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ISOMORPHISMS AND STRICTLY SINGULAR OPERATORS
IN MIXED TSIRELSON SPACES

DENKA KUTZAROVA, ANTONIS MANOUSSAKIS, AND ANNA PELCZAR-BARWACZ

ABsTRACT. We study the family of isomorphisms and strictly singular operators in mixed
Tsirelson spaces and their modified versions setting. We show sequential minimality of
modified mixed Tsirelson spaces Th[(Sn,0r)] satisfying some regularity conditions and
present results on existence of strictly singular non-compact operators on subspaces of
mixed Tsirelson spaces defined by the families (Axn)n and (Sp)n-

INTRODUCTION

In the celebrated paper [20] W.T. Gowers started his classification program for Banach
spaces. The goal is to identify classes of Banach spaces which are

(1) hereditary, i.e. if a space belongs to a given class, then all of its closed infinite
dimensional subspaces as well,

(2) inevitable, i.e. any Banach space contains an infinite dimensional subspace in one
of those classes,

(3) defined in terms of richness of family of bounded operators in the space.

The famous Gowers’ dichotomy brought first two classes: spaces with unconditional basis
and hereditary indecomposable spaces. The further classification, described in terms of iso-
morphisms, concerned minimality and strict quasiminimality. A Banach space X is minimal
if every closed infinite dimensional subspace of X contains a further subspace isomorphic
to X. A Banach space X is called quasiminimal if any two infinite dimensional subspaces
Y, Z of X contain further isomorphic subspaces. The classical spaces £,,, 1 < p < o0, ¢y are
minimal and the Tsirelson space T'[S1,1/2] is the first known strictly quasiminimal space
(i.e. without minimal subspaces), [I5]. The results of W.T. Gowers lead to the question
of the refinement of the classes and classification of already known Banach space. Further
step in the first direction was made by the third named author, [30], who proved that a
strictly quasiminimal Banach space contains a subspace with no subsymmetric sequence.
An extensive refinement of list of the classes and study of exampes were made recently by
V. Ferenczi and C. Rosendal [16] [17].

The mixed Tsirelson spaces T[(My, 0,)n], for M,, = A, or S,, as the basic examples
of spaces not containing ¢, or cp, form a natural class to be studied with respect to the
classification program. The first step was made by T. Schlumprecht, [5], who proved that
his famous space S = T[(Ap,1/logy(n + 1)),] is complementably minimal. The result of
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Schlumprecht holds for a certain class of mixed Tsirelson spaces T[(Ag,,,0n)n] by [27]. On
the other hand, the Tzafriri’s space T'[(Ay,, ¢/v/n)y,] [34] is not minimal by [21]. However the
original Tsirelson space T'[S1,1/2] is not minimal [I5], every its normalized block sequence is
equivalent to a subsequence of the basis. We show that mixed Tsirelson spaces T[( Ay, 05 )n],
for which Tzafriri space is a prototype, are saturated with subspaces with this "blocking
principle”.

V. Ferenczi and C. Rosendal [16] introduced and studied a stronger notion of quasimini-
mality. A Banach space X with a basis is sequentially minimal [16], if any block subspace of
X contains a block sequence (z,,) such that every block subspace of X contains a copy of a
subsequence of (z,). The related notions in mixed Tsirelson spaces defined by families (S,,)
and their relation to existence of £¢-spreading models were studied in [25, 22]. In [28] it was
shown that the spaces T[(Ay, 05)n], as well as T[(Sy, Oy,)n] satisfying the regularity condition

0,,/0™ ~\, where 6 = lim,, 971/ " are sequentially minimal. We show that the modified mixed
Tsirelson spaces Ths[(Sy, 0n)n] with the above property are also sequentially minimal.

The major tool in the study of mixed Tsirelson spaces T'[(Sy, 0, )n] are the tree-analysis
of norming functionals and the special averages introduced in [7], see also [II]. The basic
idea to prove quasiminimality is to produce in every subspace a sequence of appropriate
special averages of rapidly increasing lengths and show these sequences span isomorphic
subspaces. The major obstacle in study of modified mixed Tsirelson spaces is estimating the
norms of splitting a vector into pairwise disjoint parts instead of consecutive parts as in non-
modified setting. In order to overcome it, we introduced special types of averages, so-called
Tsirelson averages, describing in fact local representation of the Tsirelson space T[Sy, 0],

with 8 = sup,, 971/ " in the considered space. Then we are able to control the action of a
norming functional on a linear combination of Tsirelson averages by the action of a norming
functional on suitable averages in the Tsirelson space T[Sy, 0] and vice versa. Using those
estimations we prove the sequential minimality of modified mixed Tsirelson space satisfying
the regularity condition. Tsirelson averages are also the main tool for proving arbitrary
distortability of Th/[(Sy,0,)] in case 6,/0™ ~\, 0, the result known before in non-modified
setting under the condition 6,,/0™ — 0, [3].

In the second part of the paper we deal with the existence of strictly singular non-compact
operators in mixed Tsirelson spaces. The existence of non-trivial strictly singular operators,
i.e. operators whose none restriction to an infinite dimensional subspace is an isomorphism,
was also studied in context of classification program of Banach space, both in search for suffi-
cient conditions and examples on known spaces. A space on which all the bounded operators
are compact perturbations of multiple of the identity was constructed recently by S.A. Ar-
gyros and R. Haydon, [10], who solved "scalar-plus-compact". The existence of strictly
singular non-compact operators was shown on Gowers-Maurey spaces and Schlumprecht
space [6], as well as on a class of spaces defined by families (S,),, [19]. Th. Schlumprecht
[33] studying the richness of the family of operators on a Banach space in connection with
the "scalar-plus-compact" problem defined two classes of Banach spaces. Class 1 refers to
a variation of a "blocking principle”, while Class 2 means existence of a striclty singular
non-compact operator in any subspace (see Def. B.3]). T. Schlumprecht asked if any Banach
space contains a subspace with a basis which is either of Class 1 or Class 2. We show that



a mixed Tsirelson space T[(An, -5 ),] belongs to Class 1 if inf, ¢, > 0 and to Class 2 if
lim,, ¢,, = 0.

In [23] a block sequence (x,,)nen generating ¢1-spreading model was constructed in Schlum-
precht space S. This result combined with the result of I. Gasparis [19] led to the question
if some biorthogonal sequence to (x,), generates a cy-spreading model in S*. We remark
that this is not the case. In general, it is still unknown if any sequence in S* generates a
co-spreading model. Finally we show that in mixed (modified) Tsirelson spaces defined by
(Sp) containing a block sequence generating ¢-spreading model there is a strictly singular
non-compact operator on a subspace.

We describe now briefly the content of the paper. In the first section we recall the basic
notions in the theory of mixed Tsirelon spaces and their modified versions, including the
canonical representation of these spaces and the notion of a tree-analysis of a norming func-
tional (Def. [L8). The second section is devoted to the study of modified mixed Tsirelson
spaces T'[(Sy,, 0 )n] satisfying the regularity condition. We extend the notion of an averaging
tree (Def. 2.2]) and present the notions of averages of different types, providing also upper
(Lemma 210) and lower (Lemma 2.14) "Tsirelon-type" estimates. We conclude the section
with the result on arbitrary distortion for spaces with 6,,/6™ ~, 0 (Theorem 2.19]) and sequen-
tial minimality (Theorem [2.20). In the last section we study the existence of non-compact
strictly singular operators in mixed Tsirelson spaces T'[(Ay, 0y)n] (Theorem B.4). We discuss
the behaviour of a biorthogonal sequence to the sequence generating ¢;-spreading model in
Schlumprecht space (Proposition B.6]) and the case of mixed Tsirelson spaces T[(Sy,0n)n]
admitting ¢y-spreading model (Theorem B.8). We finish with the comments and questions
concerning the Tzafriri space and richness of the set of subsymmetric sequences in a Banach
space.

1. PRELIMINARIES

We recall the basic definitions and standard notation.

By a tree we shall mean a non-empty partially ordered set (7, =) for which the set
{y € T : y 2z} is linearly ordered and finite for each z € 7. If 7" C T then we say that
(T7,=) is a subtree of (T,=). The tree T is called finite if the set T is finite. The initial
nodes of T are the minimal elements of 7 and the terminal nodes are the maximal elements.
A branch in T is a maximal linearly ordered set in 7. The immediate successors of © € T,
denoted by > (z), are all the nodes y € T such that z < y but there is no z € T with
x =z =y. If X is a linear space, then a tree in X is a tree whose nodes are vectors in X.

