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ALGORITHMIC PROOF OF THE EPSILON CONSTANT

CONJECTURE

WERNER BLEY AND RUBEN DEBEERST

Abstract. In this paper we will algorithmically prove the local and global
epsilon constant conjectures for all fields of absolute degree lower or equal to
15. To this end we will present an efficient algorithm for the computation of
local fundamental classes and address several other problems arising in the
algorithmic proof.

1. Introduction

For a tamely ramified Galois extensions L|K of number fields with Galois group
G, the ring of integers OL has been studied as a projective Z[G]-module. Cassou-
Noguès and Fröhlich defined a root number class WL|K associated to epsilon con-
stants of symplectic characters of G, and it was conjectured by Fröhlich and proved
by Taylor in 1981 that this class is equal to the class of OL in the reduced projective
class group Cl(Z[G]), see [16, 29].

In 1985 Chinburg defined an element Ω(L|K, 2) in Cl(Z[G]) for arbitrary L|K
using cohomological methods and proved that it matches the class of OL for tamely
ramified extensions. His Ω(2)-conjecture, stating the equality of Ω(L|K, 2) and
WL|K in Cl(Z[G]), therefore generalizes Fröhlich’s conjecture to wildly ramified
extensions, cf. [12].

Later, Burns and the first author formulated a conjectural description of ep-
silon constants in the relative algebraic K-group K0(Z[G],R), which implies Chin-
burg’s Ω(2)-conjecture via the canonical surjection K0(Z[G],R) ։ Cl(Z[G]). More
precisely, they define an element EL|K associated to epsilon constants of all char-
acters of G and an element involving algebraic invariants, which project to the
root number class and to Ω(L|K, 2), respectively. The global epsilon constant
conjecture then predicates the vanishing of their difference, which is also denoted
by TΩloc(L|K, 1). Burns and the first author proved their conjecture for tamely
ramified extensions and for abelian extensions of Q with odd conductor. They
also proved that TΩloc(L|K, 1) is an element of the subgroup K0(Z[G],Q)tor of
K0(Z[G],R), see [3, Cor. 6.3].

This conjecture fits into the more general framework of the equivariant Tama-
gawa number conjecture (ETNC) formulated by Burns and Flach in [11]. ETNC
conjecturally describes the leading term of an motivic equivariant L-function with
cohomological invariants. Concerning number fields, Burns and the first author
subsequently formulated a compatibility of the conjectures for the leading terms at
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s = 0 and s = 1 in [3]. An overview of the two conjectures and their compatibility
conjecture is given by Breuning and Burns in [8] and in [9] they recently proved the
equivalence to the more general conjectures from [11] for the conjecture at s = 1
assuming Leopold’s conjecture.

The decomposition K0(Z[G],Q) =
⊕

pK0(Zp[G],Qp) splits TΩloc(L|K, 1) into

p-parts. This has been further refined by Breuning in [7] stating an independent
conjecture for local number fields in the group K0(Zp[G],Qp). He defined an ele-
ment RLw|Kv

∈ K0(Zp[G],Qp) incorporating local epsilon constants and algebraic
invariants associated to a local number field extension Lw|Kv and conjectured the
vanishing of RLw|Kv

. Breuning proved his local epsilon constant conjecture for
tamely ramified extensions, for abelian extensions of Qp with p 6= 2, for all S3-
extensions, and for some dihedral and quaternion extensions.

Moreover, this local conjecture is related to the global conjecture by the equation
TΩloc(L|K, 1)p =

∑
v i

G
Gw

(RLw|Kv
) where v runs through all places of K above p

and iGGw
denotes the induction map on the relative K-group, cf. [7, Thm. 4.1].

Using the result for tame extensions, one concludes that the validity of the global
conjecture for fixed G and K depends upon the validity of the local conjecture for
only finitely many local extensions.

Subsequently, Breuning and the first author presented an algorithm in [2] which
proves the local epsilon constant conjecture for a given local number field extension.
To establish a practical algorithm, there were, however, still some tasks which
needed a more efficient solution. In this paper we will address these problems, give
solutions, and present computational results.

These computations will prove:

Theorem 1. The local epsilon constant conjecture is valid for all wildly ramified,
non-abelian Galois extensions L of Qp with degree [L : Qp] ≤ 15. It is also valid
for abelian extensions L of Q2 with [L : Qp] ≤ 6.

The above relation between TΩloc(L|K, 1)p and RLw|Kv
and the known results

for tame extensions and abelian extensions then imply the following result for global
fields.

Corollary 2. The global epsilon constant conjecture is valid for all Galois exten-
sions L of Q with degree [L : Q] ≤ 15.

The projection onto the class group also proves Chinburg’s conjecture:

Corollary 3. Chinburg’s Ω(2)-conjecture is valid for all Galois extensions L of Q
with degree [L : Q] ≤ 15.

Moreover, the functorial properties from [7, Prop. 3.3], which states that for
number field extensions L|F |K in which L|K is Galois the local conjecture for L|K
implies the local conjecture for L|F , imply the following result:

Corollary 4. The global epsilon constant conjecture and Chinburg’s Ω(2)-conjecture
are valid for global Galois extensions E|F for which E is contained in a Galois ex-
tension L|Q with [L : Q] ≤ 15.

The main contents of this article are as follows. After introducing some notation
we will present an efficient algorithm for the computation of local fundamental
classes in §2. In §3 we will recall the definition of the epsilon constant conjectures
and their most important relations and results. To apply an algorithm of Breuning
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and the first author for the proof of this conjecture (see [2]) we will present heuristics
to represent local extensions using global number fields in §4. Thereafter, §5 gives
an overview of that algorithm and addresses details and problems which either
needed more efficient solutions or which occurred during the implementation of
the algorithm. In §6 we finally summarize all theoretical results that restrict the
problem to the verification of the local epsilon constant conjecture for finitely many
local extensions of Qp. These problems have then been solved by a computer and
we give some details on the computations and their results. Altogether, this will
complete the proof of Theorem 1 and thus also for the above corollaries.

Notation: For a (local or global) number field L we writeOL for its ring of integers.
If L is a local number field with prime ideal P, we write UL for the units (OL)

×

and U
(n)
L for the n-units 1 +Pn.

For a group G and a G-module A we write Hi(G,A) for the n-dimensional
cohomology group as in [24, I§2] and we will use the inhomogeneous description
using n-cochains Cn(G,A) := HomG(G

n, A) and C0(G,A) := A.
Let L|K denote a local Galois extension with Galois group G. We will also

use the notation of class formations from [27, XI§2] and let uL|K denote the local
fundamental class of L|K as defined in [27, XIII§3f.], i.e. the element which is

mapped to 1
[L:K]+Z by the canonical isomorphism invL|K : H2(G,L×)

≃
−→ 1

[L:K]Z+

Z, which is called the local invariant map.1

2. An efficient algorithm to compute the local fundamental class

Throughout this section L|K will denote a local Galois extension of Qp with
Galois group G = Gal(L|K). Our goal is to find the local fundamental class repre-
sented as a cocycle in H2(G,L×).

A direct method to compute the image of the local fundamental class under

H2(G,L×) → H2(G,L×/U
(k)
L ) for any k ≥ 0 has been described in [2, §2.4]. Let

N be an unramified extension of K with cyclic Galois group C and of degree
[N : K] = [L : K] and let Γ denote the Galois group of LN |K. Then there is a
commutative diagram

Ĥ2(H,N×)

Ĥ2(G,L×) Ĥ2(Γ, (LN)×)

Ĥ2(G,L×/U
(k)
L ) Ĥ2(Γ, (LN)×/U

(k)
LN)

inf

inf

inf

in which the bottom map is injective by [2, Lem. 2.5]. The authors then deduce an
algorithm following the following steps:

(1) Find the fundamental class in H2(C,N×).
(2) Compute the image under the composition

H2(C,N×)
inf
−֒→ H2(Γ, (LN)×) → H2(Γ, (LN)×/U

(k)
LN).

1Similar definitions can be found in [24, (3.1.3), (7.1.4)].
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(3) Find the preimage under the map

H2(G,L×/U
(k)
L )

inf
−֒→ H2(Γ, (LN)×/U

(k)
LN).

If ϕ denotes the Frobenius automorphism in C = 〈ϕ〉 and π ∈ K is a uniformizing
element, the fundamental class in H2(C,N×) is given by (see [26, Chp. 7, (30.1)])

γ(ϕi, ϕj) =

{
1 if i+ j < [N : K],

π if i+ j ≥ [N : K]

Since the groups (LN)×/U
(k)
LN and L×/U

(k)
L are finitely generated, one can compute

their cohomology groups using linear algebra [18]. However, this method turns out
to be ineffective even for number fields of small degree.

