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We consider a sequence of random variables (Rn) defined by the recurrence Rn = Qn +MnRn−1,
n≥ 1, where R0 is arbitrary and (Qn,Mn), n≥ 1, are i.i.d. copies of a two-dimensional random
vector (Q,M), and (Qn,Mn) is independent of Rn−1. It is well known that if Eln|M |< 0 and
Eln+|Q|<∞, then the sequence (Rn) converges in distribution to a random variable R given

by R
d
=

∑
∞

k=1
Qk

∏k−1

j=1
Mj , and usually referred to as perpetuity. In this paper we consider a si-

tuation in which the sequence (Rn) itself does not converge. We assume that Eln|M | exists
but that it is non-negative and we ask if in this situation the sequence (Rn), after suitable
normalization, converges in distribution to a non-degenerate limit.

Keywords: convergence in distribution; perpetuity; stochastic difference equation

1. Introduction

We consider the following iterative scheme

Rn = Qn + MnRn−1, n≥ 1, (1.1)

where R0 is arbitrary and (Qn,Mn), n≥ 1, are i.i.d. copies of a two-dimensional random
vector (Q,M), and (Qn,Mn) is independent of Rn−1. Writing out the above recurrence
we see that

Rn = Qn +MnQn−1 + MnMn−1Qn−2 + · · ·+ Mn · · ·M2Q1 +Mn · · ·M1R0. (1.2)

Note that although (Rn) is not a sequence of partial sums, after renumbering (Qn,Mn)
in the opposite direction, we can write

Rn
d
=

n
∏

j=1

MjR0 +
n
∑

k=1

Qk

k−1
∏

j=1

Mj, (1.3)
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where “
d
=” denotes the equality in distribution and we adopt the convention that the

product or sum over the empty range is 1 or 0, respectively. Much of the impetus for
studying such equations stems from numerous applications of schemes like (1.1) in math-
ematics and other disciplines of science. We refrain here from giving a long list of fields
in which equation (1.1) appeared, referring instead to some of the references we give
(most notably to [6, 22] for the status up to the early nineties of the past century) for
more detailed information. Examples of more recent applications closer to statistics are
given in [2], an application related to neuronal modeling may be found in [13] and, for
an application in the analysis of algorithms, see [11] and references therein.

Most of the up-to-date research focused on the situation when the sequence (Rn)
converges in distribution and on analyzing properties of its limit. It has been known for
a long time (see [22], Lemma 1.7, or [15]) that if

Eln|M |< 0 and Eln+|Q|<∞,

then the sequence of partial sums in (1.3) converges almost surely and the product in
the first term asymptotically vanishes. Thus, (Rn) converges in distribution to a random
variable R given by

R
d
=

∞
∑

k=1

Qk

k−1
∏

j=1

Mj.

This R, referred to as perpetuity, is of central interest. In particular, its tail behavior has
been thoroughly investigated (see, e.g., [7–9, 14, 15, 22] and references therein for more
information).

In this paper we focus on a situation in which the sequence (Rn) does not converge.
We will refer in such situations to the whole sequence (Rn) as a divergent perpetuity.
We will assume throughout that Eln|M | exists but that

µ := Eln|M | ≥ 0. (1.4)

Under the above assumption we ask if (Rn) can be renormed to converge in distribution
to a non-degenerate limit. As is the case when (Rn) converges, the roles of R0 and Q seem
to be of much less importance than the role of M . In fact, since R0 plays no significant
role from now on we assume that R0 = 0. Furthermore, assuming that M is non-random
would lead to (Rn) being a sequence of sums of independent random variables. Since
this situation has been extensively studied, we will exclude it from our considerations
by assuming from now on that M is non-constant. On the other hand, we freely impose
moment conditions on Q when necessary, or sometimes even assume that it is of a special
form. For example, if Q = 1, then (1.3) is just a partial sum of successive partial products
of i.i.d. copies of M . While there is very little known technical connection, it is perhaps
worth mentioning that an analogous problem of investigating the asymptotic properties
of the consecutive products of partial sums

n
∏

k=1

k
∑

j=1

Mj vs.