Let X be a Banach space with a basis (e;). The support of a vector x = ), x;e; is the
set suppx = {i € N : x; # 0}, the range of x, denoted by range(x) is the minimal interval
containing suppx. Given any x = ), a;e; and finite £ C N put Ex = g = ). a€;.
We write z < y for vectors x,y € X, if maxsuppx < minsuppy. A block sequence is any
sequence (x;) C X satisfying z1 < x9 < ..., a block subspace of X - any closed subspace
spanned by an infinite block sequence. A subspace spanned by a block sequence (z,) we
denote by [z,,].

Notation 1.1. Given any two vectors x,y € X we write x <y, if suppx C suppy, and we
say that x and y are incomparable, if supp x Nsuppy = 0.
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Given a block sequence (x,) C X and a functional f € X* we say that f begins in x,, if
minsupp f € (maxsupp x,—1, maxsupp x| (set xg=0).

A basic sequence (x,) C—dominates a basic sequence (y,), C' > 1, if for any scalars (a,,)

we have
1) " anynll < CID - anaal|.
n n

Two basic sequences (zy,) and (y,) are C-equivalent, C > 1, if (z,,) C'—dominates (y,) and
(yn) C—dominates (zy,).

Definition 1.2. Let E be a Banach space with a 1-subsymmetric basis (uy,), i.e. 1l-equivalent
to any of its infinite subsequences. Let (x,) be a seminormalized basic sequence in a Banach
space X. We say that (z,), generates (u,) as a spreading model, if for any k¥ € N and any
(a;)¥_, C R we have

k k
lim lim ... lim HZaixniHX = ||Zalul\|E
n1—00 Ny —+00 T —00 — —

We say that a Banach space X with a basis is £j-asymptotic, 1 < p < oo, if any block
sequence (z;)i_, is C-equivalent to the u.v.b. of £}, for some universal C' > 1.

By [13] any seminormalized basic sequence admits a subsequence generating spreading
model. We say that (z,,) generates £,- (resp. co-)spreading model, if (u;) is equivalent to
the u.v.b. of ¢ (resp. ¢p).

Recall that by Krivine theorem for any Banach space X with a basis there is some
1 < p < oo such that £, is finitely block (almost isometrically) represented in X, i.e. for
any € > 0 and any n € N there is a normalized block sequence z1 < -+ < x, in X which is
(1 + €)-equivalent to the u.v.b. of £7.

We work on two types of families of finite subsets of N: (A, )pen and (Sq)a<w, - Let
A, ={F CN:#F <n}, neN.
Schreier families (Sa)a<w, » introduced in [I], are defined by induction:
So={{k}: ke N}U{0},
Sot1={F1U---UFp: k<F <---<Fy, f1,....,Fx €Sa}, a<wi.
If o is a limit ordinal, choose oy,  a and set
So={F: FeS&§,, and n < F for some n € N}.
Given a family M = A,, or S,, we say that a sequence F1,..., E; of subsets of N is
(1) M-admissible, if By < --- < Ey and (min E;)¥_; € M,
(2) M-allowable, if (E;)%_, are pairwise disjoint and (min F;)¥_, € M.
Let X be a Banach space with a basis. We say that a sequence x1 < - -+ < x,, is M-admissible
(resp. allowable), if (supp x;)I"_; is M-admissible (resp. allowable).

Definition 1.3 (Mixed and modified mixed Tsirelson space). Fix a sequence of families
(M) = (Ag,) or (Sg,) and sequence (6,) C (0,1) with lim,_,~ 6, = 0. Let K C cyo be
the smallest set satisfying the following:
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(1) () C K,
(2) for any f; < --- < fi in K, if (f;))%, is M,-admissible for some n € N, then
On(fi+ -+ fi) € K.
We define a norm on cgg by ||z| = sup{f(z) : f € K}, € coo. The mized Tsirelson space
T[(My,0y),] is the completion of (cq, || - ||)-
The modified mized Tsirelson space Tyr[(Mp,0n)n] is defined analogously, by replacing
admissibility by allowability of the sequences.

It is standard to verify that the norm ||-|| is the unique norm on ¢ satisfying the equation

k

l|lz|| = max{HazHoo,sup {Hn Z |Eiz|| : (E)E, — M,, — admissible, n € N}} .
i=1

It follows immediately that the u.v.b. (e,) is l-unconditional in the space T[(M,, 0 )n].

It was proved in [7] that any T'[(Sk, ,0n)n] is reflexive, also any T'[(Ag,,,0n)n] is reflexive,

provided 6,, > k% for at least one n € N, [11].

Taking M,, = M and 6, = 0 for any n we obtain the classical Tsirelson-type space
T|M,0]. Recall that T[A,,0] = ¢y if § < 1/n and T[Ay,0] = £p, if 6 = 1/n for ¢
satisfying 1/p 4+ 1/q = 1, [12, 11]. The space T[S1,1/2] is the Tsirelson space.

Schlumprecht space S is the space T'[( Ay, m)n], Tzafriri space is T[( Ay, ﬁ)”] for
0 < ¢ < 1. Modified Tsirelson-type spaces are isomorphic to their non-modified version,
whereas the situation is quite different in mixed setting, [9).

We present now the canonical form of (modified) mixed Tsirelson space in both cases
M, = Ay, or S, neN.

Definition 1.4. [27] A mixed Tsirelson space T'[(Ay, , 0n)nen] is called a p—space, for p €
[1,00), if there is a sequence (pn)n C (1,00) such that

(1) py > pas N — oo, and py > pyy1 > p for any N € N,

(2) T[(Ay,,0n)N_] is isomorphic to £,, for any N € N.

n=1

A p—space T[(Ay,, 0 )nen] is called regular, if 6, \, 0 and 60,,,,, > 6,,6,, for any n,m € N.
Recall that any p—space is isometric to a regular p—space [28].

Notation 1.5. Let T[(Ay, 0n)nen] be a regular p—space. If we set 6, = 1/n1/q” with g, €
(1,00), n € N, then ¢ = lim, ¢, = sup,, g, € (0,00], where 1/p + 1/q = 1, with usual
convention 1/oo = 0.

In the situation as above let ¢, = 0,n'/9 € (0,1), n e N, if p > 1. To unify the notation
put ¢, = 0,, n € N, in case p = 1.

A space Tas[(Sn, On)nen] with 6, \, 0 and 0,4, > 6,,0,, is called a regular space. Notice
that any modified mixed Tsirelson space is isometric to a regular modified mixed Tsirelson
space (cf. [3]).

Notation 1.6. For a regular modified mized Tsirelson space Th;[(Sn, 6n)n] let 0 = lim, 971/" =

sup,, 9}/” € (0,1]. We shall use also the following condition.:

(b))  (0,/0")n ¢ te. Oppm < 0,0™ for any n,m € N.
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Lemma 1.7. The space Tpr[(Sp]Az2], 0n)n] is 3-isomorphic to Tpr[(Sn, On)n]-

The proof of the above follows that of Lemma 4.5, [28] with "admissible" sequences
replaced by "allowable" ones.

The following notion provides a useful tool for estimating norms in Tsirelson type spaces,
mixed Tsirelson spaces and their modified versions:

Definition 1.8. [The tree-analysis of a norming functional| Let f € K, the norming set
of T[(My,0n)n] (resp. Tar[(My,0,)n]). By a tree-analysis of f we mean a finite family
(fa)aeT indexed by a tree 7 with a unique root 0 € T (the smallest element) such that the
following hold

(1) fo=fand fo e Kforall a € T,

(2) a € T is maximal if and only if f, € (£e}),

(3) for every not maximal a € T there is some n € N such that (fs)gesucc(a) 15 an
My, -admissible (resp. -allowable) sequence and fo = 05(3 geguce(a) f8)- We call Oy
the weight of f,.

For any a € T, o > 0, we define the tag t(a) =t(fa) as t(a) =[], g>0 weight(fp).

For any o € Twe define also inductively the order of « as follows: ord(0) = 0 and for any
B € succ(a) we put ord(8) = ord(a) + n, where weight(fa) = 0.

Notice that every functional f € K admits a tree-analysis, not necessarily unique.
We shall use repeatedly the following

Fact 1.9. Let X = Ti[(Sn,0n)n] with (&). Let (fo)acT be a norming tree of a norming
functional f € K and o not a terminal node. Let fo, = 0, ZBEsucc(a) fa. Then for every

k € [ord(w),ord(c) + r4] we get

fazeraz Zfs

teAy s€F;

where (fs)seF; 15 Spo—(k—ord(a)) -allowable, for anyt € Ay, and (gi)te A, 5 Sp—ord(a)-allowable,
for gt = 0, _(k—ord(a)) 2oser, ft: t € Aa. In particular by (&) we get

fa(x) < Hk—ord(a) Z gt(l‘)-

teAq

Moreover using that t(a) < Oorq(a) < 074 we have t() fo(z) < OF > iea, 9t(T).