The basis of a new algorithm to compute the local fundamental class is the
theory from Serre [27] and especially exercise 2 from chapter XIII, §5. We recall
the results from this exercise and show how to turn it into an efficient algorithm.

Let E be the maximal unramified subextension of L|K and d := [E : K]. Denote

the maximal unramified extension of K by K̃ and the Frobenius automorphism of

K̃|K by ϕ, such that its Galois group is Gal(K̃|K) = 〈ϕ〉 and Gal(K̃|E) = 〈ϕd〉.

The maximal unramified extension of L is L̃ = LK̃ and the Galois group of
L̃|K is given by Gal(L̃|K) = {(σ, τ) ∈ G × Gal(K̃|K)

∣∣σ|E = τ |E}. We consider

Lnr := K̃ ⊗K L, for which we have the following representation:

Lemma 5. (i) The map Lnr = K̃ ⊗K L →
∏d−1

i=0 L̃ defined by sending elements

a⊗ b to
(
ab, ϕ(a)b, . . . , ϕd−1(a)b

)
is an isomorphism.

(ii) The Galois action of 〈ϕ〉 × G on elements y = (y0, y1, . . . , yd−1) ∈
∏d−1

i=0 L̃
induced by this isomorphism is given by

(ϕ× 1)(y) = (y1, y2, . . . , ϕ
d(y0))

(ϕj × σ)(y) = (σ̂(y0), σ̂(y1), . . . , σ̂(yd−1))

and (1× σ)(y) = (ϕ−j × 1)(σ̂(y0), σ̂(y1), . . . , σ̂(yd−1))

for σ ∈ G and where σ̂ is any element of G
L̃|K satisfying σ̂|L = σ and σ̂|

K̃
= ϕj.

Proof. Direct computation, cf. [27, XIII §5, Ex. 2]. �

Let L̂ be the completion of the maximal unramified extension L̃ of L.

Lemma 6. For every c ∈ U
L̂
there exists x ∈ L̂

×
such that xϕ

d−1 = c.

Proof. This is [23, V, Lem. 2.1] or [27, XIII, Prop. 15] applied to the totally ramified

extension L|E with ϕd generating Gal(K̃|E). Since this will be an essential part of
the algorithm, we sketch the constructive proof of [23].

Denote the residue class field of L̂ by κ, the cardinality of the residue class field
of E by q and let φ = ϕd. Since κ is algebraically closed, one finds a solution to

xφ = xq = xc in κ and one can write c = xφ−1
1 a1 with x1 ∈ U

L̂
and a1 ∈ U

(1)

L̂
.

Similarly, one finds x2 ∈ U
(1)

L̂
and a2 ∈ U

(2)

L̂
such that a1 = xφ−1

2 a2. Proceeding

this way one has

c = (x1x2 · · ·xn)
φ−1an, x1 ∈ U

L̂
, xi ∈ U

(i−1)

L̂
, an ∈ U

(n)

L̂



ALGORITHMIC PROOF OF THE EPSILON CONSTANT CONJECTURE 5

and passing to the limit solves the equation in L̂
×
. �

This fact can be generalized to our case. Let L̂nr be the completion of Lnr and

w : L̂nr → Z the sum of the valuations.

Lemma 7. For every c ∈ L̂
×

nr with w(c) = 0 there exists x ∈ L̂
×

nr such that
xϕ−1 = c.

Proof. If c = (c0, . . . cd−1) ∈
∏d−1

i=0 L̂
×

and w(c) = 0, then
∏d−1

i=0 ci ∈ L̂
×

has

valuation 0 and there exists y ∈ L̂
×

for which yϕ
d−1 =

∏
ci by Lemma 6. Then

the element x = (y, yc0, yc0c1, . . . , yc0 · · · cd−2) satisfies

xϕ−1 =
(yc0, yc0c1, . . . , yc0 · · · cd−2, ϕ

d(y))

(y, yc0, yc0c1, . . . , yc0 · · · cd−2)
= (c0, c1, . . . , cd−1) = c

since ϕd(y) = y
∏d−1

i=0 ci. Hence, x solves the equation xϕ−1 = c. �

We prepare or main result by the following lemma.

Lemma 8. (i) ker(w) = {yϕ−1 | y ∈ L̂
×

nr},
(ii) ker(ϕ− 1) = L×, L× being diagonally embedded in L×

nr, and

(iii) L̂
×

nr is a cohomologically trivial G-module.

Proof. [27, XIII §5, Ex. 2(a)]. �

We denote V := ker(w) and from the above Lemma we get the exact sequences

0 −→ V −→ L̂
×

nr
w

−−−→ Z −→ 0(1)

and 0 −→ L× −→ L̂
×

nr

ϕ−1
−−−→ V −→ 0.(2)

Since L×
nr is cohomologically trivial, the connecting homomorphisms of their long

exact cohomology sequences provide isomorphisms δ1 : H0(G,Z) → H1(G, V ),
δ2 : H1(G, V ) → H2(G,L×) and we consider its composition

(3) ΦL|K : Ĥ0(G,Z)
≃
−→ Ĥ2(G,L×).

Its inverse Φ−1
L|K directly defines an isomorphism

invL|K : Ĥ2(G,L×) ≃ Ĥ0(G,Z)
· 1
[L:K]
−−−→ 1

[L:K]Z/Z

which satisfies the properties of an invariant map.

Proposition 9. (i) The elements uL|K := ΦL|K(1 + [L : K]Z) are fundamen-

tal classes for the class formation with respect to the isomorphism inv, i.e.
invL|K(uL|K) = 1

[L:K] + Z.

(ii) The element uL|K is the inverse of the local fundamental class uL|K.

Proof. This is [27, XIII §5, Ex. 2(c) and (d)].
Part (i) can be proved by verifying the axioms of a class formation. Then

two elements uL|K and uL′|K with [L′ : K] = [L : K] have the same invariant

invL|K(vL|K) = invL′|K(vL′|K) and it is sufficient to prove (ii) for unramified ex-
tensions.
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For the unramified case one can make a direct computation of ΦL|K(1+[L : K]Z)
by applying the connecting homomorphisms δ1 and δ2 as follows. For δ1 we consider
the commutative diagram

(4)

L̂
×

nr Z

= =

0 C0(G, V ) C0(G, L̂
×

nr) C0(G,Z) 0

0 C1(G, V ) C1(G, L̂
×

nr) C1(G,Z) 0

w

w∗

∂1

from the long exact cohomology sequence of (1), where w∗ is the map on the group

of cochains induced by w. If π is any uniformizing element of L̂
×
, the element

a = (1, . . . , 1, π) ∈ L̂
×

nr = C0(G, L̂
×

nr) is a preimage of 1 via w. Applying ∂1 yields

α ∈ C1(G, L̂
×

nr), which is defined by

α(σ) :=
σ(a)

a
=





(
1, . . . , 1, σ̂(π)

π

)
, if σ̂|

K̃
= 1

(
1, . . . , 1, σ̂(π), 1, . . . , 1, 1

π︸ ︷︷ ︸
j components

)
, if σ̂|

K̃
= ϕ−j , 1 ≤ j ≤ d− 1

The commutativity of the diagram then implies α ∈ C1(G, V ).
For the connecting homomorphism δ2 we consider the commutative diagram

(5)

0 C1(G,L×) C1(G, L̂
×

nr) C1(G, V ) 0

0 C2(G,L×) C2(G, L̂
×

nr) C2(G, V ) 0

ϕ − 1

∂2

which arises from the cohomology sequence of (2). To find a preimage of α via

ϕ− 1, we need elements in L̂
×

nr which are mapped to σ(a)
a

by ϕ − 1. By Lemma 7
these preimages are given by

(6) β(σ) :=





(uσ, . . . , uσ) if σ̂|
K̃

= 1

(uσ, . . . , uσ, uσσ̂(π), . . . , uσσ̂(π)︸ ︷︷ ︸
j components

) if σ̂|
K̃

= ϕ−j , 1 ≤ j ≤ d− 1

where uσ solves uϕ
d−1

σ = σ̂(π)
π

. The commutativity of the diagram again implies
that the cocycle

(7) γ(σ, τ) := (∂2β)(σ, τ) =
σ(β(τ))β(σ)