n
∑

k=1

k
∏

j=1

Mj ,
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has been intensely investigated in the past several years; see, for example, [19, 21, 23].
As x→ lnx is concave, assumption (1.4) implies that necessarily E|M | ≥ 1. (We do not

assume, however, that E|M | is finite.) Thus there are at least four situations to consider,
namely,

(i) Eln|M |> 0, E|M |> 1, |M | non-random,
(ii) Eln|M |> 0, E|M |> 1, |M | random,
(iii) Eln|M | = 0 and E|M |> 1,
(iv) Eln|M | = 0 and E|M | = 1.

These cases are discussed in detail below and we will show that in each of these situations
(Rn) can be renormed (each time differently) so that it converges in distribution to a non-
degenerate limit. As was brought to our attention by A. Iksanov, some particular cases of
(ii) and (iii) were studied by Rachev and Samorodnitsky [20] who, for non-negative Q and
M and under the assumption that logMn belongs to the α-stable domain of attraction,
obtained the log-stable limit law for suitably normalized (Rn) – see also comments on
this connection in Sections 3 and 4. Furthermore, weak convergence in the situation
complementary to (1.4) is considered in [17] where, for non-negative Q and M , it is
assumed that −∞< lnM < 0, but the perpetuity is divergent because E ln+Q = ∞.

2. The case Eln|M |> 0, E|M |> 1 and non-random
|M |

In this section we consider the following situation: for a fixed ρ > 1 let

M
d
= ρε, where P (ε = 1) = p, P (ε = −1) = 1 − p = q.

Theorem 1. Let M be as above. Assume that Q
d
= ε and that it is independent of M .

(i) Symmetric case: Let p = 1/2. Then

Rn

ρn−1

d−→
∞
∑

k=1

λk−1εk,

where λ = ρ−1 < 1 and (εk) is the sequence of i.i.d. copies of ε.
(ii) Asymmetric case: Suppose p 6= 1/2. Then we have

Rn

ρn−1

d−→ rX, (2.1)

where r is a symmetric Bernoulli random variable (i.e., P (r = 1) = P (r = −1) = 1/2),

X
d
=
∑∞

k=0 λ
k
∏k

j=1 εj and r and X are independent.
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Remark. The sums of the form
∑∞

k=1 λ
k−1εk considered in part (i) are well-known ob-

jects, usually referred to as “symmetric Bernoulli convolutions”. Their properties have
been extensively studied since mid-1930s. In particular, it is known that the limiting
distribution is uniform on [−2,2] if λ = 1/2, singular if 0 < λ< 1/2 and absolutely con-
tinuous for almost all (but not all) λ ∈ (1/2,1). A good description of the current state
of knowledge can be found, for example, in [18].

Proof of Theorem 1. We have

Rn = εn + ρεnεn−1 + · · ·+ ρn−1
n
∏

j=1

εj
d
=

n
∑

k=1

ρk−1
k
∏

j=1

εj. (2.2)

If p = 1/2 then the sequences

(ε1, ε1ε2, ε1ε2ε3, . . .) and (ε1, ε2, ε3, . . .) (2.3)

are identically distributed. Thus, if we normalize Rn by ρn−1, we get

Rn

ρn−1

d
=

n
∑

k=1

ρk−nεk
d
=

n
∑

k=1

λk−1εk.

Since 0 < λ < 1 the series of partial sums converges almost surely and thus Rn/ρ
n−1

converges in distribution to the given limit.
If p 6= 1/2, then the distributional equality in (2.3) is no longer valid. However, we can

write the right-hand side of (2.2) as

Rn
d
=

n
∑

k=1

ρk−1
k
∏

j=1

εj = ρn−1
n
∏

j=1

εj

(

n
∑

k=1

λk−1

∏k−1
j=1 εj

)

.