2. MODIFIED MIXED TSIRELSON SPACES DEFINED ON SCHREIER FAMILIES

In this section we present the main results on sequential minimality and arbitrary dis-
tortability of a regular modified mixed Tsirelson spaces Thr[(Sp,8r)] with (). In the first
subsection we discuss the notions of averages of different types, in the next two subsections
we present estimations on their norms. Since the u.v.b. in any (modified) mixed Tsirelson
space and its dual is unconditional, we work in the sequel on functionals and vectors with
non-negative coefficients.
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2.1. Averages. In this part we present the notion of special averages and recall basic facts.
Let X be a Banach space with a basis. We will use a version of the notion of special averages
introduced in [7].

Definition 2.1. A vector z € X is called an (M, )-average of a block sequence (z;); C X,
for M € Nand ¢ > 0, if 2 = ;.o a;z; for some G € Sy and (a;)icq C (0,1] with
Y icc @i = 1 and for any F' € Spr—1 we have Y, pa; <e.

We use the notion of an averaging admissible tree, [3], with additional features:

M,N7
1)

Definition 2.2. We call a tree (x ‘)M AN p in X with weights (N;);27,; C N and errors

7=0,i=
(] );VI {VZ , € (0,1), an averaging tree, if

(1) (x i)igj is a block sequence for any j, 1 = NM < ... < NO,
Moreover for any j =1,...,M and i = 1,... , N7 we have the following
(2) there exists a nonempty interval I/ C {1,...,N77'} with #I = N/ such that

‘ i1
suce(z]) = (i )sejj,

(3) ] = 1N] ¥
(4) 2/&? < N/ <m1nsuppa: ‘
(5) el,4 < 1/(2 maxsupp 7), maxsupp ) < Nf+1

)MN

Remark 2.3. In the situation as above we define coefficients (a;7);Zy;—, C (0,1], as satisfying

M = vajl aja:j It follows straightforward that for any j = 0,...,M, i =1,...,N7 we
have the followmg

(6) Ezszl an =1,

(7) a :HTMJH NI where zj >x] for each M >1r > j,

(8) ag = Zm: x?nsz CL?n.

Notice that any z7 is a (j, € ) -average of (20 )xo <o

Proof. To show the last statement notice that by (4) for any j,i > 1 the block sequence
succ(:z:g ) is S1-admissible, thus any block sequence ($9n)m9n <, 18 Sj-admissible. To complete
the proof notice that by the standard reasoning (cf for exarrllple [29], last part of the proof
of Proposition 3.6) we have the following fact:

Fact Fix a block sequence (z,,)m and let (z;)X; be a block sequence of (M 1 z—:l) -averages
of (T )mea, such that N > 2/e and ;41 < 1/2’ maxsupp x;. Then z = (3:1 +-+axy)is

a (M, e)-average of (m)mea, i=1,.. N- O

The above Lemma together with the construction of an averaging tree presented in [3]
yields the standard

Fact 2.4. For any block sequence (xy,)m of X, any € > 0 and any M € N there is an
(M, e)-average x of (zy,).

From now on we fix a regular modified mixed Tsirelson space X = Tir[(Sp,0r)]. We shall
use the following facts in the sequel.
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Fact 2.5. [§] Let x = ), p a;z; be an (M, €)-average of normalized vectors (x;)icr, M € N,
€ >0 and & an Spy—1 allowable family of sets. Then there is some G C F such that for
every i € G the set {Ex; : E € £, Ex; # 0} is Sy-allowable and

SolEz) < STUEY. ais)l| +2¢/0u

Eeg EeF ieG

Fact 2.6. Let x = ), pa;x; be an (M, e)-average of normalized vectors (x;)icr, M € N,
e >0 and f a norming functional with a tree-analysis (fo)acT. Then there is subtree T' of
T such that any terminal node of T’ has order at least M and the functional f’ defined by
the tree-analysis (fo)acT satisfies f(x) < f'(x) + 2e.

Proof. Let £ be the collection of all terminal nodes of 7 of order smaller than M. Let
G ={i € F: some f, begins in z;, o € £}. Since the set (fu)ace is Syr—1-allowable, it
follows G\ {min G} € Syr—1 and f(3 ;. ai®i) < aming + ZiGG\{minG} a; < 2e. We let 77
be the tree 7" with removed nodes from the family £. Then f(z) < f/(z) + f(X;cq aiti) <
f(x) + 2e. O

2.2. General estimations. We are able to control the norm of splitting a vector into
allowable, not only admissible parts, by comparing it to the norm of splitting of a corre-
sponding vector in the original Tsirelson space T[Sy, 6]. In this section we present the upper
"Tsirelson-type" estimate for usual (M, €)-averages.

For the rest of chapter we assume that the considered regular modified mixed Tsirelson
space X = Th[(Sn,0n)n] satisfies (). First we present a classical fact.

Lemma 2.7. Letx = ), a;x; be an (M, e)-average of a normalized block sequence (x;); C X,
M € N. Then for any j € N, j < M and S;j-allowable (E}); we have

S I Ew) <071 0M TN " || By + 42 /0
l l 7

In particular ||z| < 0710M~1 4 4¢/0,.

Proof. Take an Sj-allowable sequence (Fj);. For any [ take a norming functional f; with
|Ejz|| = fi(z) and its tree-analysis (f})ac7;- Let € be the collection of all terminal nodes
a € T; for all [, such that ordy(a) < M — 1 — j. Then the set (fa)ace is Sm—1-allowable.
By Fact [2.6] we can assume with error 2e that all terminal nodes of all 7; have order at least
M —j.

We will add in the tree-analysis (f!)aec7;’s additional nodes (h¢); of order M — j — 1, by
grouping some of nodes of T;, and by (&) obtain the desired estimation.

For any [ let & be collection of all & € 7; which are maximal with respect to the property
ordy(a) < M —j — 1. Fix a € &. Then by the above reduction « is not terminal, so
fL =06, EsEsucc(a) f! for some S, -allowable (f!). By Fact for k = M — j — 1, there

exists Syr_j_1—ord(a)-allowable functionals (h;)ica, with

o) fi() < 0M1 Y hu(a).

teAa
8



It follows that (h¢)iea, is Sp—j—1-allowable, where A; = Uyep, Aa. Now we have

1B = fi(e) =Y t(a) fo(Eix)
acs;

<M hy(Bw) = 0N hy(Bpw).

a€s; tEA, teA,

Taking into account the error from erasing nodes with too small orders we obtain

Z”Elx” < M-It Z Z hi(Ejx) +2e < ...
l I teA;
Notice that (h¢)ieca is Spr—1-allowable. By Fact with error 2¢/0y; we assume that the
family (he(2:))4:n, ()0 18 S1-allowable for each i and thus we have:

LMY TN > he(Eya;) + 4¢ /0y
l i

minsupp At <minsupp z;

<OMTITONY O " ail| Byl + 4e/0u
l )

=071 0M TN TN " ai|| By | + 42 /0.
l i

0

In order to deal with allowable splittings, we need the next result, stating - roughly
speaking - that a restriction of an average x with an averaging tree high enough is still an
average y, with a strict control on the error on the new average y - depending on the error
in the averaging tree of x corresponding to minsupp y.

Lemma 2.8. Let (:Ef), (Nij), (ag), (sz) form an averaging tree for a (M + M, e)-average x,
M,MeN, e>0, of normalized block sequence (a;?)i, satisfying

(1) for anyi,j we have Nij = oki for some kg,

(2) for anyi,j we have E{H < Opre/2! maxsupp xg, E{ < Ope/2 for any i, 7.
Then for any I C N with Nr]r\fi[nl Yier afVI € N the vector y =3 .c; aﬁwa:ZM is a restriction of
an (M, M Y-average of some block sequence (y9) with ||y2|| < 1 and such that the following
property holds:

(P) for every k,i,l either zM < yff or zM = yff or aM

2 oand yff are incomparable, where

(yﬁc)k,l is the family of nodes of averaging tree of y.