β(στ)

has values in L× and we obtain ūL|K = ΦL|K(1 + [L : K]Z) = γ ∈ Ĥ2(G,L×).
If L|K is unramified, one can choose π to be an uniformizing element of K and

set σ = ϕi, τ = ϕj . Then σ̂(π)
π

= 1 for all σ̂ ∈ Gal(L̃|K) and every uσ ∈ L× solves

uϕ
n−1

σ = σ̂(π)
π

. If one chooses uσ = 1
π
for σ 6= 1 and uσ = 1, one can easily check

that uL|K(σ, τ) = π, if i + j < d and uL|K(σ, τ) = 1 otherwise. Hence, uL|K is the
inverse of the local fundamental class, cf. [2, §2.4]. A detailed proof can be found
in the second author’s dissertation [14]. �
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Remark 10. From the construction above one directly obtains an algorithm. The

uniformizing element π of L̂
×
in the proof above can be chosen to be an uniformiz-

ing element of L. Then the elements uσ can be computed by successively applying
the constructive steps of the proof of Lemma 6. This involves solving equations in

the algebraically closed residue class field of L̂
×
. However, we cannot do compu-

tations in L̂
×

directly, but rather work in an appropriate subfield, starting with
L. Whenever we cannot solve one of these equations in the residue class field of
L, we generate an appropriate algebraic extension and work there from then on.
In worst case, this means that we have to generate an algebraic extension in every
step. And, hence, the extensions involved in the computations get very large.

To avoid this problem in the algorithm below, we construct a special uniformizing

element π in an unramified extension F of L such that NF |L(
σ̂(π)
π

) = 1. One can
then prove that the elements uσ can be constructed in F without any other algebraic
extension.

Algorithm 11 (Local fundamental class).

Input: An extension L|K over Qp with Galois group G and a precision k ∈ N.

Output: The local fundamental class uL|K ∈ C2(G,L×) up to the finite precision

k, i.e. its image in H2(G,L×/U
(k)
L ).

1 Let πK and πL be uniformizing elements of K and L, e the ramification degree
and d the inertia degree of L|K. Let F be the unramified extension of L of
degree e, Lnr =

∏
d F and let E be the maximal unramified extension of K in

L with Frobenius automorphism ϕ.

2 Solve the norm equation NF |L(v) = u with u = πKπ
−e
L ∈ UL and v ∈ UF .

Define π = vπL.

3 For each σ ∈ G, let σ̂ ∈ Gal(F |K) be defined by σ̂|L = σ and σ̂|E = ϕj , 0 ≤ j ≤

d− 1. Then compute uσ ∈ F such that uϕ
d−1

σ = σ̂(π)
π

mod U
(k+2)
F .

4 Define β ∈ C1(G,L×
nr) and γ ∈ C2(G,L×) by (6) and (7).

Return: γ−1.

Proof of correctness. Step 2: Since u has valuation 0 and F |L is unramified, there
exists an element v ∈ F such that its norm is equal to u. Then π is a uniformizing
element of F and has norm NF |L(π) = uπe

L = πK .

Step 3: The elements σ̂(π)
π

have norm

NF |L

(
σ̂(π)

π

)
=

1

πK

e∏

i=1

ϕi
(
σ̂(π)

)
=

1

πK
σ̂
( e∏

i=1

ϕi(π)
)
= 1.

Let H = Gal(L|F ). Since H−1(H,UF ) = NH
UF /IHUF = 1 for the unramified

extension F |L, there exists x ∈ F with xϕ−1 = σ(π)
π

. By successively applying the
steps in the constructive proof of [23, V, Lem. 2.1] (see Lemma 6) one can construct

an element x ∈ UF with xϕ−1 ≡ σ(π)
π

mod U
(k+2)
F .

Step 4: The direct computation in the proof of Proposition 9 shows that the
cocycle γ from (7) represents the inverse of the local fundamental class.

If we compute the elements uσ modulo U
(k+2)
F , we also know the images of β to

the same precision. To compute γ−1 we divide by σ(β(τ)) and β(σ) and each of
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these operations can reduce the precision by one. The other operations involved
in ∂2 (addition, multiplication and application of σ) do not reduce the precision.

Hence, we know the images of γ modulo U
(k)
F . �

This algorithm has been implemented in Magma [5] and its source code is bun-
dled with the second author’s dissertation [14]. For a small example were the Galois
group is G = S3, this algorithm computes the local fundamental class within a few
seconds where the direct linear algebra method took more than an hour.

3. Epsilon constant conjectures

We recall the statements of the global and local epsilon constant conjectures from
[3] and [7] and some important related results. These conjectures are formulated
as equations in relative K-groups for group rings.

Let R be a ring, E an extension of Quot(R) and G a group. For a ring A we
write K0(A) for the Grothendieck group of finitely generated projective A-modules
and K1(A) for the abelianization of the infinite general linear group Gl(A). Then
there is an exact sequence

(8) K1(R[G]) → K1(E[G])
∂1
R[G],E

−−−−−→ K0(R[G], E) → K0(R[G]) → K0(E[G])

with the relative algebraic K-group K0(R[G], E) defined in terms of generators
and relations as in [28, p. 215]. An overview of these K-groups is given in [6].
We write Z(E[G]) for the center of E[G] and we will use the reduced norm map

nr : K1(E[G]) → Z(E[G])×, which is injective in our cases, and the map ∂̂1R[G],E :=

∂1R[G],E ◦ nr−1 from im(nr) to K0(R[G], E).

The two cases we are interested in are the following. For R = Zp and E an
extension of Qp the norm map is an isomorphism (e.g. see [6, Prop. 2.2]) and we

obtain a map ∂̂1G,E := ∂̂1
Zp[G],E = ∂1

Zp[G],E ◦ nr−1 from Z(E[G])× to K0(Zp[G], E).

For R = Z, E = R the norm map is not surjective but the decomposition

(9) K0(Z[G],Q) ≃
∐

p

K0(Zp[G],Qp),

and the Weak Approximation Theorem still allow us to define a map ∂̂1G,R from

Z(R[G])× to K0(Z[G],R) by ∂̂1G,R(x) := ∂̂1
Z[G],R(λx) −

∑
p ∂̂

1
Zp[G],Qp

(λ) where the

summation ranges over all primes and λ ∈ Z(Q[G])× ⊆ Z(Qp[G])
× must be chosen

such that λx ∈ im(nr). One can show that this definition does not depend on the
choice of λ and provides a well-defined unique map from Z(R[G]) to K0(Z[G],R),
cf. [3, §3.1] or [8, Lem. 2.2].

Altogether, we have maps ∂1G,E : Z(E[G])× → K0(Zp[G], E) for E|Qp, ∂̂
1
G,Q :

Z(Q[G])× → K0(Z[G],Q) and ∂̂1G,R : Z(R[G])× → K0(Z[G],R).

3.1. The global epsilon constant conjecture. The global epsilon constant con-
jecture is formulated in the relative K-group K0(Z[G],R). For a number field
extension L|K it describes a relation between epsilon factors from the functional
equation of the Artin L-function and algebraic invariants related to L|K. We
roughly recall its formulation of Burns and the first author and refer to [3] for more
details.
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The completion Λ(L|K,χ, s) of the Artin L-function satisfies the functional equa-
tion

(10) Λ(L|K,χ, s) = ε(L|K,χ, s) Λ(L|K, χ̄, 1− s)

with epsilon factors ε(L|K,χ, s) := W (χ)A(χ)
1
2−s and W (χ), A(χ) as defined in

[16, Chp. I, (5.22)]. The equivariant epsilon function is defined by ε(L|K, s) :=
(ε(L|K,χ, s))χ∈Irr(G) and its value ǫL|K := ε(L|K, 0) ∈ Z(R[G])× is called the

equivariant global epsilon constant. We can define a corresponding element in the

relative K-group K0(Z[G],R) by EL|K := ∂̂1G,R(ǫL|K) and also refer to it as the
equivariant global epsilon constant.

Let S be a finite set of places of K, including all infinite places and all places
which ramify in L. For each v ∈ S with v|p we fix a place w of L above v and choose
a full projective Zp[Gw]-sublattice Lw of OLw

upon which the v-adic exponential
map is well-defined and injective. For each place w which does not lie above some
v ∈ S we set Lw = OLw

and we define L ⊆ OL by its p-adic completions

Lp =
∏

v|p

Lw ⊗Zp[Gw] Zp[G] ⊆ Lp := L⊗Q Qp.

