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Abstract. For a network consisting of a graph with edge weights prescribed
by a given conductance function c, we consider the effects of replacing these
weights with a new function b that satisfies b ≤ c on each edge. In particular,
we compare the corresponding energy spaces and the spectra of the Laplace
operators acting on these spaces. We use these results to derive estimates for
effective resistance on the two networks, and to compute a spectral invariant
for the canonical embedding of one energy space into the other.
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1. Introduction11

We begin with a network structure defined by a set of vertices G and a12

conductance function c : G × G → R+ which specifies the both the adjacency13

relation and the edge weights; two vertices x and y are neighbours iff cxy > 0.14

The case of primary interest is when G is infinite, in which case the energy15

spaceHE has a rich structure and the Laplace operator ∆ corresponding to the16

network may be an unbounded operator on HE. (Precise definitions of these17

terms may be found in Definition 2.2, Definition 2.3, and Definition 2.5.)18
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The Hilbert spaceHE has a rather different geometry than the more familiar 1

`2(G), and depends crucially on the choice of conductance function c. The same 2

is true for the Laplacian ∆ as a linear operator onHE. In this paper, we use the 3

framework developed in earlier projects (see [JP09a, JP10a, JP09b, JP09e, JP11, 4

JP10c,JP10d,JP10b,JP09d,JP09c]) to compute certain spectral theoretic informa- 5

tion; as well as resistance metrics on the underlying vertex set. In particular, 6

we explore how certain quantities depend on the choice of c, in comparison to 7

another conductance function, which we denote by b. It will be assumed that 8

both b and c yield a connected weighted graph, although we allow for the case 9

when cxy > 0 and bxy = 0 (so that x and y are neighbours in (G, c) but not in 10

(G, b)). The data, defined from b and c, to be compared are as follows: 11

(1) the energy forms E(b) and E(c), and the respective energy Hilbert spaces 12

HE(b) andHE(c) that they define; 13

(2) the systems of dipole vectors that form reproducing kernels for the two 14

Hilbert spaces; see Definition 2.7; 15

(3) the respective Laplace operators ∆(b) and ∆(c), and their spectra; 16

(4) the spaces of finite-energy harmonic functions onHE(b) andHE(c) ; and 17

(5) the effective resistance metrics onHE(b) andHE(c) . 18

We focus our study on the case when one of the two energy-Hilbert spaces is 19

contractively contained in the other, which corresponds to the inequality b ≤ c. 20

In this case, we believe that our results have applications to percolation theory 21

and the study of random walks in random environments, as well as to dilation 22

theory (see [Arv10]) and the contractive inclusion of Hilbert spaces (see [Sar94]). 23

Of special operator theoretic significance is the adjoint of the contractive in- 24

clusion mapping. The issues involved with the adjoint operator are subtle as 25

the computation of the adjoint operator depends on which of the two Hilbert- 26

inner products is used. It is the adjoint operator that allows one to compute the 27

respective systems of dipole vectors that form reproducing kernels for the two 28

Hilbert spaces; see Definition 2.7. We further derive an invariant (involving 29

induced linear maps between the respective spaces of finite-energy harmonic 30

functions) which distinguishes two networks when G is fixed and the conduc- 31

tance functions vary. 32

We also give a necessary and sufficient condition on a fixed conductance 33

function c having its energy Hilbert space E(c) boundedly contained inHE(b) (b = 34

1); i.e., contractive containment in the “flat” energy Hilbert space corresponding 35

to constant conductance b. The significance of this is that computations inHE(b) 36

are typically much easier, and that the conclusions obtained there may then be 37

transferred toHE(c) . 38

Our results are illustrated with concrete examples. 39



SPECTRAL COMPARISONS 3

2. Basic terms and previous results1

We now proceed to introduce the key notions used throughout this paper:2

resistance networks, the energy form E, the Laplace operator ∆, and their ele-3

mentary properties.4

Definition 2.1. A (resistance) network is a connected graph (G, c), where G is5

a graph with vertex set G0, and c is the conductance function which defines6

adjacency by x ∼ y iff cxy > 0, for x, y ∈ G0. We assume cxy = cyx ∈ [0,∞), and7

write c(x) :=
∑

y∼x cxy. We require c(x) < ∞, but c(x) need not be a bounded8

function on G.9

In this definition, connected means simply that for any x, y ∈ G0, there is a10

finite sequence {xi}
n
i=0 with x = x0, y = xn, and cxi−1xi > 0, i = 1, . . . ,n. We may11

