integrating (2.23) over (0, ),

Py = [ ot - o) dp 2.25)
() B (a0 — g(p) d
S q<r>:nfl~f°p rzw(r);qp & (226)

Let {r;}:°, be a sequence of positive numbers such that 7; — oo as i — co. By Lemma 2.2]

there e;<=ist constants C; > 0, C; > 0, C; > 0, such that (2.9) and (2.10) holds. Then by 2.10)
the sequence {r;};°, has a subsequence which we may assume without loss of generality

to be the sequence itself such that g(r;) = g as i — oo for some constant 4., satisfying
C £ 4o <G, (2.27)
Suppose go, # 9. Let r
filr) = exp (% fo P w(p) dp)-

We now divide the proof into three cases.
Casel: (n—2)/(n+2)<m=1/2<(n-2)/n.
Then by < 0. Since m = 1/2, by (2.24),

(" ANRD) <0 = @) <0 = 0<q(r)<ay VYr>0. (2.28)
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Hence g, < a9. Then by (2.26) and (2.28),

[bol

q(r:) = nl‘%lri f P w(p) T (a0 — q(p))dp — 00 asi — oo
0

and contradiction arises. Hence 4., = ay.

Case2: (n—-2)/(n+2)<m<(n—-2)/nand m # 1/2.
Since by < 0, by Lemma[2.2] 2.25), (2.26), (2.27), and the 'Hosiptal rule,
g | e we) @ — a(p) dp

—7 [im

Joo =| }E‘L} q(rl)l = n 2m-1

® w(r;) =

Bl Ibolr™ [ p~Yew(p) i (ag — q(p)) dp + 17 w(ri) 5 (a — q(ry))
n—1|ive 2L (r) 5 w, (1)
1-m
— B i - 157 o) + 00— )
=00,

Hence contraction arises. Thus g« = 4.
Case3: 0 <m < (n—2)/(n+2).
Then by > 0. By (2.24),

e = () ot [ L [T S
RO = AR -y [ o pydp+ T [ ELEI Ly ez
" r pbolg(p)2f,
£ (1) = agho [ p filp) dp + 2 [ A0 g _ .
= > 1. .
= qu(r) ) r> (2.29)
By (2.9), 2.11), and the I'Hosiptal rule,
. h) B rw(r) fi(r) p o _
lim Inf w(r) n-1 lim inf w'(r) z n-1)C lim inf f1(r) = co.

Thus there exists a constant R; > 1 such that

fi(r)

w >1 Vr>R;. (2.30)
By (210) and (230,
r bp—1 2 r
P q(p)"fi(p) b1
dp>C ™ dp > 0 asr — oo. 2.31
f1 w(p) P N P P ( )
On the other hand
lim Je™ ferdp _ im r A = lim ! =0
r—co oo f1(r) = boro=1 f1(r) + B(n — 1)~ 1rbo~lw(r) f1(r) " r5e by + B(n — 1)~ w(r) e
(2.32)

15



By 2.27), @.29), 2.31)), (2.32) and the I'Hosiptal rule,

7 T by—1 2 ]
AW) = aobo [ p" filp)dp + 2 [ 52 dp

lim g4(r;) =lim

imeo V?O fi(r:)
1-2m . g w(r) ™ fi(r)
= m
L= = bor™ fi(r) + Bln = )71 w(r) fi(r)
1-2m . q(ri)*w(r)
= m
1—m ime bow(r;)™t + p(n —1)71
=0

Hence go = a.
By case 1, case 2, and case 3, g(r;) — ag as i — oo. Since the sequence {r;}", is arbitrary,
q(r) = apasr — oo. O

Corollary 2.4. The metric g;; = vdy?, n > 3, of a locally conformally flat gradient steady
Yamabe soliton where v satisfies (0.2) has the exact decay rate (0.17).

By Theorem [1.3] Theorem 2.3} and the result of we have the following result.

Corollary 2.5. Let f > 0,1 > 0,and n > 3. Forany 0 <m < (n—2)/n, let a,, = 26/(1 —m) and
let 0™ be the radially solution of (0.2) with & = . Then

|x|20(m)(x)1—m B

o™ @) 2(n —1)(n —2)

|31|1£>I:o ;lnl—>o loglx| rlnlg}) |l|1£r<}o loglx] B
2p
3 Decay rate for — > max(a, 0)

In this section we will use a modification of the technique of to prove the decay rate
(0.18) of the radially symmetric solution of [0.2) when (0.9) and (0.19) hold.

Theorem 3.1. Let 1 > 0 and let m, n, a, B, satisfies (0.9) and (0.19). Let v be the solution of ([0.2).
Then (0.18) holds for some constant A > 0.

Proof: Let g(r) = r*/Pu(r). Then by Lemma[LT]
q'(r) = (oz/ﬁ)r%_l(v(r) +kro'(r)) >0 Vr>D0. (3.1)

By direct computation,

(q_’)' s n-1-Q2ma/p)
q

=

’ ’\2 1-4(1-m) _, 5
_+m(q)+ﬁ—r i nz2-mb g,

1 _ %
r q q (n-Tyg" B r?
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fo(r) = exp (Lfl pl'%(l"”)q(p)l‘m dp).

n—1

Then £i(r) = (n — 1) pr' 57 q(r) 1= f(r) and

Ba(1)!

p— fl plBt=m) dp) = exp (co(rz_%(l‘m) - 1)) — 00 asr— oo, (3.3)

fo(r) = exp (

where
_ pa()"™
(n—1)2 - 51 —m)

Letc; = g(1)"'q’(1) /(1) and ca = (a/B)(n—2—(m/k)). Multiplying B.2) by r"~1=C"/Bg(ry™ f,(r)
and integrating over (1,7),

Co

rn-1-<zma/ﬁ>q(r)mf2(r).‘; ((:)) e fl @D g0y (o) dp Mr> 1. (34)

By (3.3), (3.4), and the I'Hosiptal rule,

OO N bt [ s alg(oyn f(p) dp
0 T LT g )
n—3—2ma/p) m
<c; lim sup ! F(j)(r) f(1) Vp >0 (3.5)

where

E(r) =(n = p = 1 = ma/p))r" =" Pa(e)" fo(r) + mr" =P a(r)"~q'(r) fo(r)
e gty £(r)
>(n—p—1-Qma/p)r" P> Pa(r)" fo(r) + P E g (r)" £ ()
=(n—p—1-Qma/p)yr" 2@ Bgy" f,(r) + (n — 1)~ g P~ @PMgr) f,(r)  (3.6)

By G.1), 3.5) and (.6),
- q'(r)
0< hr?_i})lp 7P 0
<c, lim sup r 3B ()" fo(r)
e (1= p = 1= By 2CnalDg(ry fo(r) + Bl — 1)~ v IBmg(r) f(r)
<c, lim sup ; 1
oo (11— p =1 = 2)1p 4 B — 1)1 3PP g ()L
=0 V1 <p<3—(a/B)1 —m).
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Hence ,
lim 7] "

roeo q(r)
Letpo =2 - (a/2p)(1 = m). By @19), 1 < po <3 - (a/B)(1 —m). By B.2),

=0 Y1<p<3-—(a/p)(l—m). (3.7)

|log g(r) — logg(1)| < f l(log q)'(p)ldp < C f pPdp<Cy Vr>1. (3.8)
1 1
for some constant C;3 > 0. Hence
e “q(1) < q(r) <e“q(1) Vr>1. (3.9)

By (3.I) and (3.9), q(r) increases to some constant A € R as r — oo and the theorem follows.
O
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