We define the G-equivariant discriminant by δL|K(L ) :=[L , πL, HL] ∈ K0(Z[G],R)
where HL =

∏
σ∈Σ(L) Z and πL is induced by ρL : L ⊗Q C → HL ⊗Z C, l ⊗ z 7→

(σ(l)z)σ∈Σ(L) as in [3, §3.2]. Hereby, Σ(L) denotes all embeddings of L into C.
Let X ⊆ OLw

be a cohomologically trivial submodule, e.g. X = expw(Lw).
Then H2(Gw, L

×
w) ≃ H2(Gw , L

×
w/X) and by [24, Th. 2.2.10].there is an isomor-

phism H2(Gw, L
×
w/X) ≃ Ext2Gw

(Z, L×
w/X). For a cocycle γ ∈ H2(Gw, L

×
w/X) one

can apply the construction from [24, p. 115] to obtain a 2-extension 0 → L×
w/X →

C(γ) → Z[G] → Z → 0 representing γ in Ext2Gw
(Z, L×

w/X). Then the perfect com-

plex
[
C(γ) → Z[G]

]
also represents γ and has cohomology L×

w/X in degree 0 and
Z in degree 1. We write Ew(X) for the refined Euler characteristic in K0(Z[G],Q)
of this complex and the trivialization induced by the valuation w : L×

w/X⊗Q ≃ Q,
as it was defined by Burns in [10, §2]. A triple representing Ew(X) in K0(Z[G],Q)
is given in [3, Lem. 3.7], for a construction in our situation see also [3, §3.3].

Furthermore, let mw ∈ Z(Q[Gw])
× be the element defined in [3, § 4.1] which is

also called the correction term. It is defined as follows. For a subgroup H ⊆ G
and x ∈ Z(Q[H ]) we let ∗x ∈ Z(Q[H ])× denote the invertible element which on
the Wedderburn decomposition Z(Q[H ]) =

∏r
i=1 Fi for suitable extensions Fi|Q is

given by x = (xi)i=1...r 7→ (∗xi) with ∗xi = 1 if xi = 0 and ∗xi = xi otherwise.
Let ϕw denote a lift of the Frobenius automorphism in Gw/Iw, then the correction
term is defined by

(11) mw =
∗(|Gw/Iw|eGw

) · ∗((1 − ϕwNv
−1)eIw)

∗((1 − ϕ−1
w )eIw )

∈ Z(Q[Gw])
×.

Finally, we define elements

IG(v,L ) := iGGw

(
∂̂1Gw,Qp

(mw)− Ew(expv(Lw))
)

and TΩloc(L|K, 1) := EL|K − δL|K(L )−
∑

v∈S IG(v,L )

in K0(Z[G],R). One can show that TΩloc(L|K, 1) is independent of the choices of
S or L (cf. [3, Rem. 4.2]) and we state the conjecture as follows.
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Conjecture 12 (Global epsilon constant conjecture). For every finite Galois ex-
tension L|K of number fields the element TΩloc(L|K, 1) is zero in K0(Z[G],R). We
denote this conjecture by EPS(L|K).

This conjecture has been proved for tamely ramified extensions, for abelian ex-
tensions L|Q, for S3-extensions, and for some dihedral and quaternion extensions,
cf. [3, 7, 11]. Moreover, the global conjecture EPS(L|K) is known to be valid
modulo the subgroup K0(Z[G],Q)tor, i.e. TΩ

loc(L|K, 1) ∈ K0(Z[G],Q)tor (see [3,
Cor. 6.3]). We can therefore write EPSp(L|K) for the projection of the conjecture
onto K0(Zp[G],Qp) via the decomposition (9) of K0(Z[G],Q). For this p-part of
the global conjecture we get the following relation:

Lemma 13. The global conjecture EPS(L|K) is valid if and only if its p-part
EPSp(L|K) is valid for all primes p.

Proof. [3, Thm. 4.6]. �

3.2. The local epsilon constant conjecture. We will now describe a related
conjecture for local Galois extensions Lw|Kv over Qp, which was formulated by
Breuning in [7], and we will see how it refines the global conjectures EPS(L|K)
and EPSp(L|K). The equivariant global epsilon function of L|K can be written as
a product of equivariant local epsilon functions related to its completions Lw|Kv.
Their value at zero is called the equivariant local epsilon constant and the local
conjecture describes it in terms of algebraic elements of the extension Lw|Kv. Here
we refer to [7] for details.

Let Cp denote the completion of an algebraic closure of Qp. For every character

χ of Gw = Gal(Lw|Kv) one has an induced character i
Qp

Kv
χ of Aut(Cp|Qp). The

local Galois Gauss sum from [22, Chp. II, § 4] of this induced character will be
denoted by τLw|Kv

(χ) ∈ C and we set

τLw|Kv
:=

(
τLw|Kv

(χ)
)
χ∈IrrC(Gw)

∈ Z(C[Gw])
×.

The choice of an embedding ι : C→ Cp induces a map Z(C[Gw])
×→ Z(Cp[Gw])

×

and we obtain the equivariant local epsilon constant

TLw|Kv
:= ∂̂1Gw,Cp

(ι(τLw |Kv
)) ∈ K0(Zp[Gw],Cp).

As in the global case one chooses a full projective Zp[Gw]-sublattice Lw of OLw

upon which the exponential function is well-defined. Similarly one defines the
equivariant local discriminant inK0(Zp[Gw],Cp) by δLw|Kv

(Lw) = [Lw, ρLw
, HLw

],
where HLw

=
⊕

σ∈Σ(Lw) Zp and ρLw
is the isomorphism Lw⊗Zp

Cp → HLw
⊗Zp

Cp,

l ⊗ z 7→ (σ(l)z)σ∈Σ(Lw). Hereby Σ(Lw) denotes the set of embeddings Lw →֒ Cp.

By the surjectivity of the homomorphism ∂1 : K1(Cp[Gw]) → K0(Zp[Gw],Cp) the
equivariant local discriminant is represented by an element dLw|Kv

∈ Cp[Gw]
× ⊆

K1(Cp[Gw]). This element will be used later and we recall its explicit formula from
[2, § 4.2.5] in (13).

We write Ew(Lw)p for the projection of the Euler characteristic Ew(Lw) onto
K0(Zp[Gw],Qp) by (9). The difference Ew(Lw)p−δLw|Kv

(Lw), which is denoted by
CLw|Kv

in [7], is independent of Lw by [7, Prop. 2.6] and is called the cohomological
term of Lw|Kv.

To state the local conjecture we also need the unramified term ULw|Kv
. It is a

unique element in K0(Zp[Gw],Cp) which is mapped to zero by the scalar extension
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map K0(Zp[Gw],Qp) → K0(O
t
p[Gw],Cp) where Ot

p is the ring of integers of the
maximal tamely ramified extension of Qp in Cp. The proof of the existence in [7,
Prop. 2.12] includes an explicit formula for a representative uLw|Kv

∈ Cp[Gw]
× ⊆

K1(Cp[Gw]) with ∂
1(uLw|Kv

) = ULw|Kv
, which we will recall in (14).

Conjecture 14 (Local epsilon constant conjecture). For every Galois extension
Lw|Kv of local fields over Qp the element

RLw|Kv
:= TLw|Kv

+ CLw |Kv
+ ULw|Kv

− ∂̂1Gw,Cp
(mw)

is zero in K0(Zp[Gw],Cp). We denote this conjecture by EPSloc(Lw|Kv).

This conjecture has been proved for tamely ramified extensions, for abelian ex-
tensions M |Qp with p 6= 2, for S3-extensions of Q3, and for some other special
cases [7]. Actually some of the results on the global conjecture were obtained by
the local conjecture which can be regarded as a refinement of the p-part of the
global conjecture.

Theorem 15 (Local-global principle). One has the equality

TΩloc(L|K, 1)p =
∑

v|p

iGGw
(RLw|Kv

)

in K0(Zp[G],Qp) and one can deduce:

(i) EPSloc(E|F ) for all E|F |Qp ⇒ EPSp(L|K) for all L|K|Q,

(ii) if p 6= 2: EPSp(L|K) for all L|K|Q ⇒ EPSloc(E|F ) for all E|F |Qp, and

(iii) for fixed L|K|Q and p: EPSloc(Lw|Kv) for all w|v|p ⇒ EPSp(L|K).

Proof. [7, Thm. 4.1 and Thm. 4.3]. �

As a consequence, for p 6= 2, parts (i) and (ii) imply the equivalence of the local
conjecture for extensions of Qp and the p-part of the global conjecture.