assume there is at most one edge from x to y, as two conductors c1
xy and c2

xy12

connected in parallel can be replaced by a single conductor with conductance13

cxy = c1
xy + c2

xy. Also, we assume cxx = 0 so that no vertex has a loop.14

Since the edge data of (G, c) is carried by the conductance function, we will15

henceforth simplify notation and write x ∈ G to indicate that x is a vertex. For16

any network, one can fix a reference vertex, which we shall denote by o (for17

“origin”). It will always be apparent that our calculations depend in no way on18

the choice of o.19

Definition 2.2. The Laplacian on G is the linear difference operator which acts20

on a function v : G→ R by21

(∆v)(x) :=
∑
y∼x

cxy(v(x) − v(y)). (2.1)

A function v : G→ R is harmonic iff ∆v(x) = 0 for each x ∈ G.22

We have adopted the physics convention (so that the spectrum is nonnega-23

tive) and thus our Laplacian is the negative of the one commonly found in the24

PDE literature. The network Laplacian (2.1) should not be confused with the25

stochastically renormalized Laplace operator c−1∆ which appears in the proba-26

bility literature, or with the spectrally renormalized Laplace operator c−1/2∆c−1/227

which appears in the literature on spectral graph theory (e.g., [Chu01]).28

Definition 2.3. The energy of functions u, v : G → C is given by the (closed,29

bilinear) Dirichlet form30

E(u, v) :=
1
2

∑
x,y∈G

cxy(u(x) − u(y))(v(x) − v(y)), (2.2)

with the energy of u given by E(u) := E(u,u). The domain of the energy form is31

domE = {u : G→ C ... E(u) < ∞}. (2.3)
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Since cxy = cyx and cxy = 0 for nonadjacent vertices, the initial factor of 1
2 in 1

(2.2) implies there is exactly one term in the sum for each edge in the network. 2

Remark 2.4. To remove any ambiguity about the precise sense in which (2.2) 3

converges, note that E(u) is a sum of nonnegative terms and hence converges iff 4

it converges absolutely. Since the Schwarz inequality gives E(u, v)2
≤ E(u)E(v), 5

it is clear that the sum in (2.2) is well-defined whenever u, v ∈ domE. 6

2.1. The energy space HE. The energy form E is sesquilinear and conjugate 7

symmetric on domE and would be an inner product if it were positive definite. 8

Definition 2.5. Let 1 denote the constant function with value 1 and recall that 9

kerE = C1. Then HE := domE/C1 is a Hilbert space with inner product and 10

corresponding norm given by 11

〈u, v〉E := E(u, v) and ‖u‖E := E(u,u)1/2. (2.4)

We callHE the energy (Hilbert) space. 12

Remark 2.6. Since G is connected, it is possible to show (with the use of Fa- 13

tou’s lemma) that domE/C1 is complete; see [JP09a, JP09c] for further details 14

regarding this point. 15

Definition 2.7. Let vx be defined to be the unique element ofHE for which 16

〈vx,u〉E = u(x) − u(o), for every u ∈ HE. (2.5)

The existence and uniqueness of vx for each x ∈ G is implied by the Riesz 17

lemma. Moreover, the collection {vx}x∈G forms a reproducing kernel for HE 18

( [JP09a, Cor. 2.7]); we call it the energy kernel and (2.5) shows its span is dense 19

inHE. 20

Note that vo corresponds to a constant function, since 〈vo,u〉E = 0 for every u ∈ 21

HE. Therefore, vo may often be safely ignored or omitted during calculations. 22

Definition 2.8. A dipole is any v ∈ HE satisfying the pointwise identity ∆v = 23

δx − δy for some vertices x, y ∈ G. One can check that ∆vx = δx − δo; cf. [JP09a, 24

Lemma 2.13]. 25

Definition 2.9. For v ∈ HE, one says that v has finite support iff there is a finite set 26

F ⊆ G for which v(x) = k ∈ C for all x < F. The set of functions of finite support 27

in HE is denoted span{δx}, where δx is the Dirac mass at x, i.e., the element of 28

HE containing the characteristic function of the singleton {x}. It is immediate 29

from (2.2) that E(δx) = c(x), whence δx ∈ HE. Define Fin to be the closure of 30

span{δx}with respect to E. 31

Definition 2.10. The set of harmonic functions of finite energy is denoted 32

Harm := {v ∈ HE
... ∆v(x) = 0, for all x ∈ G}. (2.6)
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It may be the case that the only harmonic functions of finite energy are constant1