Since εk = 1/εk we get

Rn

ρn−1

d
= Tn

n
∏

j=1

εj , (2.4)

where

Tℓ =

ℓ
∑

k=1

λk−1
k−1
∏

j=1

εj.

Fix arbitrary m. Then, for any n >m, write the term on the right-hand side of (2.4) as

Tm

n
∏

j=1

εj +

n
∏

j=1

εj

(

n
∑

k=m+1

λk−1
k−1
∏

j=1

εj

)

.
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The second summand is bounded in absolute value by λm/(1−λ) and thus it can be made
arbitrarily small by choosing m sufficiently large. Consequently, we consider only the first
part of the above expression. Note that Tm depends on (ε1, . . . , εm) only. Therefore upon
conditioning on (ε1, . . . , εm) we obtain

E(eitTm

∏
n
j=1

εj ) = E

[

φn−m

(

tTm

m
∏

j=1

εj

)]

,

where φk is the characteristic function of the product
∏k

j=1 εj . Since
∏n

j=1 εj = 1 if and
only if the number of j’s such that εj = −1 is even, we have

P

(

n
∏

j=1

εj = 1

)

− P

(

n
∏

j=1

εj = −1

)

=
n
∑

k=0
k-even

(

n
k

)

qkpn−k −
n
∑

k=0
k-odd

(

n
k

)

qkpn−k

(2.5)
= (p− q)n,

which vanishes as n→∞. Thus the product
∏n

j=1 εj converges in distribution to r (recall
that its characteristic function is cos(t)). Therefore for arbitrary fixed m

E(eitTm

∏n
j=1

εj )
n→∞−→ E cos

(

tTm

m
∏

j=1

εj

)

= E cos(tTm).

As m→ ∞ the sum Tm converges almost surely to X . By the Lebesgue dominated
convergence it follows therefore that

E cos(tTm)
m→∞−→ E cos(tX),

the latter being the characteristic function of rX , with r and X independent. This
proves (2.1). �

3. The case Eln|M |> 0, E|M |> 1 and random |M |

In this section we assume that µ = Eln|M | > 0 and that |M | is random. This forces
E|M |> 1, but it may be infinite. Set v2 := var(ln|M |). Then we have

Theorem 2. Let (Rn) be given by (1.3) with the pair (Q,M) satisfying µ > 0,
0 < v2 <∞, and Eln+|Q|<∞.

(i) As n→∞,

|Rn|1/(v
√
n)

exp(µ
√
n/v)

d−→ eN ,

where N is a standard normal random variable.
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(ii) Assume P (M > 0) > 0 and P (M < 0) > 0 and define for real t and x, xt :=
sgn(x)|x|t. Then we have

R
1/(v

√
n)

n

exp(µ
√
n/v)

d−→ reN ,

where r is a symmetric Bernoulli random variable independent of N .

Remark. The first part of this theorem overlaps with Theorem 2.1 (a) in [20] where, for
non-negative Q and M and under the assumption that lnM is in the domain of attraction
of an α-stable law, 1 < α ≤ 2, the authors obtained (i) with N replaced by an α-stable
random variable and suitable normalization of (Rn) on the left-hand side (the normalizing
constants are the constants implied by the definition of a domain of attraction).

Proof of Theorem 2. Consider Rn given in (1.2) and factor the product of Mj ’s to
write it as

Rn =

(

n
∏

j=1

Mj

)

n
∑

k=1

Qk

k
∏

j=1

1

Mj
. (3.1)

Consider the first factor. By the classical CLT

|∏n
j=1Mj |1/(v

√
n)

exp((µ/v)
√
n)

=

(

∏n
j=1 |Mj |
eµn

)1/(v
√
n)

= exp

{

∑n
j=1 ln|Mj | − nµ

v
√
n

}

d−→ eN .