3.3. An algorithm. An important result for local and global extensions is the
functorial property.

Proposition 16 (Functorial property). For a Galois extension L|K of number
fields with intermediate field F |K and a local Galois extension M |N over Qp with
intermediate field E|K one has:

(i) EPS(L|K) ⇒ EPS(L|F ) and EPS(L|K) ⇒ EPS(F |K) if F |K is Galois.

(ii) EPSloc(M |N) ⇒ EPSloc(M |E) and EPSloc(M |N) ⇒ EPSloc(E|K) if E|K is
Galois.

Proof. [3, Thm. 6.1] and [7, Prop. 4.25]. �

Together with known results one obtains the following:

Corollary 17. Let n ∈ N be a fixed integer. Then the local epsilon constant
conjecture EPSloc(M |Qp) for all extensionsM |Qp of degree [M : Qp] ≤ n with p ≤ n
implies the global epsilon constant conjecture EPS(F |K) for all Galois extensions
F |K where F can be embeded into a Galois extension L|Q of degree [L : Q] ≤ n.
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Proof. This can be proved as follows (all extensions below are assumed to be Ga-
lois):

EPSloc(M |Qp) ∀[M : Qp] ≤ n, p ≤ n

⇒ EPSloc(M |Qp) ∀[M : Qp] ≤ n, ∀p (result (D) for tame extensions)

⇒ EPSp(L|Q) ∀[L : Q] ≤ n, ∀p (by Theorem 15)

⇒ EPS(L|Q) ∀[L : Q] ≤ n (by decomposition (9))

⇒ EPS(F |K) ∀F ⊆ L, [L : Q] ≤ n (by Proposition 16)
�

It is well-known that for fixed p and n there are just finitely many Galois exten-
sions M |Qp with degree [M : Qp] = n. So the local conjecture for finitely many
extensions imply the global conjecture for an infinite number of extensions. And
those finite number of local extensions can be handled algorithmically:

(1) For a finite integer n, compute all local Galois extensions of Qp up to degree
n, with p ≤ n. This can be done using an algorithm by Pauli and Roblot
[25] which performs well enough up to degree 15. However, we were not
able to compute all local extensions of degree 16 of Q2.

(2) For every local extension M |Qp, find a global Galois extension L|K of
number fields with places w|v, such that Lw =M , Kv = Qp and [L : K] =
[M : Qp]. Such an extensions L|K is called global representation for M |Qp

and is needed to do exact computations in step (3).
(3) Apply the algorithm by Breuning and the first author [2] to prove the local

epsilon constant conjecture of these extensions.

In the next section we will discuss how step 2 can be handled. Afterwards we
recall the algorithm from [2] and present algorithmic results and their consequences.

4. Global representations of local Galois extensions

To do exact computations for a fixed Galois extension M |Qp in the algorithm
of Breuning and the first author, we will need a global Galois extension L|K of
number fields with corresponding primes P|p for which Kp = Qp and LP = M .
Such an extension L|K will be called global representation forM |Qp and is denoted
by (L,P)|(K, p).

The proof of the existence of such a global representation involves the Galois
closure of a number field [2, Lem. 2.1 and 2.2], but for computational reasons we
need a representation which has small degree over Q, or even better with K = Q.

Henniart shows in [17] that a global representation L|K for the local extension
M |Qp exists with K = Q if p 6= 2. And if p = 2, there exists a global representation
with K quadratic over Q. Unfortunately, it is not clear how to find these small
representations algorithmically. We therefore present some heuristics.

4.1. Search database of Klüners and Malle. The database of Klüners and
Malle [21] contains polynomials generating Galois extensions of Q for all subgroups
G of permutation groups Sn up to degree n = 15. In particular, the database
contains polynomials for all Galois groups of order n ≤ 15. Among those one will
often find a polynomial generating a global representation for M , if [M : Qp] ≤ 15.
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4.2. Generic polynomials. Here we consider polynomials f ∈ K(t1, . . . , tn)[x]
with arbitrary indeterminates ti over a field K. It is said to be generic for a group
G, if the splitting field L of f is a Galois extension ofK(t1, . . . , tn) with groupG and,
moreover, all extensions of K(t1, . . . , tn) with group G are given by a polynomial
f of this form. For specializations of values t1, . . . tn ∈ Q (possibly with certain
restrictions) and K = Q one will get a Galois extension of Q with this group G and
randomly testing different values will also return a global representation for M .

The book [19] by Jensen et. al. contains generic polynomials (or methods to
construct them) for a lot of groups. In particular, it contains polynomials for all
non-abelian groups of order ≤ 15, except for the generalized quaternion group Q12

of order 12. However, there do not exist generic polynomials for all groups. The
smallest group for which the non-existence is proved is the cyclic group of order
eight [19, § 2.6].

4.3. Class field theory. As a last heuristic, we will use class field theory to con-
struct abelian extensions with prescribed ramification.2 For a field extensions K
of Q, there is a one-to-one correspondence between abelian extensions L|K and
subgroups of the idèle class group CK and each of those extensions L|K has Galois
group Gal(L|K) ≃ CK/NL|K CL, cf. [23, Chp. VI, § 6].

For a modulus m =
∏

pnp — where p runs through all (finite and infinite)
places and np ∈ N ∪ {0} and np ∈ {0, 1} for p|∞ — one studies in particu-
lar the ray class field Km|K. It is the extension corresponding to the subgroup(∏

p U
(np)
p

)
K×/K× ⊆ CK where U

(0)
p = O×

Kp
and U

(np)
p = 1 + pn for finite p,

U
(0)
p = R× and U

(1)
p = R>0 for real p, and U

(np)
p = C× for complex p. This abelian

extension of K can be constructed using algorithms described by Cohen in [13,
Chp. 4]. A discussion of algorithms implemented in Magma is given by Fieker
in [15].

Given an extension L|K one defines the conductor f to be the greatest common
divisor of all moduli m for which L ⊆ Km. For this conductor one can prove that
p|f if and only if p is ramified in L|K and, moreover, p2|f if and only if p is wildly
ramified in L|K, cf. [15, § 2.4, p. 44].

One can therefore possibly find abelian extensions of K with prescribed ram-
ification at certain places by choosing an appropriate modulus, constructing the
corresponding ray class field, and computing suitable subfields of the requested
degree.

4.4. Global representations for extensions up to degree 15. Let M |Qp be
a Galois extension of local fields with group G. In the algorithm of Breuning the
first author we will also have to consider unramified extension Nf of Qp of degree
f = exp(Gab), where f denotes the exponent of the abelianization Gab of G. Since
the local conjecture is known to be valid for tamely ramified extensions and abelian
extensions of Qp, p 6= 2, we will discuss the performance of the heuristic methods
in the following cases:

(a) wildly ramified extensions M of Qp with non-abelian Galois group G,
(b) wildly ramified extensions M of Q2, with abelian Galois group G, and
(c) unramified extensions of Qp of degree f = exp(Gab) in each of the two

situations above.

2Thanks to Jürgen Klüners for suggesting the application of this method.
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In all of these cases we restrict to extensions of degree ≤ 15 since for degree 16 we
cannot compute all extensions of Q2. The hypothesis of wild ramification implies
that we only have to consider primes p = 2, 3, 5 and 7. The primes 11 and 13 are not
considered because they can only occur (up to degree ≤ 15) in abelian extensions
of degree 11 and 13, which are not considered in the cases above.

4.4.1. Case (a). First consider extensions with non-abelian Galois group. For al-
most all those non-abelian wildly-ramified local extensions we found polynomials
of the appropriate degree in the database [21] generating a global representation.
In fact, there were just three D4–extensions of Q2 and three D7–extensions of Q7

not being represented by any polynomial (of degree 8 or 14 respectively) in this
database.

By [19, Cor. 2.2.8] every D4–extension of Q is the splitting field of a polynomial
f(x) = x4 − 2stx2 + s2t(t − 1) ∈ Q[x] with suitable s, t ∈ Q. Experimenting with
small integers s and t and computing the splitting field of f quickly provides global
representations for all D4–extensions of Q2.

Finally, we used class field theory to construct global Galois representations for
the three non-isomorphicD7–extensions of Q7: by taking quadratic extensions K of
Q which are undecomposed at p = 7 and computing all C7–extensions of K which
are subfields of Km, m = 49OK , one finds D7–extensions where p = 7 is ramified
with ramification index 7 or 14 and where p does not decompose. Experimenting
with different fields K as above one finds global Galois representations for all three
D7–extensions of Q7.

This completes the construction of global representations for all non-abelian
wildly ramified local extensions of Qp, p = 2, 3, 5, 7, up to degree 15.