(and hence trivial inHE). This is true, for example, on any finite network.2

Lemma 2.11 ( [JP09a, 2.11]). For any x ∈ G, one has 〈δx,u〉E = ∆u(x).3

The following result follows easily from Lemma 2.11; cf. [JP09a, Thm. 2.15].4

Theorem 2.12 (Royden decomposition). HE = Fin ⊕Harm.5

Remark 2.13. The Royden decomposition illustrates one of the advantages of6

working with 〈u, v〉E, as opposed to the inner product on `2(G) or the grounded7

energy product 〈u, v〉o := 〈u, v〉E + u(o)v(o). Another advantage is the following:8

by combining (2.5) and the conclusion of Lemma 2.11, one can reconstruct the9

network (G, c) (or equivalently, the corresponding Laplacian) from the dual10

systems (i) (δx)x∈X and (ii) (vx)x∈X. Indeed, from (ii), we obtain the (relative)11

reproducing kernel Hilbert spaceHE and from (ii), we get an associated operator12

(∆u)(x) = 〈δx,u〉E for u ∈ HE.13

Definition 2.14. Denote the (free) effective resistance from x to y by14

R(x, y) := RF(x, y) = E(vx − vy) = ‖vx − vy‖
2
E
. (2.7)

This quantity represents the voltage drop measured when one unit of current15

is passed into the network at x and removed at y, and the central equality in16

(2.7) is proved in [JP10a] and elsewhere in the literature; see [LP10, Kig03] for17

different formulations.18

The following results will be useful in the sequel; for further details, please19

see [JP09a, JP10a, JP09b, JP09d] and [JP09c].20

Lemma 2.15 ( [JP09a, Lem 2.23]). Every vx is R-valued, with vx(y) − vx(o) > 0 for21

all y , o.22

Lemma 2.16 ( [JP09b, Lem 6.9]). Every vx is bounded. In particular, ‖vx‖∞ ≤ R(x, o).23

Lemma 2.17 ( [JP09b, Lem 6.8]). If v ∈ HE is bounded, then PFinv is also bounded.24

Definition 2.18. Let p(x, y) := cxy

c(x) so that p(x, y) defines a random walk on the25

network, with transition probabilities weighted by the conductances. Then let26

P[x→ y] := Px(τy < τ
+
x ) (2.8)

be the probability that the random walk started at x reaches y before returning27

to x. In (2.8), τz is the hitting time of the vertex z and τ+
z := min{τz, 1}.28

Corollary 2.19 ( [JP10a, Cor. 3.13 and Cor. 3.15]). For any x , o, one has29

P[x→ o] =
1

c(x)R(x, o)
. (2.9)
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3. Comparing different conductance functions 1

Given a network (G, c), we will be interested in comparing its energy space 2

HE = HE(c) and Laplace operator ∆ = ∆(c) with those corresponding to a different 3

conductance function b. To be clarify dependence on the conductance functions, 4

we use scripts to distinguish between objects corresponding to different under- 5

lying conductance functions. For example, ∆(c) = ∆ in (2.1) and E(c) = E in (2.2), 6

as opposed to 7

(∆(b)v)(x) :=
∑
y∼x

bxy(v(x) − v(y)). (3.1)

and 8

Eb(u, v) = 〈u, v〉E(b) =
1
2

∑
x,y∈G

bxy(u(x) − u(y))(v(x) − v(y)), (3.2)

with domain domE(b) = {u : G → C ... E(b)(u) < ∞}. It is clear that HE(b) also 9

depends on b, and so too does the energy kernel {v(b)
x }x∈G. We will take the 10

domains to be 11

dom ∆(b) = span{v(b)
x }x∈G and dom ∆(c) = span{v(c)

x }x∈G. (3.3)

Remark 3.1. Given a network (G, c) and a new conductance function b ≤ c, it 12

may be that bxy = 0 even though cxy > 0, and consequently the edge structure 13

of (G, b) may be very different from (G, c). However, we will always make the 14

assumption that (G, b) is connected, so that Lemma 3.5 may be applied. 15

Definition 3.2. Let b : G0
× G0

→ [0,∞) be a symmetric function satisfying 16

bxy ≤ cxy, for all x, y ∈ G0.