Proof. Let ey = eM. . We represent y = Y icr aMaM as a restriction of an (M, ;)-average.
We construct inductively on I = M, M —1,...,0 an averaging tree (yfg)i\ib[(ézl with weights

(W) and coefficients (c}), where yj, = 1/W{ 3 eyt and ¢ = s tegt <y WL:Q’ such
that yM =y and the following is satisfied

1,1 !
(Po) cLy;, = ZmeAﬁc adxd, b = ZmeAﬁc al, for every k and [ < M,
l

(Py) for every k,i,l either a:i = yff or x; is incomparable with yé,
(Pg) for every i, j, k,l either 2! < y/{C or ] = yff or z and y/{C are incomparable,
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(P3) for every k,l we have W} = min{N} : zl <y}
We allow one difference from the original definition: #JM = L = Nmln 12 iel aZ , not WM,
to occur, otherwise #Jk = Wk for any | < M.

We let yM = Y icr @ aMaM = EmeAa%x%, M =1, A = Aand WM = NM <
minsuppy. All properties (Po)—(P3) are obviously satisfied.

Assume we have (y}), (W})x and (ck)g for some M > 1 > 2 satisfying the above.

Fix k£ and consider A%. Pick any m € A%. By (P1) in inductive assumption we have
a:; < y,’%r for any | < r < M, i, k, with m% < a:; and a:?n < y,’;r. Therefore NZ; > W,; for
any | <r < M, i, k. as above. By Remark 2.3] and (Pg) we have

M
:1;[]\7’“ = N?;—HWT _Wl'

Recall that all coefficients a0, c;, 1/W] are some powers of 1/2 and (a2,),, is non-increasing.

Moreover for [ < M we have ) Al ad = ck, hence we can split Al into Wk many successive

Wl
sets (AL"1) % such that for each s we have

0 Ck
D Gn=
meAl! Wk
In case | = M we have ZmeAI\/I al, = L/WM hence we can split A} into L-many sets

(AM=1L_ such that for each s we have

meAéw*l

We define then (y.~!)s and (cl_l) by

-1 _ %
lys Z CL x Cs = W
Al 1 k

Hence obviously yk = 1/sz yl=l. We let also Wi = min{Nil_1 : xé_l =<y} and
thus we finish construction of vectors on level [ — 1 satisfying (Pg) and (P3).

Now we verify property (Pl) Notice that by property (P1) on level [ for each k we have
suppyl = U{suppz!: 2! <yl} = U{suppzl~t: 2{-1 < yl}. In case | < M by Remark 23]
and (Pg) for [ we have

Z LG 1 0 _ Z -1
Wle_Ck_ Zam_ as
r: yi.fljyk meAl st @l 1-<yk
and as in the construction each al~! < 02 / W,i = cl~1. In case of | = M we have
CM
O SR D S
wit

reoyM- 1<y meAM st M- 1<yk
10




and each a~! < 1/WM = ¢M~1 Since all coefficients are the powers of 1/2 and the
sequence (al~1)s is non-increasing we can partition the set {s : 2l < ¢t} into U{B,

yl=t < Yy, L such that for any r we have c.~1 = E seB, al=!. Consequently for any 3.~ < yff
and z/71 < y we have either y'~! = z!=1 or y/~! and a:l I are incomparable.
The property (Pg) can be verified analogously by induction. If for some Lk j we have

supp yk = U{suppz] : J = yk} then we show that for any yl < y and 2271 = yk we
have either yf,_l = 227" or yT, Uand 227" are incomparable. The same argument works if
supp m{ = U{supp yz : azf - yfg} for some 1, j, 1.

Define for each [ = M,...,1 and k = 1,..., K; the error 52 For k =1 let 51 = ¢g, for

any [ = M,...,1. By property (P;) for any [, k there is some i, > k with
maxsupp yé < maxsupp xik < minsupp xik 11 < minsupp yé i1

Let 5k+1 = ei';ﬁ-l for any k£ > 1. We verify condition (5) of Definition For k =1 and
l=M,...,1 we have W} > NM > 2/eM = 2/5l. On the other hand we have for any

min

l=M-1,...,1and k=1,...,K;—1

min

1 1 i 1
Op+1 = €, +1 < 1/2" maxsupp z;,

l l
and Wiy > Nj oy >2/e) 4y = 2/5k+1
Hence (y4)k.1, W)k, (ch)k, (6L)k, form an averaging tree and thus y is (M, e7)-average
of (y9)x. Notice that

< 1/2" maxsuppyj, ,

Il =1 > adadll < Y ab, =ch,
mEAg MEAg
therefore ||y?|| < 1. Moreover property (P2) includes property (P). 0

Remark 2.9. Note that by the construction each sequence (y\71) sedt is Si-admissible for any

k,l. Hence it readily follows that for every set F' of incomparable nodes (yi) the functional

M—1 e*
yLeF 0 € insupp . is a norming functional on the space T[Sy, 0)].

The next Lemma provides a "Tsirelson-type" upper estimate for the norms of averages.

Lemma 2.10. Let (:173), (Nij), (ag), (63) form an averaging tree for a (2M — 3,¢)-average
x, M > 1, € > 0, of normalized block sequence (m?)i, satisfying additionally the following
conditions:

(1) for anyi,j we have Nij = 2 for some k:g,

(2) for anyi,j we have sgﬂ < Opre /2" maxsupp xz, 5{ < Ope/2 for any i, j.
Fiz an Syr—q-allowable family € of subsets of N, such that the family {E € & : Exiw # 0}
is Si-allowable for any i, and coefficients (tg)ree C [0,1].

Then there is a partition (Vg)ges of nodes (x9);, with minsupp x°
that

minVy = Mink, such

Z tgl|Ex| < C Z tell Z a?eminsuppm?HT[Sl,@] + Ce
Eeg Eeg i€VEg

for some universal constant C' depending only on 61 and 6.
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Proof. STEP 1. Let us recall that z is an (M — 3,¢)-average of (xM);. First let & = {E €
E: E begins at zM} and J = {i: & # 0}. As (xM);c; is Sy_s-admissible, we have

S tpllE> aMaM| <> 6 Y | ExM | <07t aM <6072

EeE ied e Ee€& ied
Forany E€&let Ip={i & J: Eajf‘/‘[ # 0}, ip =minlp and eg = sf‘g. Compute

eg < el 1/25 = maxsupp M _
Sen ety Y1 ’,

Eec& ieJ Ee&;
< &by Z maxsupp xf‘/[/ZZ maxsupp :Efw <eby.
ieJ
STEP 2. Fix E € &. Let ) ;. aMaM =3 g adxl,. Notice that each af, < 1/NZ-J‘};[ and

(a9,)s is non-increasing, therefore we can partition K into intervals A < B with Y omea ad, =
L/NZ-JZ;[ and Y, cpad = 5/NZ-]\;[ for some L € N and 0 < § < 1. Hence we can erase
> men A0,xh, with error 5/Ni1‘g < 1/NZ-JZ;’ <ep.

After this reduction by Lemma 2.8 the vector y = >, ;. aMaM is a restriction of an
(M — 2,ep)-average Y, ciys with [|yZ|| < 1 and property (P) given by a suitable averaging
tree (yi)k,l with proper weights, coefficients and errors.

M

We take the family KX = {k : minsuppzM € rangey? for some z¥}. Since (zM); is an

Sn—s-admissible family and y is an (M — 2,eg)-average of (y2), we can erase Y ohek cy?
with error 2¢g. For any ¢ let

lp;=min{M >1>0: yé = xi‘/‘[}
By the above reduction and (P) we can assume that lg; > 2 for all ¢ € I. Let
Kg;={k: y,% = xf‘/"} for any i € Ig.
Compute by Lemma 2.7 for the (M — 2,eg)-average Y, czys and j =0
1Bzl = 1B civil < 11D Byl + 2¢5
k kK
<O OMTEY N GlEYE + 6er /0
iclg keKp ;
2
c
=010y a5 Eyill + 6er/0ur.
i€lp kEKEyi (
STEP 3. Fixi¢g J. Put F; ={F€&: iclg} ={FEc&:ExM £0}. Forany F € F;
2
and k € Kg; let w, = :—A’}Ey,% For each k € Kpg; take the norming functional f; with

fr(wg) = ||wg|| and supp fx C supp w.
We gather all the terminal nodes in the tree-analysis of fj for all £ € Kg;, £ € F;, of
order smaller than M — [ ;. By the assumption on £ and the fact that Iz ; > 2 they form an

Syr—1-allowable family, hence as mf‘/[ is an (M, afVI )-average, we can erase these nodes with
total error 2€ZM .