4.4.2. Case (b). Using the database [21] we can again find polynomials for all
abelian extensions over Q2 of degree ≤ 7. For extensions of higher degree, the
heuristics were not as successful. But to obtain a global result up to degree 15,
it is sufficient to consider abelian extension of Q2 of degree ≤ 7 (see the proof of
Corollary 2).

4.4.3. Case (c). For each of the pairs (L|Q, p) with Galois group G constructed in
cases (a) and (b), Algorithm 18 also needs a extension N of Q which is unramified
and undecomposed at p and is of degree f = exp(Gab).

For non-abelian extensions of degree ≤ 15 the maximum degree of N can easily
be determined to be f = 4. And in the abelian case, we need unramified extensions
of degree ≤ 7.

Most of these unramified extensions can be constructed as a subfield of a cyclo-
tomic field Q(ζn) generated by an n-th root of unity ζn. In the other cases one
finds global representations using the database [21].

A complete list of polynomials which were found using these heuristics can be
found in the second author’s dissertation [14].

5. Algorithmic proof of the local epsilon constant conjecture

We briefly recall the algorithm described by Breuning and the first author in
[2, §4.2]. There the authors explain in detail how each of the terms in the local
conjecture can be computed and how this results in an algorithmic proof of the
local conjecture for a given local Galois extension Lw|Kv. Since by the functorial
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properties of the local conjecture one has EPSloc(Lw|Qp) ⇒ EPSloc(Lw|Kv), we
will only consider extensions Lw|Qp below.

For the rest of this section, fix the Galois extensions L|K and N |K and a prime
p of K as in the input of the algorithm. For simplicity, the unique prime ideal
above p in the fields L, N , or any subextension of L|K will also be denoted by p.
If it is necessary to avoid confusion, we will write pK , pL and pN . Furthermore, we
will identify the ideals pL|pK with places w|v of L and K, respectively, such that
Lw = Lp and Kv = Kp.

Algorithm 18 (Proof of the local epsilon constant conjecture).

Input: An extension (L,P)|(K, p) with Kp = Qp in which L|K is Galois with group
G and a Galois extension N |K of degree exp(Gab) in which p is undecomposed
and unramified.

Output: True if EPSloc(LP|Qp) was successfully checked.

(Construction of the coefficient field)

1 Compute all characters χ of G and use Brauer induction to find an integer t
such that the Galois Gauss sums can be computed in Q(ζm, ζpt), m = exp(Gab).

2 Construct the composite field E of L,N and Q(ζm, ζpt) and fix a complex em-
bedding ι : E →֒ C and a prime ideal Q of E above p.

(Computation of cohomological term)

3 Let θ ∈ L be a generator of a normal basis of L|K with w(θ) >
e(Lw|Qp)

p−1 , define

L = Zp[G]θ ∈ OLw
and compute k such that (POLw

)k ⊆ L .

4 Compute a cocycle representing the local fundamental class up to precision k

in H2(G,L×
w/U

(k)
Lw

) and its projection onto H2(G,L×
w/ exp(L )).

5 Construct a complex representing this cocycle by [24, p. 115] and compute the
Euler characteristic Ew(expv(Lw)) ∈ K0(Z[G],Q) as in [2, §4.2.4].

(Computation of the terms in
∏

χ E
×)

6 Compute the correction term mLP|Qp
= mw ∈ Z(Q[G])× ⊆ Z(E[G])× ≃

∏
χE

×

defined in (11).

7 Compute the element dLP|Qp
∈ L[G]× ⊆ E[G]× from (13), which represents the

equivariant discriminant δLP|Qp
(L ) ∈ K0(Z[G], EQ).

8 Compute the element uLP|Qp
∈ N [G]× ⊆ E[G]× using (14), which represents

the unramified term ULP|Qp
∈ K0(Z[G], EQ).

9 Use the canonical homomorphism E[G]× → K1(E[G]), the reduced norm map
nr : K1(E[G]) → Z(E[G]) and Wedderburn decomposition of Z(E[G]) to repre-
sent these three terms in

∏
χE

×.

10 Compute the equivariant epsilon constant τLP|Qp
∈

∏
χQ(ζpt , ζm)× ⊆

∏
χE

×

via Galois Gauss sums.

(Computations in relative K-groups)

11 Read Ew(L ) and the tuples from above as elements in K0(Zp[G], EQ).

12 Compute the sum RLP|Qp
∈ K0(Zp[G], EQ) of the resulting elements.

Return: True if RLP|Qp
is zero, and false otherwise.

Proof. [2, §4.2]. �
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All steps were explained in detail in [2]. However, there were some problems that
needed further improvements to give a practical algorithm. First, the existence of
global representations is due to a theoretical argument by Henniart in [17] which
we still cannot make explicit. For the construction of these representations we gave
some heuristics in the previous section which we successfully applied to extensions
of small degree. Second, the computation of local fundamental classes as presented
in [2, § 2.4] is not very efficient and is significantly improved by Algorithm 11. And,
finally, their has been made considerable progress on the computation of the relative
K-group K0(Zp[G],Qp) in [4].

Below we will discuss each part for the algorithm separately.

5.1. Constructing the coefficient field. As explained in [2, § 4.2.2] we need to
construct a global field E, in which all the computations take place.

For the computation of the unramified term, we will need a cyclic extensions
N |K which is unramified and undecomposed at p.

Another extension involved is Q(ζm, ζpt), where m is the exponent of Gab and t
is computed as in [2, Rem. 2.7]: By representation theory the field Q(ζm) contains
the values of all characters of G. The root of unity ζpt is used to represent Galois
Gauss sums and the integer t is determined as follows.

For each character χ of G one computes subgroups H , linear characters φ of
H , and coefficients c(H,φ) ∈ Z such that χ− χ(1)1G =

∑
(H,φ) c(H,φ)ind

G
H(φ− 1H).

Such a relation exists by Brauer’s induction theorem, cf. [2, § 2.5]. If f(φ) denotes
the Artin conductor of φ and e the ramification index of (LH)p|Qp, then t must
satisfy t ≥ vp(f(φ))/e for all pairs (H,φ) and all χ. Below, this choice of t allows us
to compute the epsilon constants as elements of Q(ζm, ζpt), see also [2, Rem. 2.7].

The composite field of the three fields L,N and Q(ζm, ζpt) is denoted by E,
giving the following situation:

(12)

E

Q(ζm, ζpt) L N

Q

We then fix a complex embedding ι : E →֒ C. Since E contains the roots of unity
ζm, the center Z(E[G]) decomposes into Z(E[G]) =

∏
χ∈IrrC(G)E.

The fixed embedding ι is essential because some of the elements in the conjecture
depend on the particular choice of the embedding: for example, the definition of
the standard additive character below, see also [2, § 2.5]. So once we compute an
algebraic element representing this value, we have to maintain its embedding into
C. Since we still try to avoid computations in such a big field E, this implies the
following: whenever we do calculations in a subfield F ⊆ E, we have to choose
embeddings ι1 : F →֒ C and ι2 : F →֒ E such that the diagram

E C

F

ι

ι2 ι1

is commutative, i.e. ι1 = ι|F .
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We also fix a prime ideal Q of E above p and an embedding E →֒ EQ such that

E →֒ EQ →֒ Cp and E
ι
→֒ C →֒ Cp commute. Then all the invariants appearing

in the conjecture lie in the subgroup K0(Zp[G], EQ) of K0(Zp[G],Cp) and they can
therefore be represented by tuples in Z(EQ[G]) ≃

∏
χ∈Irr(G)E

×
Q. In fact, we will

see that all these elements are also represented by elements in
∏

χ∈Irr(G)E
× and

can be computed globally.

5.2. Computation of cohomological term. The lattice L = Z[G]θ ⊆ OL is
computed using a normal basis element θ (see also [2, § 4.2.3]). The integer k for
which pk ⊆ L can then be found experimentally by global computations.

We compute a cocycle γ ∈ Z2(G,L×
w/U

(k)
Lw

) representing the local fundamental

class up to precision k using Algorithm 11 and its projection in Z2(G,L×
w/ exp(L )).

We can then construct the corresponding complex Pw =
[
Lf
w(γ) → Z[G]

]
using the

splitting module Lf
w(γ) from [24, Chp. III, § 1, p. 115] and the Euler characteristic

Ew(Lw) ∈ K0(Z[G],Q) can be computed using the explicit construction from [2,
§ 4.2.4].