In this case, we write b ≤ c. Note that we will always assume (G, b) is connected; 17

see Remark 3.1. 18

Lemma 3.3. Inclusion gives natural contractive embedding I : HE(c) ↪→HE(b) . 19

Proof. Since b ≤ c, one has 20

E
(b)(u) =

1
2

∑
x,y∈G

bxy|u(x) − u(y)|2 ≤
1
2

∑
x,y∈G

cxy|u(x) − u(y)|2 = E(c)(u) (3.4)

for any function u : G→ R, and hence ‖Iu‖E(b) ≤ ‖u‖E(c) . � 21

Lemma 3.4. I(Fin(c)) ↪→ Fin(b) and I?(Harm(b)) ↪→Harm(c). 22

Proof. The first follows from the fact that I(δx) = δx, and this implies the second 23

because the adjoint preserves the orthocomplement (see Theorem 2.12), i.e., 24

I
?
(
Harm(b)

)
= I?

(
(Fin(b))⊥

)
⊆

(
Fin(c)

)⊥
= Harm(c). �
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Lemma 3.5 clarifies the nature of the blanket assumption that (G, b) is con-1

nected; see Remark 3.1.2

Lemma 3.5. If (G, c) is a network and b ≤ c, then the following are equivalent:3

(i) (G, b) is connected.4

(ii) kerE(b) = kerE(c) = C1.5

(iii) kerI = 0.6

Proof. To see (i) ⇐⇒ (ii), observe that E(b)(u) is given by a sum of nonnegative7

terms and hence vanishes if and only if each summand does. Thus E(b)(u) = 08

iff u is locally constant. For (ii) =⇒ (iii), note that I(u) = 0 implies ‖u‖E(b) = 09

and hence that u is a constant function, whence u = 0 inHE(b) . For (iii) =⇒ (ii),10

suppose (G, b) is not connected, and define u = 1 on one component and u = 011

on the complement. Then ‖I(u)‖E(b) = 0 but u , 0 inHE(c) . �12

Lemma 3.6. I?v(b)
x = v(c)

x , and for general u ∈ HE(b) , one can compute I? via13

(I?u)(x) − (I?u)(y) =
bxy

cxy
(u(x) − u(y)). (3.5)

Proof. For u ∈ HE(c) ⊆ HE(b) ,14

〈I
?v(b)

x ,u〉E(c) = 〈v(b)
x ,Iu〉E(b) = u(x) − u(o) = 〈v(c)

x ,u〉E(c) .

Now for u ∈ HE(b) and v ∈ HE(c) , the latter claim follows from the fact that15

〈u,Iv〉E(b) =
1
2

∑
x,y∈G

bxy(u(x) − u(y))(v(x) − v(y))

is equal to16

〈I
?u, v〉E(c) =

1
2

∑
x,y∈G

cxy((I?u)(x) − (I?u)(y))(v(x) − v(y)). �

Corollary 3.7. I is injective.17

Proof. Since span{v(c)
x } = ranI? is dense inHE(c) , it follows that kerI = {0}. �18

Remark 3.8. Corollary 3.7 may appear trivial, but it is not. Suppose H1 and H219

are two Hilbert spaces with the same underlying vector space V, but different20

inner products for which ‖v‖2 ≤ ‖v‖1, for all v ∈ V. Then the identity map21

ι : V → V induces an embedding H1 ↪→ H2 which can fail to be injective. For22

example, take H2 to be the Hardy space H+(D) on the unit disk and take H123

to be u(z)H+(D), the image of H2 under the operation of multiplication by the24

function u ∈ H∞(D). That is,25

H1 = {uh ... h ∈ H2}, ‖uh‖1 := ‖h‖2.

There are functions u ∈ H∞(D) for which ‖uh‖1 , 0 and ‖uh‖2 = 0, even when h26

is a nonzero element of H2; see [Sar94] for details.27
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Lemma 3.9. If δxy is the Kronecker delta, then 1

〈v(b)
x ,∆

(b)v(b)
y 〉E(b) = δxy + 1 = 〈v(c)

x ,∆
(c)v(c)

y 〉E(c) , ∀x, y ∈ G \ {o}. (3.6)