12



By Fact [[.9] adding nodes in the tree-analysis of each fi, k € Kg ;, on the level M — g ;,
we get |lw| < OM~lEi ST fL(xM) for some Sy 1 ~allowable functionals (fl).. Pick E;
with tg,0~ by — max{tpf~'ei : E € £}. Let [; = lg, i and compute

ZtE Z | J\]}Eyk”< ZtEQM o Z ka ) + 2}

EeF; k€Kg, a; EcF; k€EKp.;

Notice again that (f/lg)l,keKE,i,Ees is an Sp;_1-allowable family (as before by lg; > 2 and
assumption on &). As zM is an (M,eM)-average of suitable ( o m, by Fact with error

2eM /6, we may assume that for any m the family (supp fk N supp xm)l,keKE,i,Ees is S1-
allowable. Therefore we continue the estimation

<t MY ka )+ 4eM /0y < 07Vt 0M 7l 4 4eM /60y
EeF; keKEg;

STEP 4. We define Jp = {i : E = E;} C Ig for any E € £. Notice that (Jg)ges are
pairwise disjoint. By STEP 1, STEP 2 and STEP 3 we have

YotelBrl <Y tplEY aMae| + Y tp|E Y a2l

Eet Ee€& ied EeE i€lp
e a0 Y S SR TPy SR
Eetielg kEKE'L Ec€

=070 33 e ST ST | ]'\}Eyk\\+(6+29 De

i¢J E€F; k€Kp ;
<07°0M3Y " aMtp 0M +4ZEM/9M +(6+207")e

iZJ
<O07°0M3N g > aMoM Tl 4 (10 4207 e <
EeE i€Jp

Fix E € £. Notice that for any [ the sequence (z¥) oM <yl 1=1; 18 Si-admissible, hence by
M—l;+1
Remark the formula ), ;0 efmnsuppw

Therefore for any E € £ we have

M oM —I; -1 M
Z a; 0 < H Z a; eminsuppr””T[SLG] >

i€Jg i€JEg

v defines a norming functional in T[Sy, 6].

and we continue the above estimation

< O720M ST )Y 0 epnuppat Iris, 6 + (104207 <
EeE i€Jp

13



M

7

in T[Sy, 6] by Remark 23l As ||z ||7(s, g > 6 for each i, we continue

SO0 1) Y 0 s, + (10 + 267
Ec€ i€Jg

< 01_29_4 Z tEH Z Z a?neminsuppmgl ||T[S1,9} + Ce,

Eet& ZGJE x?rljmiw

Consider zM = 1/aM ng)njxfw a9, Eminsupp 0 > for i = 1,..., NM 'which are (M, e}/ )-averages

which ends the proof with C' = 10 + 2072074 and Vi = {m : 29, < zM,i € Jg} for each
Eet. O

2.3. Special types of averages. We present the lower "Tsirelson-type" estimate in a reg-
ular modified mixed Tsirelson space X with (&). In order to achieve this we need special
types of averages. We start with Corollary 4.10 [28] recalled below

Proposition 2.11. For any block subspace Y of X, any M € N and € > 0, there is an
(M,e)-average x € Y of some normalized block sequence in'Y such that

6M=ID > sup {Z |Eix| : Sj-allowable (EZ)} >6M=7/D

for any 0 < j < M and some universal constant D depending only on 61 and 6.

Proof. We recall Lemma 4.9 [28], whose proof is valid, line after line, also in the modified
case. Lemma 4.9 [28] and Lemma 2.7 yield the Proposition. O

Definition 2.12. A special (M, e)-average x, M € N, ¢ > 0, is any (M, ¢)-average satisfying
assertion of Proposition 2111

For the next lemma we shall need the following observation.

Fact 2.13. Fiz M € N. Then for any G € Sy and any z = Y, ae; € T[S1,0], (a;)ica C
[0,1], there is a norming functional f with a tree-analysis with height at most M, such that

2l 71s1,00 < 2 (2).

Proof. Take a norming functional g with a tree-analysis (g;)ier satisfying g(z) = ||z(|7ys, 0)-
Let I be the set of all terminal nodes of 7 with order at most M and let g1 be the restriction
of gtoI and go = g — g1. If g1(2) > g2(z) then we let f = g;. Assume that ¢1(z) < g2(2)
and compute

g(2) < 2g9(z) < 20M+1 Z a; < 20M Zai =2f(2),
1€G\I €@

where f = 6M > icc €, which ends the proof. O

The major obstacle in obtaining the lower "Tsirelson-type" estimate for norm is the fact
that given an (M, e)-average x = Y, a;x; we do not control the normof ), a;2;, G C F,
in general case. The next result provides a block sequence (z;) whose any Sp;-admissible

subsequence dominates suitable subsequence of the basis in the original Tsirelson space.
14



Lemma 2.14. For every block subspace Y and every M € N, § > 0, there exists a block
sequence (x;) of Y satisfying for any G € Sy and scalars (a;)iec

1
(2.1) 1> aiwil| > 5= )Y aillzilleminsupp z: l17is, -
ieG i€eG
Proof. Assume the contrary. Notice first that for any M € N we have
(N 0m) YO < VoMM

thus limy, oo %/0arm = 0M. Pick m € N such that /@xr, > VD2(1 — 6)0M with D as in
Prop. 211l Take a block sequence (z?); of special (Mm, €)-averages, for some & > 0.
Since (2.1)) fails there is an infinite sequence G}ﬂ of successive elements of Sy; and coeffi-

cients (ail)ieG}c such that
1

1> aladl < (L=8) > alllz?llemollris, o)

i€Gy, i€G,
where m) = minsupp z; for each i. Set x} = ZZ€G1 atz?, k1 € N, and by Fact 213 take
norming functionals f,%l of the space T[Sy, 0] of helght at most M with

1)1.,.0 1 11,0
1S el < 2 | 32 allzfliens
i€Gl, i€Gy,
Assume that we have defined (a;ff: Jk;_, and ( fk ) k;_; for some j < m. Then the failure of

(20 implies the existence of a sequence (Gi)k of successive elements of Sy and a sequence
J

J .
(a3 )eGij such that

1 o
1 —1
1> a2l < 5= Y dlllzl eyt lrisia

J el
ZEij ZGGk_

J-1 _ _ . Jj—1 J o JJ—1
where m; = minsuppx; . Set Ty, = ZZEGJ a; 33@ , for k; € N, and take norming trees

)

fgj of the space T'[S1, 0] of height at most M such that

1 j —1
IS allled e lloisea < 27, | S alllad e, s

i€GY, i€GY,
J J
The inductive construction ends once we get the vector " and the functional f{".

Each functional f,g is of the form ZZ cci gl e* j—1, by construction satisfying
J kj m;

j ¥ognag-1
laf Il < (1=8) 3 o%adad ™).
ieGij
15



Inductively, beginning from f{" we produce a tree-analysis of some norming functional f on
T'[S1, 6] by substituting each terminal node e;j, j =1,...,m, by the tree-analysis of the
k

functional fg .
_ 1 _ l;
Put G — Ukm,leGTUkmfzekaj . 'Uk16G%2 Gy, - Let (I;)ieg besuch that f =37, 0 e:n?.

Notice that I[; < mM for any i € G, as the height of each fzj does not exceed M. We compute
the norm of z*, which is of the form

]t = Z Z Z Za?mil...a}?:Zbix?.

km-1€GT km—2€Gym—1  ki1€G}, i€G, i€G

Since each a;? is a special (mM, e)-average, for some Sy, ps—;;-allowable sequence (E})er, we
have [[20]| < D2g"M=4 3, (| B
We have on one hand by the above construction

2 < (1 —6)™ Y 6"

ieG
<(1=8"D*> 0hbio™ N | B
ieG leL;
= (1 =8"D*0™ N b > ||Ea| .

1€G leLl;
Notice that (E})icu;cqL; 18 Sma-allowable by the definition of f and (I;);cq, thus
|27 = Omar Y bi Y B2l
i€eG leLl;
which brings 0,37 < (1 — 6)™D?0™M | a contradiction with the choice of m. O
Definition 2.15. A Tsirelson (M,¢)-average x, M € N, ¢ > 0, is an (M, e)-average x =

> icr @ix; of a normalized block sequence (z;) satisfying the assertion of the Lemma 2.14]
with 6 = 1/2.