5.3. Computation of the terms in
∏

χE
×. The correction term mw is directly

defined as tuple in
∏

χE
× by (11). For the equivariant discriminant and the un-

ramified term we have the following formulas from [2, §§ 4.2.5 and 4.2.7]:

dLw|Qp
=

∑

σ∈G

σ(θ)σ−1 ∈ L[G]× ⊆ E[G]×,(13)

uLw|Qp
=

s−1∑

i=0

ϕi
p(ξ)σ

−i ∈ N [G]× ⊆ E[G]×.(14)

Hereby, ϕp denotes the Frobenius automorphism of N |K with respect to p, ξ ∈ ON

is an integral normal basis element for Np|Kp, and σ is a lift of the local norm
residue symbol (p, Fp|Kp) ∈ Gal(Fp|Kp) ≃ Gal(F |K) where F is the maximal
abelian subextension in L|K. An algorithm to compute local norm residue symbols
is described in [1, Alg. 3.1].

These group ring elements provide elements in K1(Cp[G]) through the homo-
morphism E[G]× → K1(Cp[G]) by E[G] ⊆ EQ[G] ⊆ Cp[G]. The element uLw|Qp

∈
N [G] represents the unramified term by definition ([7, Prop. 2.12]) and dLw|Qp

∈
L[G] represents the equivariant discriminant through the surjective homomorphism
∂1 : K1(Cp[G]) → K0(Zp[G],Cp[G]) by [2, § 4.2.5].

Using the reduced norm map nr : K1(E[G]) →֒ Z(E[G])× one obtains elements
in Z(E[G])× and by the Wedderburn decomposition Z(E[G])× ≃

∏
χE

× the equi-
variant discriminant and the unramified term are finally represented by tuples in∏

χ∈Irr(G)E
× ⊂

∏
χ∈Irr(G)E

×
Q.

The equivariant epsilon constant τLp|Qp
is computed in

∏
χ E

× by local Galois

Gauss sums as follows, cf. [2, § 2.5].
For each χ, we already computed subgroups H of G, linear characters φ of H ,

and coefficients c(H,φ) ∈ Z such that χ − χ(1)1G =
∑

(H,φ) c(H,φ)ind
G
H(φ − 1H) by

Brauer induction. Then the Galois Gauss sum of χ can be computed by Galois
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Gauss sums of abelian extensions Lker(φ)|LH :

τ(Lp|Qp, χ) =
∏

(H,φ)

τ
(
(Lker(φ))p|(L

H)p, φ
)c(H,φ) ∈ Q(ζm, ζpt) ⊆ E×.

For localizations of the abelian extension M = Lker(φ) over N = LH , Galois Gauss
sums are given by the formula

τ(Mp|Np, φ) =
∑

x

φ
((x

c
,Mp|Np

))
ψNp

(x
c

)
∈ Q(ζm, ζpt) ⊆ E×

where x runs through a system of representatives of O×
Np
/U

(s)
Np

≃ (ON/p
s)×, s is

the valuation vp(f(φ)) of the Artin conductor f(φ) of φ, c ∈ N generates the ideal
f(φ)DNp

, DNp
denotes the different of the extensionNp|Qp, and ψNp

is the standard
additive character of Np.

The above formulas allow the construction of the equivariant epsilon constant as
tuple τLp|Qp

=
(
τ(Lp|Qp, χ)

)
χ
∈
∏

χE
×. For details see [2, § 2.5].

5.3.1. Computations in relative K-groups. In the following we have to combine
the computations from the previous steps to find RLp|Qp

and show that its sum
represents zero in K0(Zp[G], EQ). In [4] Wilson and the first author describe the
relative K-group as an abstract group. Using their methods it will be clear how

to read elements of the form ∂̂1Gw,Qp
(x) for x ∈

∏
χE

× and triples [A, θ,B] in the

group K0(Zp[G], EQ).
We recall the description from [4] for group rings and — since their algorithms

are not yet implemented in full generality — we will discuss a simple modification
for extensions F of Q which are totally split at a given prime p.

First we introduce some more notation: Let K be a number field and G a finite
group. The Wedderburn decomposition of K[G] gives a decomposition of its center
C := Z(K[G]) into character fields Ki such that C =

⊕r
i=1Ki. Each character

field Ki corresponds to an irreducible character χi ∈ IrrK(G) and Ki is the field
K(χi) which is obtained from K by adjoining the values of χi.

Choose a maximal OK-order M of K[G] containing OK [G] and a two-sided ideal
f of M which is included in OK [G] (e.g. f = |G|M) and define g := OC ∩ f. Then
the decomposition of C similarly splits M into

⊕r
i=1 Mi and the ideals f and g

into ideals fi of Mi and gi of OKi
. For a prime p in OK , we further write Cp for

the localization Cp = Kp⊗QC =
⊕r

i=1Kp⊗QKi =
⊕r

i=1

⊕
P|p(Ki)P, and ai,p for

the part of an ideal ai of OKi
above p.

The reduced norm map induces a homomorphism µp : K1(OKp
[G]/fp) →⊕r

i=1(OKi
/gi,p)

× whose cokernel is used in the description of the relative K-group
K0(OKp

[G],Kp). Then the main result of Wilson and the first author is the fol-
lowing.

Proposition 19. There are isomorphisms

K0(OKp
[G],Kp)

n̄
−→ C×

p / nr(OKp
[G]×)

ϕ̄
−→ I(Cp)× coker(µp),

n̄ being a natural isomorphism and ϕ̄ being induced by

(15)
ϕ : C×

p =

r⊕

i=1

(Ki)p −→ I(Cp)×

r⊕

i=1

(OKi
/gi,p)

×

(ν1, . . . , νr) 7−→
((∏

P PvP(νi)
)
i
, (µ̄1, . . . , µ̄r)

)
,
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where µi := νi
∏

P π
−vP(νi)
i,P and πi,P ∈ OKi

are uniformizing elements having

valuation 1 at P and which are congruent to 1 modulo gP′ for all other primes P′

above p in Ki|K.

Proof. [4, Prop. 2.7]. �

Wilson and the first author describe an algorithm to compute the group I(Cp)×
coker(µp) From the definition of ϕ, it is clear how a tuple ν = (νi)i of elements
with values νi ∈ Ki represents an element in this group. Furthermore, for every
triple [A, θ,B] ∈ K0(OK [G],K) with projective OK [G]-modules A and B and θ :

AK
≃
−→ BK , one can compute a representative of [Ap, θp, Bp] in this group as

follows. Every element [Ap, θp, Bp] is represented by an element in K1(Kp[G]) by
choosing OKp

[G]-bases of Ap and Bp and computing a matrix in Gln(Kp[G]) which
represents the isomorphism θp with respect to this basis. From the reduced norm

map nr : K1(Kp[G])
≃
−→ Z(Kp[G]) one then obtains a representative in C×

p and
applying ϕ̄ finally provides the element in I(Cp)× coker(µp) which corresponds to
[Ap, θp, Bp]. For details we refer to [4, § 4].

In theory, this solves the remaining problems for Algorithm 18. But in practice,
this has only been implemented in Magma for K = Q and p = pZ. In our case,
however, we have to work with the decomposition field F ⊆ E of Q. This field
F is a Galois extension of Q which is totally split at p. Then for any prime q|p
we obviously have Fq = Qp and K0(Zp[G], Fq) ≃ K0(Zp[G],Qp). If F satisfies
certain conditions, this isomorphism of relative K-groups is canonically given by
isomorphisms on the ideal part I(Cp) and the cokernel part coker(µp).

Proposition 20. Let F |Q be a number field which is totally split at p and for which
F ∩ Ki = K = Q for all i. Let q be a fixed prime ideal of F above p. Then the
following holds:

(i) The center C′ = Z(F [G]) splits into character fields Fi = FKi.
(ii) For every ideal P of Ki there is exactly one prime ideal Q in Fi lying above

P and q.
(iii) There are canonical isomorphisms

I(Cp) ≃ I(C′
q) and

r⊕

i=1

(OKi
/gi,p)

× ≃

r⊕

i=1

(OFi
/hi,q)

×

where h := OC′ ∩ f.

Proof. (i) The character fields Ki arise from K = Q by adjoining the values of a
specific character in IrrQ(G). Since F and Ki are disjoint over Q, one has the same
irreducible characters over F : IrrQ(G) = IrrF (G). The character fields Fi then
arise by adjoining the same character values and Fi = FKi.