Proof. Note that 2

〈v(b)
x ,∆

(b)v(b)
y 〉E(b) = (∆(b)v(b)

y )(x) − (∆(b)v(b)
y )(o) = 〈δx, v

(b)
y 〉E(b) − 〈δo, v

(b)
y 〉E(b) ,

because δx ∈ HE(b) and 〈δx,u〉E(b) = ∆(b)u(x). Now the result follows via 3

〈δx, v
(b)
y 〉E(b) − 〈δo, v

(b)
y 〉E(b) = (δx(y) − δx(o)) − (δo(y) − δo(o)) = δxy + 1,

since x, y , o. � 4

Lemma 3.10. For 1 < b ≤ c, one has ∆(b) = I∆(c)
I
?. 5

Proof. Applying Lemma 3.9 and Lemma 3.6, 6

〈v(b)
x ,∆

(b)v(b)
y 〉E(b) = 〈v(c)

x ,∆
(c)v(c)

y 〉E(c)

= 〈I?v(b)
x ,∆

(c)
I
?v(b)

y 〉E(c)

= 〈v(b)
x ,I∆(c)

I
?v(b)

y 〉E(c) . �

Thus we have a commuting square 7

HE(c)

∆(c)

��

HE(b)
I
?

oo

∆(b)=I∆(c)
I
?

��
HE(c)

I

// HE(b)

(3.7)

Note that one can recover the dipole property of v(b)
x from Lemma 3.6 and 8

Lemma 3.10: ∆(b)v(b)
x = I∆(c)

I
?v(b)

x = I∆(c)v(c)
x = I(δx − δo) = δx − δo. 9

Corollary 3.11. I? ∈ Hom(Harm(b),Harm(c)) is a spectral invariant. 10

Proof. This is basically a restatement of Lemma 3.4. � 11

This spectral invariant is also apparent from the formula ∆(b) = I∆(c)
I
? of 12

Lemma 3.10. WhileI is not a norm-preserving map, it is standard from spectral 13

theory that one can write I in terms of its polar decomposition as I = UP and 14

then ∆(b) = I∆(c)
I
? implies that a unitary equivalence is given by ∆(b) = U∆(c)U?. 15

In the case when dimHarm(b) = dimHarm(c) = 1, the spectral invariant of 16

Corollary 3.11 is just a number. This is computed explicitly for the geometric 17

integers in Example 5.1. 18

Remark 3.12 (Open Question). For a fixed conductance function b : G0
× G0

→ 19

[0,∞), what are the closed subspaces K ⊆ HE(b) such that K � HE(c) for some 20

conductance functions c with b ≤ c? 21

Corollary 3.13. If b ≤ c and ∆(c) is bounded onHE(c) , then ∆(b) is bounded onHE(b) . 22



SPECTRAL COMPARISONS 9

Proof. Lemma 3.10 immediately implies ‖∆(b)
‖H

E(b)→HE(b) ≤ ‖∆
(c)
‖H

E(c)→HE(c) . �1

Corollary 3.14. If c ≡ 1 and ∆(c) is bounded on HE(c) , then ∆(b) is bounded on HE(b)2

for any bounded conductance function b.3

Proof. Writing ‖b‖∞ for the supremum of b, we have4

bxy ≤ ‖b‖∞cxy = ‖b‖∞,

so Corollary 3.13 applies to the network with conductances all equal to ‖b‖∞. �5

Theorem 3.15. Let c be an arbitrary conductance function, and let 1 be the conductance6

function which assigns a conductance of 1 to every edge. Then HE(c) is contained in7

HE(1) if and only if there is an ε > 0 such that cxy ≥ ε for all x, y ∈ G with cxy > 0.8

Proof. For the forward direction, suppose K < ∞ satisfies ‖u‖2
E(1) ≤ K‖u‖2

E(c) , for
all u ∈ HE(c) . Note that E(c)(δx) = c(x) follows directly from (2.2), so

c(x) = ‖δx‖
2
E(c) ≥

1
K
‖δx‖

2
E(1) ≥

1
K

since ‖δx‖E(1) ≥ 1 by the connectedness of the network.9

For the converse,10

‖u‖2
E(1) =

1
2

∑
x,y∈G

(u(x) − u(y))2
≤

1
2

∑
x,y∈G

cxy

ε
(u(x) − u(y))2 =

1
ε
‖u‖2
E(c) ,

so I : HE(c) →HE(1) is a bounded operator with ‖I‖H
E(c)→HE(1) ≤

1
√
ε
. �11

Example 3.16 (Horizontally connected binary tree). This example shows that the12

boundedness of the conductance function is not sufficient to imply boundedness13

of the Laplacian, and illustrates the interplay between spectral reciprocity and14

effective resistance (see also [JP09e]). To begin, let (G, b) be the binary tree where15

every edge has conductance cxy = 1. Now let (G, c) be the network obtained by16

connecting all vertices at level k with an edge of conductance ck as in Figure 1.17