Definition 2.16. A RIS of (special, Tsirelson) averages is any block sequence of (special,
Tsirelson) (ng,e/2%)-averages (x) for € > 0 and (ny); C N satisfying

€
61k+1”xk”51 < ﬁ? keN,
where [, = max{l € N: 4l <ny}, k€ N.
We need the following technical lemma, mostly reformulating Lemma 7, [22]:

Fact 2.17. Take RIS of normalized averages (xy), for some (ng) C N and € > 0, and some
x = Y . brxy with (by) C [0,1]. Then for any norming functional f with a tree-analysis
(fa)acT there is a subtree T’ such that the corresponding functional f' defined by the tree-
analysis (fo)acT satisfies f(x) < f'(x) + 3e and the following holds for any k
(a) any node o of T' with fo(xr) # 0 satisfies ord(a) < ng41/4,
(b) any terminal node v of T with fo(xx) # 0 satisfies ord(«) > ny.
16



Proof. In order to prove (a) we repeat the reasoning from the proof of Lemma 7 [22]. For any
k let Fi be the collection of all nodes in 7 which are minimal with respect to the property
ord(a) > nga1/4 and fu(x) # 0. Then

E g
t(a)fa(xk) < elkﬂ”xk”fl < W
ae]—'k

Thus we can erase all nodes from Fj restricted to supports of xy, for all k, with error
> bryir < 2.

For (b) we use Fact for erasing all terminal nodes a of T with f,(x) # 0 with error
2¢y,, for any k. O

Lemma 2.18. Let x = ), arxy be an (M, e)-average of RIS of normalized special averages
(xg), for (ng) C{M +3,M +4,...} and e > 0, with € < 0.
Then ||z|| < D'8ps, for some universal constant D' depending only on 6 and 6.

Proof. Take a norming functional f with a tree-analysis (fq)ae7 such that ||z| = f(x).
Using Fact 217 pick the subtree 77 satisfying (a) and (b) and the corresponding functional
fh.

Let € be collection of all « € T’ maximal with respect to the property ord(a) < M — 1.
Notice that & is Sps_1 - allowable.

Fix a € £. Then « is not terminal, so f, = 6, ZsEsucc(a) fs- As in Fact we partition
succ(a) = (Jse 4, Ft in such a way that (fs)ser, 18 Sora(s)—(m—1)-allowable for every t € A,
and (gt)teA, 15 Sp—1—ord(a)-2llowable, where g = > fs. Let A = Uaeg A, and notice
that (g¢)iea is Spr—1-allowable. Let H denote the set of all k such that some ¢, t € A,
begins in . Since x is an (M, €)-average we have ||y, oy apz|l < D pepan < 26,

By definition of H for any o € £ and k ¢ H with f,(zr) # 0 there is an immediate
successor of a beginning before z. Thus by (a) we have for any k ¢ H

(c) for any a € & with f,(x) # 0 the order of immediate successors of « is at most

’I’Lk/4,
(d) {g:t: t€ A, gi(zy) # 0} restricted to suppzy is Sy - allowable.

Fix k ¢ H and t € A with g;(z) # 0 and let Bf = {s € F, : fs(zy) # 0}.

Fix s € B and take the subtree T, of T’ consisting of s (as a root) and of all successors of
sin 7. By Fact[[L9] using (b) and (¢) we can add nodes in T on level nj —ord(s) obtaining
(hs)rec, which is Sy, _ra(s)-allowable satisfying

fs(xk) < Z an—ord(s)hs’r($k)‘
T‘GCS
17



Compute for k ¢ H using the above and (é)

=3 D t(s) fslwn)

t€A scBF
< HMZ Z eord(s)—M Z enk—ord(s)hsﬂd(wk)
teA ger reCs

<O D> Y 0 Mg ()

teA ger reCs

Notice that the family {hs, : r € Cs, s € BFY for any fixed t € Ak ¢ H is Snjp—M+1-
allowable. Therefore by (d) the family {hs, : r € Cs, s € BF, t € A} for any fixed k ¢ H
is Sy, —m+2-allowable and hence since zj, is a normalization of a (ng, ex)-special average, we
continue the estimation

C < Oy M D2 tM=2 — p2g=2p,
We compute
f@) < fl()+32 <> anf(zr) +be < D207 %00 + 5e < (D072 +5)0 ,
k& H

which ends the proof of Lemma. O

2.4. Main results.

Theorem 2.19. Let X be a regular modified mized Tsirelson space Thr[(Sn,0n)n]- If
0,/0" \, 0, then X is arbitrary distortable.

Proof. Theorem follows immediately from Proposition 2.11] and Lemma 218l O

Recall that a Banach space X with a basis is called sequentially minimal ([I6]), if any
block subspace of X contains a block sequence (x,) such that every block subspace of X
contains a copy of a subsequence of (x,). Notice that this property implies quasiminimality
of X.

Theorem 2.20. Let X be a regular modified mized Tsirelson space Thr[(Sp,0n)n]- If
0,/0™ \,, then X is sequentially minimal.

The theorem follows immediately from the following result:

Lemma 2.21. Let (zx)k, (yx)r be RIS of Tsirelson (2My — 3,ex)-averages, My > 4, ¢ <
(6C)~L, with C as in Lemma 210, such that
(1) zx has an averaging tree (m,“) i (N,gl) i (E]“) i (a,“) i.j» Yk has an averaging tree

(y,“) ijs (N,“) ijs (z—:,“) ijs (a,“)”, both satisfying conditions (1) and (2) of Lemma
210 for any k,
(2) minsupp:z:%i = minsupp y,g,i and ||x2,\| = ||Z/21|| =1 for any k, 1,
(3) er < Oang,—36*Mr=3¢ /2542 for any k.
Then (zx/||zkl)k and (yx/|lykl)k are equivalent.
18



Notice first that Lemma above yields Theorem 220, as given a block sequence (wy,) in X
and a block subspace Y of [wy,] and k£ € N, we can choose block sequences (u;) C [wy,] and
(v;) C Y satisfying the assertion of Lemma 214 for 2M, — 3. Passing to a subsequences if
necessary and using a small perturbations we obtain block sequences (u}) and (v}) of the form
W, = u; + diem;, Vi = v; + djem,, for some (m;) C N with m; = minsuppw; = minsupp v,
for each ¢ and small (6;) C (0,1), which are equivalent to (u;) and (v;) respectively and
satisfy still the assertion of Lemma .14l for 2M}, —3. Then construct on these sequences two
Tsirelson (2M}, — 3, ¢y )-averages with averaging trees as in Lemma 2.2]] with equal systems
of weights, errors and coefficients, obtaining x, and yy.

Now we proceed to the proof of Lemma 2211

Proof. Notice first that by Lemmas 2.7 and 2.14] we have estimation
02Me=3 /4 < ||y || < 50720°MR3 k€N,

and the same estimation for |lyx|/, k¥ € N.

We show first that (yx/||yk|)x dominates (xy/||zx|)i. Let © =, dipxr/||xk|| be of norm
1, with (dg) C [0,1], and take its norming functional f with a tree-analysis (fo)ae7. Let
y = > . dryi/llykl|. By Fact 17 we can assume with error e that ord(a) < Mj41/4 <
M1 — 4 for any a € T with fu(z) # 0. For any k£ > 1 let

& ={a e T: f,begins at z; and has a sibling beginning before xy}.

By our reduction ord(a)) < My — 4 for any a € &, k > 2. We replace in the tree-analysis of
f each functional f,, o € &, by two functionals go = fo|suppz), and ko = fo — ga, Obtaining
a tree-analysis of a functional g on the space X9 = T'[(S,,[A2], 05,)n], which by Lemma [[7is
3-isomorphic to X.

Notice that (gq)aeg, k>2 have pairwise disjoint supports and (|J ocg, SUpp Jo) NSUPp T, =
supp f Nsupp z, hence flsuppa, = ZaE:‘:k t(a)go. For each k > 2 consider the set Ji = {i :

some ¢, begins at x%’“} Notice that by our reduction (ga)ace, 1S Snm,—a-allowable, thus
(x%k)lejk is Spr, —4-admissible and recall that $k is an (Mj, — 3, e )-average of (x%’“) Let gL,

«a € &, be the restriction of g, to Ulg J,, Supp xk . Then we have the following estimation

f( ) ‘ xl %_EE:

k>2
1 dk dk
< f(21) +Z— > ta)ga(w) + > Z ekl
|z 1H = HwkH = el =
< || +Z Z (@)gh () +4) e 23
k>2 aES k
< Z > gl (wx) +&
= Tl 1|| = lle || =

Fix k > 2. Notice that by definition the set {g, : ga(:ztk i ') # 0} restricted to the support of

33/% is S-allowable for any i. Therefore by Lemma 2101 we pick suitable partition (Vi )ace,
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of nodes (:1:2 ;)i with minsupp x% minV, = minsupp g., for each o € & and applying Lemma

(2214l we have
Z t(a)géz(xk) <C Z t(a)” Z a’g,ieminsuppxg)i”T[S1,€] + Ceg,

acly acly 1€Vy
< c Z t(Oé)” Z a’g,ieminsuppygiHT[Sl,G] + CEk
aegk ZEVQ '
<20 ) o)l ) il + Ce
a€ly 1€Va
<2C Z o(yr) + Ceg,
aEely

where h,, is a norming functional on X with ha(yr) = |12 v, a%iy,g’iﬂ and minsupp h, >
minsupp :Egmin v, = minsupp g, for each a € &.