To finish the proof by Slutsky’s theorem it suffices to show the second factor on the
right-hand side of (3.1) converges to 1 in distribution. To this end note that

Sn :=

n
∑

k=1

Qk

k
∏

j=1

1

Mj
=

n
∑

k=1

Qk

Mk

k−1
∏

j=1

1

Mj
(3.2)

is a perpetuity generated by (Q/M,1/M). Since we are working under the condition
Eln|M | > 0, we have Eln|1/M | = −Eln|M | < 0. Furthermore, by our assumption on
Q, Eln+|Q/M |<∞ and thus (Sn) converges in distribution to, say S (see [22], Theo-
rem 1.6(b)). Moreover, P (1/M = 0) = 0 and hence by Theorem 1.3 of [1] (see also [10]
and [3], Lemma 2.1) it follows that the distribution of S is continuous. In particular,
|S|1/v does not have an atom at zero, which is all that is important for our purposes.
Denote by νn and ν the distributions of |Sn|1/v and |S|1/v, respectively. We want to show

that |Sn|1/(v
√
n) d−→ 1. Consider first an arbitrary x ∈ (0,1), fix an arbitrary m and take

any n >m. Then

P (|Sn|1/(v
√
n) ≤ x) = νn([0, x

√
n]) ≤ νn([0, x

√
m])

n→∞−→ ν([0, x
√
m]).

Letting now m→∞ we conclude that P (|Sn|1/(v
√
n) ≤ x) → 0 for x ∈ (0,1).



886 P. Hitczenko and J. Weso lowski

Now we take an arbitrary x≥ 1. Then again we fix some m. For n >m we obtain

P (|Sn|1/(v
√
n) ≤ x) = νn([0, x

√
n]) ≥ νn([0, x

√
m])

n→∞−→ ν([0, x
√
m])

m→∞−→ 1

so that P (|Sn|1/(v
√
n) ≤ x) → 1 for x ≥ 1 and it follows that |Sn|1/(v

√
n) d→ 1, which

completes the proof of part (i).
To prove part (ii) let εj = sgn(Mj) and consider again

Rn =

(

n
∏

j=1

Mj

)

Sn,

where (Sn) is defined by (3.2). By definition of xt,

Zn :=
R

1/(v
√
n)

n

exp(µ
√
n/v)

= sgn(Sn)|Sn|1/(v
√
n)

(

n
∏

j=1

εj

)

exp

(

n
∑

j=1

ln|Mj| − µ

v
√
n

)

. (3.3)

For any m<n write the sum in the exponent of (3.3) as

m
∑

j=1

ln|Mj | − µ

v
√
m

+

n
∑

j=m+1

ln|Mj | − µ

v
√
n

+

(

√

m

n
− 1

)

m
∑

j=1

ln|Mj | − µ

v
√
m

.

Splitting the product of signs on the right-hand side of (3.3) in two factors, and using
the above equation, we see that (3.3) can be written as

Zn =

(

n
∏

j=m+1

εj

)

ZmVn,m, (3.4)

where

Vn,m :=
sgn(Sn)

sgn(Sm)

|Sn|1/(v
√
n)

|Sm|1/(v
√
m)

exp

(

n
∑

j=m+1

ln |Mj| − µ

v
√
n

+

(

√

m

n
− 1

)

m
∑

j=1

ln |Mj| − µ

v
√
m

)

.

We claim that (Vn,m) converges in probability to 1 as long as n,m→∞ in such a way
that n−m= o(n). To this end, consider the first sum in the exponent above. Its variance
is (n−m)/n, and thus as long as n−m = o(n) it goes to 0 in probability by Chebyshev’s

inequality. Furthermore, under the same condition on n−m,
√

m
n − 1 =

√

1 − o(n)
n − 1 =

o(1) and thus the second term in the exponent above goes to 0 in probability as well.
(Note that the sum of

ln|Mj |−µ

v
√
m

converges in distribution to N by the classical CLT.)