The resulting network is no longer a tree, but we call it the horizontally connected18

binary tree for lack of a better name. Note that b ≤ c.19

Suppose that ck = 1 for each k, so cxy is globally constant on G1. However,20

c(x) = 2k + 2 for x in level k, so c(x) is clearly unbounded on G0. (As usual, level21

k consists of all vertices in (G, b) for which the shortest path to o contains exactly22

k edges.) Let Kn be the complete graph on n vertices. Using Schur complements23

(for example, as in [JP10a,JP09c] or [Kig01,Kig03]), one can compute RKn (x, y) =24

21−n for any x, y ∈ Kn. Consequently, it is easy to see that RF
(G,c)(x, y) can be25

made arbitrarily small by choosing x, y in level k, for sufficiently large k. By26

spectral reciprocity (see [JP09e]), this implies that ∆(c) is unbounded on HE(c) .27

Thus, this network provides an example of how boundedness of cxy does not28

imply boundedness of ∆(c). For an example of how boundedness of cxy does not29

imply boundedness of ∆ on other spaces, see [Woj07].30
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... ... ... ...

o

G1

G2

G2

level 1

level 2

level 3

o

c1

c2

c3

Figure 1. Construction of the “horizontally connected binary tree” of Example 3.16.

Suppose that we choose ck so as to make c(x) bounded on G0. Then we must 1

have ck = O(2−k) as k→∞, so define ck = 2−k. Using this, one can compute that 2

RGk (x, y) = 1 for x, y in level k of Gk, for every k. 3

Lemma 3.17. Suppose b ≤ c. If ∆(c) is self-adjoint, then ∆(b) is self-adjoint also. 4

Proof. Take adjoints on both sides of ∆(b) = I∆(c)
I
? (see Lemma 3.10). Note that 5

the domains are as in (3.3). � 6

Example 3.18 (Geometric integers). For a fixed constant c > 1, let (Z, cn) de- 7

note the network with integers for vertices, and with geometrically increasing 8

conductances defined by cn−1,n = cmax{|n|,|n−1|} so that the network under consid- 9

eration is 10

. . . c3

−2
c2

−1
c

0
c

1
c2

2
c3

3
c4

. . .

as in [JP09a, Ex. 6.2], and fix o = 0. It is shown in [JP09e, §4.2] that ∆(c) is not 11

self-adjoint, and a defect vector ϕ ∈ ∆(c) is constructed which satisfies 12

∆(c)ϕ = −ϕ. (3.8)

However, for b ≡ 1, ∆(b) is bounded and Hermitian, and thus clearly self-adjoint. 13

This example shows that the converse of Lemma 3.17 does not hold. Using 14

Fourier theory, one can show that HE(b) � L2
(
(−π, π), sin2( t

2 )
)
; see [JP11, §6.3], 15

for example. 16

So Lemma 3.10 gives ∆(b) = I∆(c)
I
?, where ∆(b) is bounded and ∆(c) is un- 17

bounded and not self-adjoint. The inclusion I : HE(c) →HE(b) indicates that 18

HE(b) = HE(c) ⊕H
⊥

E(c) ,
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whereH⊥
E(c) = HE(b) 	HE(c) , and that ∆(c) is a matrix corner of ∆(b):1

∆(b) =

[
∆(c) A
A? B

]
. (3.9)

Let ϕ be the defect vector of ∆(c), and let ψ be any element ofH⊥
E(c) . Now let2

ζ =

[
ϕ

ψ

]
for

ϕ = ProjH
E(c) (ζ) ∈ HE(c) , and

ψ = ζ − ϕ ∈ H⊥
E(c) .

(3.10)

3.1. The adjoint of ∆(b) with respect to E(c). For the results in this section we3

consider the adjoint of ∆(b) with respect to E(c) and denote it by ∆(b)Fc , in other4

words, we are interested in5

〈∆(b)Fc u, v〉E(c) = 〈u,∆(b)v〉E(c) .