We modify the tree-analysis of g, replacing each node g, o € &, k > 2, by the functional
hea. As minsupp h, > minsupp g, for each «, we obtain a tree-analysis of some norming
functional h on X5. We compute, by Lemma [[.7] and above estimations including the
estimation on the norms of (xk)k and (yx),

<di+ Z Z a)ga(zk) + €

2 ] acEy

< dy 4+ 4000~ 22 > ta)ha(yr) +4CZ€ - e
>2 Hka acsy >2  2Mie—
< dy 4+ 40CH~ 2hz — i) + 3Ce
=5 Iyl

< 121C073||ly| + 1/2,

which means that (yx/|ykll)rx dominates (zy/||zk||)x. Since the conditions are symmetric,
the opposite domination follows analogously. O

3. STRICTLY SINGULAR NON-COMPACT OPERATORS

3.1. Spaces defined by families (A,,),. As in mixed Tsirelson spaces defined by Schreier
families the crucial tool will be formed by ¢,—averages.

Definition 3.1. A vector z € X is called a C — {,—average of length m, for r € [1, 00],
meNand C > 1if o =" z;/|| >~ z;| for some normalized block sequence (xy)n-,
which is C-equivalent to the unit vector basis of £]".

Definition 3.2. [33] Let X be a Banach space with a basis (e,). Then X is in

(1) Class 1, if every normalized block sequence in X has a subsequence equivalent to
some subsequence of (ey,).

(2) Class 2, if each block sequence has further normalized block sequences (x,,) and (y;,)
such that the map z, — vy, extends to a bounded strictly singular operator between
[zn] and [yn].
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T. Schlumprecht asked if any Banach space contains a subspace with a basis which is
either of Class 1 or Class 2 and gave some sufficient condition (Thm. 1.1 [33]) for the
existence of strictly singular non-compact operator in the space.

Theorem 3.3. [33] Let (x,,) and (y,) be two normalized basic sequences generating spreading
models (uy,) and (vy,) respectively. Assume that (uy,) is not equivalent to the w.v.b. of ¢y and
(un) strongly dominates (vy,), i.e.

o0
1D aivill < maxdn max 1> aiuil
i=1 i€EF

for some sequence (8,,) with 6, (0, n — oco. Then the map x,, — y, extends to a bounded
strictly singular operator between [x,] and [yy].

Theorem 3.4. Let X = T[(Ay, -7 )n] be a regular p—space, with p € [1,00). Then

(1) if inf,, ¢, > 0, then X is saturated with subspaces of Class 1.
(2) if ¢, = 0, n — oo, then X is in Class 2.

Proof. PART (1). We show that any block subspace of X contains a normalized block
sequence (us)s with the following "blocking principle": any normalized block sequence (y;);
is equivalent to any (ukj )i, with y; < ug;,, and ug; < y;+1. It follows that the subspace
[(us)] is sequentially minimal..

By Prop. 2.10 [28] any block subspace of X contains an ¢p-asymptotic subspace of X.
Let W be such £,-asymptotic subspace, spanned by a normalized block sequence (wy,)x. Let
C' be the asymptotic constant of W, i.e. any normalized block sequence (z;)"_; with z; > n
in W is C-equivalent to the u.v.b. of £}.

For any block subspace Y of X spanned by normalized block sequence (y,,) let [|> ", anyn|ly,co =
Dy [

Fix two strictly increasing sequences of integers (my), C N and (N;); C N and take
normalized block sequences (vy)n of (wi)r and (uj); of (v,), such that

(1) vy, > my, in W for any n,

(2) for any y € [(v;)isn] We have ||y|lw.co < 1/(8m3), for any n,

(3) uj > Nj in V = [(vy)y] for any j,

(4) for any y € [(ui)i>;] we have ||[ylv.co < 1/(8Nj5), for any j,

(5) ¢/N; > C27%7 for any j

(6) Njby,, < 1/2"F5 for any n > j (in particular m, > N; for any n > j)

(7) Om, Doicp #SUupPv; < 1/27%5 for any n
Notice that every vector y € [(v;)i>n] is an 2C — {,-average of length m,, of some normalized
block sequence (y;);2 of (wg). Indeed, by Claim 3.8 [28] and condition (2) split y into
(F'y;);* with almost equal norm and obtaining by condition (1) and f,-asymptoticity of
W that y is a suitable average. The same holds in V: every vector y € [(u;)i>;] is an

2C — {p-average of length IV; of some normalized block sequence (yl)ﬁ\gl (block with respect
to (vn)n)-

We show that under such conditions we can prove the above Theorem repeating the
proof of Theorem 3.1 [28]. We consider any normalized block sequence (y;) of (u;) and
as (zj) we take (ug;) with y; < wug,,, and ug; < y;j11. By the above observation y; =
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(4 )l 4y and gy = (ol )] -+ |, where (51)1%
and (u;)f\gl are normalized block sequences with respect to (vj);. Notice that (N;) are
big enough by condition (5). We again use the above observation obtaining that each Y;
and v;- is an ¢,-average of a block sequence, of (wy)g, of suitable length with parameters
satisfying the assertion of a version of Lemma 3.2 [28] for C-averages instead of 2-averages
(by conditions (6) and (7)). Therefore repeating the proof of Theorem 3.1 [28] we obtain
uniform equivalence of (y;) and (ug;) and hence "blocking principle" stated above.
PART (2). Fix a block subspace Y of X. By Theorem 2.9 [28] p is in Krivine set of Y.

Take finite normalized block sequences (y;); such that for some (m;); C N

(1) each y; is 2 — ¢,—averages of length N; > (2m;)P,

(2) O, Ej<n #suppy; < 1/2¢° for any 1,

(3) 27%0,,, — 0, i — oo.

Passing to a subsequence we can assume that (y;) generates a spreading model (v;).
Lemma 3.5. The spreading model (v;) is strongly dominated by the u.v.b. of £.

Proof. Take k € N and (a;)/L; € cop with [|[(a;)]lec < 1/k? and ||(a;)|le, = 1. Choose M
by (3) in definition of (y;) with N6, ,, < 1/277M*5 for any i and 1/2M < 1/k. We have
IS ai|| < 204 @vill, where @iyar = ag, i = 1,...,N.

Take a norming functional f with a tree-analysis (f;)tc7 and supp f C suppy, where
y= Efi"l'fM a;y;. By Lemma 2.5 [28] up to multiplying by 36 we can assume that for any
f+ and y; we have either supp f; C y;, supp f; D suppy; Nsupp f or supp f; Nsuppy; = 0.
We say that f; covers y;, if ¢ is maximal in 7 with supp f; D suppy; Nsupp f.

Let A={t€T: f;coverssomevy;}. Givenanyt € Alet I, ={i =1+M,..., N+ M : f;
covers y;}. Let 6,,, be the weight of f;. If my > m; for some i € I; let i; be the maximal
element of I; with this property. Otherwise let i; = 0.

For any i € I; let J; = {s € succ(t) : supp fs C suppy;}. By Lemma 2.8 [28] we have
>ser; Is(vi) < 8(#.J;)V/4 for each i € Iy, i > i;.

First let Ly = {i ¢ I : suppy; Nsupp f C supp fi}. Notice that for any ¢ € L; there is
some f;, - successor of f; so that suppy; Nsupp f C supp fi,. Hence

€Ly 1€Ly

Thus (3 enier, ¥i) < 1/2M and we erase this part for all ¢ with error < 1/k. Notice that
by condition (2) in choice of (y;) we have

Fol > wi) < Om, > #suppy; < 1/2F2,

i€l ,i<it <1t

so we can again erase this part for all ¢ with error 1/k.
Let g be the restriction of f to Ugcasuppy;, and h = f — g. First we consider g(y)

Yoreat(fo)ai, fi(yi,). Let B={t € A: ord(f;) <k}, hence #B < k. Then Y, p s, fi(yi,) <
#B/k? < 1/k, hence we can erase this part with error 1/k. Notice that D oteA\B
22
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is a norming functional on /,, hence

a ~ Cord(f) -
E agt(fo) fe(yi,) < E Giy o voe < max e ||(@,)iea\slle, < maxe,.
teA\B tcA\B (ord(fe))¥/a = nzk P >k

We consider h(y) = > yca D icr, isi, @i Dseg, t(fs) fs(yi). Let D = {s € J;,i € I;;i > i, t €
A ord(fs) < k}. Then

Z Z Z aifs(y;)) < #DJK* < 1/k,

teA i€l i>ir s€J;ND

and we again erase this part with error 1/k. For any i € I;,i > i; for some t € A we let
r; = ord(ft)ms and compute, using Holder inequality,

SN0 N wt(f) ) <D0 D as(#i) 0,

teA i€l i>ir s€J;\D teA i€l i>it
1
_(#J)
< 8maxcy, ;7
n>k 1/q
teEA €L >0t 7

< 81711131}9( CTLH(&i)ieft,i>it,t6A”Zp < 81711131}@( Cp -

We put all the estimates together obtaining

fy) <3609 I}ngé( cn +4/k).