As for the other factors in Vn,m, just as in part (i), |Sk|1/(v
√
k) P−→ 1 as k →∞,

where “
P−→” denotes the convergence in probability. It remains to show that sgn(Sn)/

sgn(Sm)
P−→ 1. To this end, note that the equation (3.2) defining (Sn) holds a.s. and not
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only in distribution and thus the sequence (Sn) is a sequence of partial sums. Hence, by
the basic convergence result for perpetuities (see, e.g., [22], Lemma 1.7), the conditions
Eln|1/M |< 0 and Eln+|Q/M |<∞ suffice for the a.s. convergence of the series

∞
∑

k=1

Qk

Mk

k−1
∏

j=1

1

Mj
.

This, together with the fact that the limit of (Sm) has a continuous distribution function

(see an argument following (3.2)), clearly implies that sgn(Sn)/ sgn(Sm)
P−→ 1 (and a.s.)

as m,n→∞. This proves our claim about (Vn,m).
We now go back to (3.4) and note that the first two random variables on the right-hand

side are independent. Furthermore, the product
∏n

j=m+1 εj converges in distribution to
a symmetric Bernoulli random variable r (see (2.5) above) as long as n−m→∞. Hence,
if the sequence (3.3) converges in distribution, then its limit, say Z , has to satisfy the

distributional identity Z
d
= rZ , with r,Z independent on the right-hand side. This would

complete the proof since any such Z is symmetric and we would have

Z
d
= r|Z| d

= reN , (3.5)

where the second equality follows by part (i).
Thus, it remains only to prove that the sequence given in (3.3) does, in fact, converge

in distribution. We note that this sequence is tight because the sequence of absolute
values

|Zn| =

∏n
j=1 |Mj|

exp(µ
√
n/v)

|Sn|1/(v
√
n)

converges in distribution to eN by part (i). We will complete the proof by showing that
every converging subsequence of (3.3) converges to the same limit, namely reN . Let (kn)
be any subsequence for which (Zkn

) converges in distribution. Define

ℓn = max{m :km ≤
√

kn} and set mn = kn − kℓn .

By tightness we can choose a subsequence (mnj
) of (mn) for which (Zmnj

) converges in

distribution. Since mnj
= knj

− kℓnj
we have

Zknj
=

( knj
∏

i=mnj
+1

εi

)

Zmnj
Vknj

,mnj
.

It is readily seen from the construction that knj
−mnj

= o(knj
) and that it converges

to infinity. Therefore, Vknj
,mnj

P−→ 1 as j → ∞. Thus, if Z and Z are the limits in

distribution of (Zkn
) and (Zmnj

), respectively, then the above identity implies that Z
d
=



888 P. Hitczenko and J. Weso lowski

rZ , where r and Z are independent. It follows that Z is symmetric and thus must satisfy
(3.5). Since Z was a limit along the arbitrary converging subsequence of (Zn), the proof
is complete. �

4. The case Eln|M |= 0 and E|M |> 1

To see the difference between the current situation and the preceding one, note that
because Eln|M | = 0 the perpetuity defined by (3.2) in the course of the proof of Theo-
rem 2 is not guaranteed to converge. Specifically, consider the following example: let X
be a non-degenerate, integrable, symmetric random variable and set M = eX . Then,

Eln|M | = EX = 0 and E|M |> eEX = 1,

where the strict inequality follows from the non-degeneracy of X . By the symmetry of X ,
M and 1/M have exactly the same distribution. Hence, if we take Q = 1 in (1.3) and

(3.2) we find that Rn
d
= Sn for n ≥ 1. Therefore, (Rn) and (Sn) converge or diverge

in distribution simultaneously. If M is non-negative this difficulty can be handled by
factoring the largest product in (1.3) rather than the last one; however, the limiting
distribution will no longer be lognormal. It seems very likely that the case of general M
is similar, however it remains open.

Before stating our result in the non-negative case, recall that a function h :R→R is
regularly varying at infinity with index ρ if for every x> 0

lim
t→∞

h(xt)

h(t)
= xρ.

Recall also that any such function can be written as h(t) = tρℓ(t), where ℓ(t) is slowly
varying at infinity; that is, for every x > 0

lim
t→∞

ℓ(xt)

ℓ(t)
= 1.