It will be helpful to know the action of I? on Fin, as given in Lemma 3.19; this6

result also generalizes the dipole property ∆v = δx − δy of Definition 2.8.7

Lemma 3.19. For 1 < b ≤ c, one has span{v(c)
x } ⊆ dom ∆(b)Fc and8

∆(b)Fc v(c)
x = I?(δx − δo). (3.11)

Proof. For any fixed x ∈ G and u ∈ HE(c) , we have the estimate9

〈v(c)
x ,∆

(b)u〉E(c) = ∆(b)u(x) − ∆(b)u(o) = 〈δx − δo,u〉E(b) ≤ ‖δx − δo‖E(b) · ‖u‖E(b) ,

by by Lemma 2.11 followed by (2.5). This shows span{v(c)
x } ⊆ dom ∆(b)Fc and10

〈v(c)
x ,∆

(b)u〉E(c) = 〈δx − δo,u〉E(b) , which gives (3.11). �11

For Theorem 3.20, we need to define ∆(c)−1 via the spectral theorem. To this12

end: if ∆(c) is not self-adjoint, then we replace ∆(c) by its Friedrichs extension.13

See [JP11] for details. With this assumption in place,14

∆(c)−1
:=

∫
∞

0
e−λ∆(c)

dλ. (3.12)

This definition of the inverse is a standard application of the spectral theorem,15

and is based on the fact that
∫
∞

0 e−λt dλ = 1
t .16

Theorem 3.20. For 1 < b ≤ c, one has ∆(b)Fc
= ∆(c)−1

∆(b)∆(c), where ∆(c)−1 is the17

inverse of the Friedrichs extension, defined as in (3.12).18

Proof. We first show ∆(c)∆(b)Fc
= ∆(b)∆(c), which is equivalent to I(∆(c)∆(b)Fc

−19

∆(b)∆(c)) = 0 by Corollary 3.7. Applying Lemma 3.19 and Lemma 3.10, one has20

∆(c)∆(b)Fc v(c)
x = I∆(c)∆(b)Fc v(c)

x = I∆(c)
I
?(δx − δo) = ∆(b)(δx − δo).

Then using the dipole property ∆(c)v(c)
x = δx − δo yields21

∆(b)(δx − δo) = ∆(b)(∆(c)v(c)
x ) = ∆(b)(∆(c)v(c)

x ) = ∆(b)∆(c)(v(c)
x ).
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Now we have ∆(c)∆(b)Fc (v(c)
x ) = ∆(b)∆(c)(v(c)

x ) for any x, whence ∆(c)∆(b)Fc
= ∆(b)∆(c) 1

follows by the density of span{v(c)
x } in HE(c) . It follows from the preceding 2

argument that ∆(b)∆(c)(span{v(c)
x }) ⊆ dom ∆(c)−1, and so the proof is complete. � 3

4. Moments of ∆(c) 4

Assumption 1. In this section, we suppose a conductance function c has been fixed 5

and if the corresponding Laplace operator ∆(c) is not self-adjoint, then we replace it by 6

the Friedrichs extension. 7

With Assumption 1 in place, we can work with ∆(c) as a self-adjoint operator. 8

Then by the Spectral Theorem: for any u ∈ HE(c) , there is a Borel measure µ(c)
u on 9

[0,∞) such that 10

〈u, ψ(∆(c))u〉E(c) =

∫
∞

0
ψ(λ) dµ(c)

u (λ) =

∫
∞

0
ψ(u)‖P(dλ)u‖2

E(c) , (4.1)

where P is the projection-valued measure in the spectral resolution of ∆(c). 11

Lemma 4.1. For u = v(c)
x − v(c)

y and ψ(λ) = λk, k = 0, 1, 2, we have 12

k = 0 : 〈u,u〉E(c) = RF(x, y),

k = 1 : 〈u,∆(c)u〉E(c) = 2 − 2δxy,

k = 2 : 〈v(c)
x ,∆

(c)2
v(c)

x 〉E(c) = c(x) + 2cxy + c(y).

Proof. The case k = 0 follows immediately from (2.7). For k = 1, (3.6) gives 13

〈v(c)
x ,∆

(c)v(c)
x 〉E(c) − 〈v(c)

x ,∆
(c)v(c)

y 〉E(c) − 〈v(c)
y ,∆

(c)v(c)
x 〉E(c) + 〈v(c)

y ,∆
(c)v(c)

y 〉E(c)

= 2 − (δxy + 1) − (δxy + 1) + 2.

For k = 2, we use the fact that the Friedrichs extension is self-adjoint and the 14

dipole property (2.5) to compute 15

〈v(c)
x ,∆

(c)2
v(c)

x 〉E(c) = 〈∆(c)v(c)
x ,∆

(c)v(c)
x 〉E(c) = 〈δx − δy, δx − δy〉E(c) = c(x) + 2cxy + c(y).