(ii) If Q′ is any prime ideal in Fi above p and P′ = Q′ ∩Ki, q
′ = Q′ ∩ F , then

the automorphisms τ and σ for which τ(P′) = P and σ(q′) = q define an element
ρ = σ × τ in the Galois group of Fi|Q and Q = ρ(Q′) is a prime ideal which lies
above both P and q. The uniqueness of Q follows from degree arguments.

(iii) Let P be a prime ideal of Ki and Q the prime ideal of Fi which lies above
q and P. Then the valuation vQ of Fi extends the valuation vP of Ki and if we
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identify each pair (P,Q), we get an isomorphism

I(Cp) =

r∏

i=1

∏

P|p

PZ ≃

r∏

i=1

∏

Q|q

QZ = I(C′
q).

Since P ⊂ Ki is totally split in Fi we have isomorphisms OKi
/P ≃ OFi

/Q.
Moreover, the q-part of h is given by the part of gOC′ lying above q. The inclusions
OKi

⊆ OFi
therefore induce isomorphisms (OKi

/gi,p)
× ≃ (OFi

/hi,q)
×. �

5.4. Further remarks. 1. As mentioned before, the algorithms from [4] to com-
pute K0(Zp[G], Fq) are just implemented for F = Q. The extension to F |Q de-
scribed above will work if F is totally split at p and F ∩Q(χ) = Q for all characters
χ. The first condition is always true since we want to work with the decomposition
field F ⊆ E of Q, and the latter condition is valid in all cases we consider in the
computational results below.

2. The computation of the prime ideal Q in E is a though job when the degree of
E gets large. In the last part of Algorithm 18 we will therefore proceed as follows.
Let I := τLw|Qp

uLw|Qp
/(mwdLw|Qp

) ∈
∏

χ E
× be the element combining all the

invariants except the cohomological term. So RLw|Kv
= ∂̂1Gw,EQ

(I) + Ew(Lw)p
and since RLw|Kv

and Ew(Lw)p are both elements of K0(Zp[G],Qp), the element

∂̂1Gw,EQ
(I) is also in K0(Zp[G],Qp). Hence, I ∈ Z(Qp[G])

× and each component

Iχ ∈ Qp(ζm), m = exp(G). Since each component Iχ is determined by a global
element in E, we have Iχ ∈ F ′ := Qp(ζm) ∩ E. Here, the intersection is taken
in the fixed completion of the algebraic closure Cp of EQ. We therefore obtain
I ∈ Z(F ′[G])× ≃

∏
χ(F

′)× and if F = EGQ denotes the decomposition field of Q,

then F ′ = F (ζm).
As mentioned above, we want to omit the computation of Q. So instead of

working with E, we would like to work with a small subfield of E. The field
F ′ = F (ζm) would be a good choice but this still involves the computation of the
decomposition field of Q and hence also the computation of Q itself.

Instead we continue as follows: for every χ we compute the minimal polynomial
mχ of Iχ. Then we compute the composite field F ′ of the splitting fields of the
polynomials mχ with Q(ζm). Although the computation of the splitting fields is
also a difficult task, we note that these fields will always be subfields of E and where
this approach could take hours, the computation of Q did not succeed in several
days.

In the end, F ′ is the composite field such that Iχ, ζm ∈ F ′. Compute the ideal q′

of F ′ above p, denote the decomposition field of q′ by F , and compute q = OF ∩q′.
Then it follows from above that Iχ ∈ F (ζm) and I = τLw|Qp

uLw|Qp
/(mwdLw|Qp

) ∈∏
χ F (ζm)×.
Note that all computations were independent of the choice of the prime ideal Q

above p because all invariants were actually computed globally. The proof of the
conjecture will therefore also be independent of the choice of q′.

6. Computational results

Algorithm 18 has been implemented in Magma [5] and is bundled with the
second author’s dissertation [14].3 It has been tested for various extensions up to

3http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2011060937825

http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2011060937825
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degree 20 and the computation time turns out to depend especially on the degree
of the composite field E.

The most complicated extension for which we proved the local epsilon constant
conjecture was an extension of degree 10 ofQ5 with Galois groupD5. The composite
field E then had degree 200 over Q. The computation of the epsilon constants,
which needs an embeddings E →֒ C, already took about 7 hours, but the most
time-consuming part (about 6.5 days) of Algorithm 18 was the computation of
minimal polynomials and their splitting field mentioned in the remarks above. The
field F ′ then just had degree 4 over Q making the remaining computations very
fast. The total time needed to prove the local conjecture in this case was about 7
days.

Using the representations obtained in §4 we can prove Theorem 1 algorithmically.

Proof of Theorem 1. Since the local conjecture is valid for abelian extensions of
Qp, p 6= 2, the only primes to consider are p = 2, 3, 5, 7. All local extensions for
these primes of degree ≤ 15 that are either non-abelian, or abelian with p = 2
have been considered in §4.4 and global representations have been found by using
the heuristics described in §4. Also global representations for the corresponding
unramified extensions — which are of degree at most 6 — could be found using the
database [21].

For each of those extensions we then continued with Algorithm 18 to prove the
local epsilon constant conjecture. Details of the computations can be found in the
author’s dissertation [14]. This completes the proof of Theorem 1. �

Using some already known result we can also prove:

Corollary 21. The local epsilon constant conjecture is valid for Galois extensions

(a) M |Qp, p 6= 2 of degree [M : Qp] ≤ 15,
(b) M |Q2 non-abelian and of degree [M : Qp] ≤ 15,
(c) M |Q2 of degree [M : Qp] ≤ 7.

Proof. The cases not considered in the theorem above are extensions of Qp, p 6= 2
which are either tamely ramified or have abelian Galois group, and extensions of Q2

which are tamely ramified. These cases have already been proved before [7]. Note
that for degree 7 there is just one extension of Q2 which is also tamely ramified. �

We can then prove Corollary 2.

Proof of Corollary 2. If L|Q is abelian, the global conjecture is already known to be
valid. For the non-abelian case, we recall that by Theorem 15 conjecture EPS(L|Q)

is valid if EPSloc(Lw|Qp) is valid for all primes p and places w|p. If L|Q is non-
abelian of degree ≤ 15, the local extension Lw|Qp is either non-abelian of degree at
most 15 or abelian of degree at most 7. Therefore the result follows from the above
corollary. �

Corollaries 3 and 4 finally follow from Corollary 2.
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1. V. Acciaro and J. Klüners. Computing local Artin maps, and solvability of norm equations.
J. Symbolic Comput. 30 (2000), no. 3, 239–252.

2. W. Bley and M. Breuning. Exact algorithms for p-adic fields and epsilon constant conjectures.
Illinois J. Math. 52 (2008), 773–797.



22 W. BLEY AND R. DEBEERST

3. W. Bley and D. Burns. Equivariant epsilon constants, discriminants and étale cohomology.
Proc. London Math. Soc. (3) 87 (2003), 545–590.

4. W. Bley and S. M. J. Wilson. Computations in relative algebraic K-groups. LMS J. Comput.
Math. 12 (2009), 166–194.

5. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J.
Symb. Comp. 24 (1997), 235–265.

6. M. Breuning. Equivariant epsilon constants for Galois extensions of number fields and p-adic
fields. Ph.D. thesis, King’s College, London, May 2004.

7. M. Breuning. Equivariant local epsilon constants and étale cohomology. J. London Math. Soc.
(2) 70 (2004), 289–306.

8. M. Breuning and D. Burns. Leading terms of Artin L-functions at s = 0 and s = 1. Compos.
Math. 143 (2007), 1427–1464.

9. M. Breuning and D. Burns. On equivariant dedekind zeta-functions at s = 1, November 2009.
Preprint.

10. D. Burns. Equivariant Whitehead torsion and refined Euler characteristics. In Number theory,
volume 36 of CRM Proc. Lecture Notes, pages 35–59. Amer. Math. Soc., Providence, RI, 2004.

11. D. Burns and M. Flach. Tamagawa numbers for motives with (non-commutative) coefficients.
Doc. Math. 6 (2001), 501–570 (electronic).

12. T. Chinburg. Exact sequences and galois module structure. Annals of Mathematics 121 (1985),

351–376.
13. Henri Cohen. Advanced topics in computational number theory, vol. 193 of Graduate Texts in

Mathematics. Springer, New York, 2000.
14. R. Debeerst. Algorithms for Tamagawa Number Conjec-

tures. Ph.D. thesis, University of Kassel, 2011. URL
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2011060937825 .

15. C. Fieker. Applications of the class field theory of global fields. In Discovering mathematics
with Magma, pages 31–62. Springer, Berlin, 2006.
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