It follows from that definition in particular that for any δ > 0, tδℓ(t) → ∞ as t → ∞
(see [5] for these and much more on regularly varying functions). The following holds
true:

Theorem 3. Let (Q,M) be given by (eY , eX), where EX = 0 and v2 := var(X) satisfies
0 < v2 <∞ (so that E lnM = 0; EM > 1, but may be infinite; and v2 = var(lnM) <∞).

(i) If EY 2 <∞, then, as n→∞,

R1/(v
√
n)

n
d−→ e|N |, (4.1)
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where |N |, the absolute value of the standard normal random variable, has distri-
bution given by

P (|N | ≤ x) = 2Φ(x) − 1 =

√

2

π

∫ x

0

e−t2/2 dt.

(ii) Let h(t) := P (Y > t) be a tail function of a random variable Y and define a sequen-
ce (γn) by

γn := inf

{

t :h(t)≤ 1

n

}

, n≥ 1.

If h(t) is regularly varying at infinity with index α for some −2 <α< 0 then, as
n→∞

R1/γn

n
d−→ eVα , (4.2)

where Vα has Fréchet distribution Φα given by

P (Vα ≤ x) = Φα(x) =

{

0, x≤ 0;
exp(−xα), x > 0.

(iii) Assume that h(t) is regularly varying at infinity with index α = −2, that is, that
h(t) = t−2ℓ(t), where ℓ(t) is slowly varying at infinity. If limt→∞ ℓ(t) = ∞, then
(4.2) holds, while if limt→∞ ℓ(t) = 0, then (4.1) holds.

Remarks. (1) The only case not covered by the above theorem is α = −2 and ℓ(t) ∼
const. We suspect that in that case, at least when X and Y are independent, we have

max1≤k≤n{Yk + Sk−1}√
n

d−→ Vα + σN ,

where Vα is a Fréchet random variable with parameter α = −2, σ is the variance of X
and Vα and N are independent, but we have not managed to prove it.

(2) Part (i) of Theorem 3 overlaps with Theorem 2.1 (c) of [20], where the authors
worked under the assumption that X is in the domain of attraction of an α-stable law,
1 < α ≤ 2, but assumed additionally that X and Y are independent. Under a suitable
normalization that agrees with ours for α = 2 and results in a slightly weaker condition
on Y than EY 2 <∞, they obtained as a limit law the distribution of a supremum of the
Lévy α-stable motion on [0,1]. A similar comment applies to the second part of (iii); we
assume the regular variation of the tail of Y but not independence of X and Y as was
assumed in [20], Theorem 2.1 (c). When α = 2, the assumptions about the decay of the
tail of Y in both papers are identical.

Proof of Theorem 3. Set

Wn := max
1≤k≤n

Qk

k−1
∏

j=1

Mj ,
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and write

R1/(v
√
n)

n = W 1/(v
√
n)

n

(

n
∑

k=1

Qk

∏k−1
j=1 Mj

Wn

)1/(v
√
n)

. (4.3)

Since x→ lnx is increasing,

W 1/(v
√
n)

n = exp

{

1

v
√
n

ln

(

max
1≤k≤n

Qk

k−1
∏

j=1

Mj

)}

= exp

{

max1≤k≤n{lnQk +
∑k−1

j=1 lnMj}
v
√
n

}

.

We let Yk = lnQk, Xk = lnMk, Sk =
∑k

j=1Xk and, for any sequence of random variables
(Zk), we will write Z∗

m = max1≤k≤mZk.
Subadditivity of the maxima implies that for any numerical sequences (uk), (wk),

max
1≤k≤n

{uk}− max
1≤k≤n

{|wk|} ≤ max
1≤k≤n

{uk +wk} ≤ max
1≤k≤n

{uk} + max
1≤k≤n

{wk}. (4.4)

To prove part (i) we note that

|Yn|∗√
n

P−→ 0.