For the last step, we used E(δx) = c(x), which is immediate from (2.2). � 16

Theorem 4.2 (Moments of ∆(c)). Let (G, c) be a given network, and let b ≤ c. If 17

m(c)
k (u) :=

∫
∞

0 λk dµ(c)
u is the kth moment of µ(c)

u (and similarly for b), then 18

m(b)
1 (u) = m(c)

1 (I?u) and m(b)
2 (u) ≤ m(c)

2 (I?u). (4.2)

Proof. First, note that Lemma 3.10 gives 19

m(b)
1 = 〈u,∆(b)u〉E(b) = 〈u,I∆(c)

I
?u〉E(b) = 〈I?u,∆(c)

I
?u〉E(c) = m(c)

1 .

For the second moments, using Lemma 3.10 again gives 20

m(b)
2 = 〈u, (∆(b))2u〉E(b) = 〈u,I∆(c)

I
?
I∆(c)

I
?u〉E(b) = 〈∆(c)?

I
?u,I?I∆(c)

I
?u〉E(c) .
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Since I?I is contractive by Lemma 3.3,1

〈∆(c)?
I
?u,I?I∆(c)

I
?u〉E(c) ≤ ‖I

?
I‖ · 〈∆(c)?

I
?u,∆(c)

I
?u〉E(c)

≤ 〈u,I(∆(c))2
I
?u〉E(c) ,

whence m(b)
2 ≤ m(c)

2 . �2

Remark 4.3. If bxy < cxy for some edge (xy), then m(b)
2 (v(b)

x ) < m(c)
2 (I?v(b)

x )3

5. Examples4

Example 5.1 (Geometric integers). Let (Z, cn) be the network whose vertices are5

the integers with conductances given by6

cm,n =

cmax{|m|,|n|}, |m − n| = 1

0, else,

as in the following diagram:7

. . . c4
•
−3

c3
•
−2

c2
•
−1

c
•
0

c
•
1

c2
•
2

c3
•
3

c4
. . .

It is known thatHarm is 1-dimensional for this network; see [JP09a]. It was also8

shown in [JP09e] that ∆ is not essentially self-adjoint (as an operator onHE) for9

this network.10

We compare (Z, bn) and (Z, cn), where 1 < b ≤ c. In this case, dimHarm(b) =11

dimHarm(c) = 1 and we can compute the (numerical) spectral invariant of12

Corollary 3.11. Choose unit vectors hb ∈ Harm(b) and hc ∈ Harm(c):13

hb(n) =
sgn(n)

2
√

b − 1

(
1 −

1
b|n|

)
, hc(n) =

sgn(n)

2
√

c − 1

(
1 −

1
c|n|

)
. (5.1)

Now since 〈I?hb,u〉E(c) = 〈hb,u〉E(b) for all u ∈ HE(c) , we have14

〈hb, v
(c)
n 〉E(b) = 〈I?hb, v

(c)
n 〉E(c) = 〈Khc, v

(c)
n 〉E(c) = K〈hc, v

(c)
n 〉E(c) , (5.2)

following the ansatz thatI? should be just a numerical constant (scaling factor).15

Suppose for simplicity that n > 0, as the other computation is similar. On the16

left side of (5.2), we can compute directly from (2.2):17 〈
hb, v

(c)
n

〉
E(b)

= 2
∞∑
j=1

b j
(

1 − b− j

2
√

b − 1
−

1 − b1− j

2
√

b − 1

) (
v(c)

n ( j) − v(b)
n ( j − 1)

)
=
√

b − 1v(c)
n (n) =

√

b − 1
n∑

j=1

1
cn =

√

b − 1
1 − c−n

c − 1
, (5.3)

Meanwhile, on the right side of (5.2), we can use the reproducing property to18

compute19
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〈hc, v
(c)
n 〉E(c) = hc(n) − hc(o) =

1

2
√

c − 1

(
1 −

1
cn

)
. (5.4)

Substituting (5.3) and (5.4) into (5.2) gives 1

√

b − 1
1 − c−n

c − 1
= K

1

2
√

c − 1

(
1 −

1
cn

)
,

and so the corresponding spectral invariant is 2

K =
∥∥∥∥I?∣∣∣

Harm(b)

∥∥∥∥ =

√
1 − b
1 − c

,

and this is the factor by which I? scales the basis vector hb; see Corollary 3.11. 3
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