Indeed, for ε > 0 we have

P

( |Yn|∗√
n

> ε

)

= 1− (1 − P (|Y |> ε
√
n))

n ≤ nP (Y 2 > ε2n) → 0, n→∞,

where the last assertion follows from EY 2 <∞. Using this and (4.4) with uk = Sk−1 and
wk = Yk we obtain that

max1≤k≤n{Yk + Sk−1}
v
√
n

=
S∗
n−1

v
√
n

+ oP (1),

where oP (1) denotes a quantity that goes to zero in probability. Furthermore, our as-

sumptions on Mj ’s imply that (
∑k

j=1Xj) is a sequence of partial sums of random walk

whose increments Xj have mean zero and a finite variance v2. Thus, the Erdős–Kac
theorem for the maxima of random walks (see, e.g., [12], Theorem 12.2) implies that

W 1/(v
√
nv)

n
d−→ e|N |.

Just as in the proof of Theorem 2, to complete the proof we need to show that the second
factor in (4.3) converges to 1 in distribution. But that is clear since, on the one hand,

(

n
∑

k=1

Qk

∏k−1
j=1 Mj

Wn

)1/(v
√
n)

≤ n1/(v
√
n) = exp

(

lnn

v
√
n

)

→ 1
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and, on the other hand, we clearly have

n
∑

k=1

Qk

∏k−1
j=1 Mj

Wn
≥ 1.

This implies that

n
∑

k=1

Qk

∏k−1
j=1 Mj

Wn

P−→ 1,

and proves part (i).
The argument for the second part is parallel to the one just given with the following

adjustment: In the first part, the assumption EY 2 <∞ ensures that the maximum of
the random walk with increments Xj , j < n, dominates the maximum of {Yk, k ≤ n}.
If this assumption is weakened this may no longer be true, and, in fact, the maximum
of Yk’s may dominate. In that case, we can just use the basics of extreme value theory
(Chapter 1 of [16] being more than enough) instead of the Erdős–Kac theorem to complete
the argument. This time, using (4.4) we write

Y ∗
n − |Sn−1|∗ ≤ max

1≤k≤n

{

Yk +

k−1
∑

j=1

Xj

}

≤ Y ∗
n + S∗

n−1.

By the characterization theorem in the extreme value theory (see, e.g., [16], Theo-
rem 1.6.2), our assumption on Y is a necessary and sufficient condition for the existence
of constants (an), (bn) for which

an(Y ∗
n − bn)

d−→ Vα,

where Vα has the Fréchet distribution (also referred to as a type-II extreme value distri-
bution) described above. Furthermore (see [16], Corollary 1.6.3), we may take an = 1/γn
and bn = 0, n≥ 1, and, if we do, we obtain that

Y ∗
n

γn

d−→ Vα, n→∞.

We now observe that γn/
√
n→∞. In fact, there exists β > 1/2 such that γn ≥ nβ for all

sufficiently large n. Indeed, since h is decreasing it is enough to see that h(nβ) > 1/n.
But as h is regularly varying, we have

h(nβ) = nβαℓ(nβ) =
n1+βαℓ(nβ)

n
=

(nβ)1/β+αℓ(nβ)

n
=

(nβ)δℓ(nβ)

n
.

If we now take 1/2 < β < −1/α (which is possible since −2 < α < 0) then δ > 0 and
the numerator on the right-hand side goes to infinity with n, proving the claim that
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h(nβ) > 1/n for large n. We now get

|Sn−1|∗
γn

=
|Sn−1|∗√

n

√
n

γn

P−→ 0,

and also, since γn/
√
n→∞,

1 ≤
(

n
∑

k=1

Qk

∏k−1
j=1 Mj

Wn

)1/γn

≤ n1/γn → 1,

which proves the second part.
Finally, the last part follows by essentially the same reasoning. Assume ℓ(t) →∞ as

t→∞. By the just-given argument, to establish (4.2), it suffices to verify γn/
√
n→∞ as

n→∞. Assume this is not the case. Then there exist C <∞ and an infinite subsequence
(nk) such that γnk

/
√
nk ≤ C for all k ≥ 1. By the definition of (γn) this means that

P (Y ≥C
√
nk) ≤ 1/nk, that is, that ℓ(C

√
nk) ≤C2. But that contradicts the assumption

that ℓ(t) →∞ as t→∞. If, on the other hand, ℓ(t) → 0 as t→∞, then γn/
√
n→ 0 (for

otherwise there would exist c > 0 and a subsequence (nk) such that γnk
/
√
nk ≥ c, k ≥ 1,

implying that ℓ(c
√
nk) ≥ c2 and contradicting ℓ(t) → 0 as t→∞). Now, it follows from

the proof of the first part that γn/
√
n→ 0 is enough to conclude (4.1). The proof of part

(iii) is completed. �

5. The case Eln|M |= 0 and E|M |= 1

Under this assumption we have that |M | ≡ 1, that is, M takes on values ±1. Consequently,
because of a non-degeneracy assumption on M , its expected value must satisfy −1 <
EM < 1. We have

Theorem 4. Suppose that EQ2 <∞. Then, as n→∞,

Rn√
n

d−→ βN , (5.1)

where β2 = EQ2 + 2 EQ
1−EME(QM) and N is the standard normal random variable.

Remark. Since −1 < EM < 1, by straightforward calculation we see that ERn = O(1)
and var(Rn) = β2n + O(1). Thus, (5.1) is equivalent to

Rn −ERn
√

var(Rn)

d−→N .

Proof. Let α := EM and q := EQ so that

β2 = EQ2 + 2
q

1 −α
EQM = var

(

Q+
q

1 −α
M

)

.
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To prove (5.1) we write

Rn =

n
∑

k=1

Qk

k−1
∏

j=1

Mj =

n
∑

k=1

(Qk − q)

k−1
∏

j=1

Mj + q

n
∑

k=1

k−1
∏

j=1

Mj. (5.2)

Furthermore, as

n
∑

k=1

(Mk−α)

k−1
∏

j=1

Mj = −α+

n
∏

j=1

Mj +(1−α)

n
∑

k=2

k−1
∏

j=1

Mj = −1+

n
∏

j=1

Mj +(1−α)

n
∑

k=1

k−1
∏

j=1

Mj,

the second term on the right-hand side of (5.2) is

q

1− α

n
∑

k=1

(Mk − α)
k−1
∏

j=1

Mj −
q

1 −α

n
∏

j=1

Mj +
q

1 −α
.

Set

dk :=

(

Qk − q +
q

1 − α
(Mk − α)

) k−1
∏

j=1

Mj , k = 1, . . . , n.

Then, by independence of (Qj ,Mj), j ≥ 1, (dk) is a martingale difference sequence with
respect to (Fn) where Fk = σ(M1,Q1, . . . ,Mk,Qk), k ≥ 1. Let Ek denote the conditional
expectation given Fk. Since M2

j = 1 we have

Ek−1d
2
k = E

(

Q− q +
q

1 − α
(M − α)

)2

= β2,

so that, trivially,
∑n

k=1Ek−1d
2
k

n

P−→ β2.

Moreover, since the Mk’s are uniformly bounded, for a given ε > 0 and n sufficiently
large

Ek−1d
2
kI{|dk|>ε

√
n} ≤ 4EQ2I{|Q|>ε

√
n/2}.

Since EQ2 <∞, the last quantity converges to zero as n→∞ by the dominated conver-
gence theorem. This verifies the conditional version of Lindeberg’s condition:

∀ε > 0

∑n
k=1Ek−1d

2
kI{|dk|>ε

√
n}

n

P−→ 0.

It follows by the martingale version of the CLT (see, e.g., [4], Theorem 35.12) that

∑n
k=1 dk√
n

d−→ βN .
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Now, by the above manipulations we have

Rn√
n

=

∑n
k=1 dk√
n

+
q

(1 − α)
√
n
− q

(1 − α)
√
n

n
∏

j=1

Mj.

Since each of the last two terms goes to 0 (deterministically and in probability, respec-
tively), Theorem 4 follows. �
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