Therefore we proved that A, = sup {||>cyaivill : sup;en ai| < e, [[(ai)ienlls, =1} con-
verges to zero, as € — 0. By Lemma 2.4 [33] there are some (), C (0,00) with §, 0
such that for any (a;); € coo

HZZ: a;v;]| < Igllealg](% #IgllTagnH(ai)ieFHzp ,

which ends the proof of Lemma. O

We continue the proof of Theorem 341 By the proof of Thm 2.9 28], p is in the Krivine set
of Y in Lemberg sense [24], i.e. for any n there is a normalized block sequence (:vgn))Z cY
generating spreading model (ugn))Z such that (u("))?:1 is 1-equivalent to the u.v.b. of £7.

Pick (my,), such that d,,, < 1/4™. Apply Prop. 3.2 [4] to constants C,, = 2", n € N and
normalized block sequences (xgm"))i generating spreading models (ugm"))Z We obtain thus

a seminormalized block sequence (z;) generating spreading model (u;); which C), dominates
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(uEm”))Z for any n € N. By Lemma we obtain

HZ a;vi|| < 17{12@; on ﬁ%ﬁ”(ai)ieFHZP
KA

< maxd,,, max H(ai)z‘eFHép

neN #F<mny1
<max1/4" max HZ aiugm”“) [
neN #EF<mnt1 ieF

<maxCpy1/4" max HZaZuZH
neN #F<mni1 ek

<max2/2" max HZCLZUZH
neN #F <

Notice that (u;) is not equivalent to cg, thus by Theorem [3.3] we finish the proof. O

In [19] the construction of non-compact strictly singular operators was based on cg-
spreading model of higher order in the dual space. However this method does not fol-
low straightforward in case of p—spaces, as the observation below shows. We consider the
Schlumprecht space S = T[(A,, m)”] introduced in [32]. In [23] it was shown that S

contains a block sequence generating ¢;-spreading model.

Proposition 3.6. Consider the sequence (y) generating {1-spreading model constructed in
23], yx = an:l Ukm, k € N. Take any block sequence (y;) C S* so that yj(y1) = 01x. Then
the sequence (y) does not generate co-spreading model.

Proof. We can assume that suppy; = suppyi, k € N. Consider two cases:

CASE 1. There is my € N, 6 > 0 and an infinite K C N with [y; (3% vgm)| > 6 for
any k € K.

Let z; be the restriction of y; to the support of > % v m, k € K. Then (2})kek is a
seminormalized block sequence in S*, majorized by (y;)reck. Since by the form of (v, 1) the
length of supp(>_"° | vk ) is constant, we can pick some subsequence (2})ker, of (2)kex
consisting of, up to controllable error, equally distributed vectors. As the u.v.b. in S is
subsymmetric, the same holds for (z)rer, thus (2})ker is equivalent to spreading model
generated by itself. It follows that (y;) cannot generate cp-spreading model.

CASE 2. If the first case does not hold, pick increasing (N;) C N so that
Ny
ij] Z UNj,m S 1/2] .
m=1

Consider the norm of vectors 2z = yy, + -+ + y}‘Vj. Put
Nj

TNy = YNy, $Nj — E UNj,ma ] >1.
m:Nj,1+1

By the choice of (N;) we have yj (zn;) >1—1/27.
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We estimate the norm of z; = zn, + - + xn;. We can assume at the beginning that
(IN;) was chosen to increase fast enough so that (xy;) is D-equivalent to the unit basis of S
(see Remark 5, Lemma 2 [23]). Therefore ||z;|| < Dj/f(j).

By the choice of (IV;) and definition of zx; we have z7(z;) > j — 1. Hence

512 25@)/ 3]l 2 )G = 1)/Dj 2 1(5)/2D

Notice that the same scheme works if we replace Ny,..., N; by any Ny, , ..., Ny, in definition
of zj, hence no subsequence of (y;) can produce a cp-spreading model. O

3.2. Spaces defined by families (S,),. Regarding the existence of strictly singular op-
erators from subspaces of mixed Tsirelson spaces we prove the following result, which is in
“localization” of Schlumprecht result in mixed Tsirelson spaces. First recall the definition of
a higher order ¢;-spreading models.

Definition 3.7. We say that a normalized basic sequence (x,)nen in a Banach space gen-
erates an C' — ({-spreading model, @ < wy, C > 1, if for any F' € S, the sequence (zy,)ner
is C—equivalent to the u.v.b. of K#F. In case of & = 1 we obtain the classical ¢;-spreading
model.

We recall that [M], M C N, denotes the family of all infnite subsequences of M, [M]< -
the family of all finite subsequences of M.

Theorem 3.8. Let X = T'[(Sy, 0n)n] o7 Tar[(Sn, 0n)n] be a reqular (modified) mized Tsirelson
space. If X contains a block sequence (yn) generating ¢5-spreading model then there are a
subspace Y C [(yn)] and a strictly singular operator T 1Y — X.

We recall that in [25] it was proved that if a regular sequence (6,,) satisfies lim,,, lim sup,, 9’3—:” >
0 then the mixed Tsirelson space X = T[(Sp,0n)n] is subsequentially minimal if and only
if any block subspace of X admits an ¢{-spreading model, if and only if any block sub-
space of X has Bourgain /1 —index greater than w“. These conditions hold in particular if

sup 0,1/ " =1 [27]. In [22] analogs of these results were studied in the partly modified setting.

To prove the theorem we first define an index measuring the best constant of the /{-
spreading models generated by subsequences of a given sequence. Let Z := (x,)nen be a
normalized block sequence. We set

0o(Z) = sup{d > 0 : IM € [N] such that (x,)ner generates § — ¢§ spr. model} .

The following properties of §, (%) follows readily from the definition.

a) 0a((Tn)nen) = 0a((Zn)n>n,) for all ng € N.
b) 6((zn)nerr) < 0a((zn)nen) for all M e [N].
¢) (0a(%))a<w, is non-increasing family.

By standard arguments we may stabilize d,(Z). Namely passing to a subsequence we may
assume that 04 ((2n)nen) = 0a((Tn)nerr) for every M € [NI.
By Bourgain’s ¢1 — indez it follows that d, ((2,)nen) > 0 countable many s, enumerate

them as (ay)n. In particular for an asymptotic ¢; space it follows that d,(Z) > 0 for all

n € N.
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Inductively we choose M1 D My D ... infinite subsets of N such that
S ((Tn)nem,) = oy, (Tn)ner VL € [My].
We define the family
Fos,, () = 1A € [N] : 3z* € Bx+ with 2%(x;) > 204, ((Tn)nen) for all i € A}.
By I. Gasparis theorem [I8] there exists N € [M,] such that
either Sq, N [N] C Fas,, or Fas,, N[N] C Sa,.

In the first case by 1-unconditionality of the basis it follows that (x,,)nen and hence (zg)rens,
contains a subsequence which generates 24,, — ¢{"-spreading model, a contradiction. So
additionally we may assume that there exists M,, € [M,,_1] with

(3.1) F260, (Mp) C Sa,,,
(3.2) Sa, s N{mp,my +1,...} C S, -

Let M = (m;); be a diagonal set. Passing to a subsequence we may assume that » | nd,, <
0.25. Let ||>°, aixm,| = 1 and let 2* € By~ such that ), a;2*(zp,) = 1. By the uncondi-
tionality we may assume that x*(x,,,) > 0 for every i. Let 2§,, = 1 and

Fy = {Z : x*(xml) S (250%7260%71]}
and F! = F,n{l,....,k—1}, F2=F,n{k,k+1,...}.
From B10),B:2) we get F? € So, N {k,k+1,...} = Gg. It follows

I asomll =3 aie" (@) =33 wam)

k= 1Z€Fk
k=1 \icF} iE€F?
o o
< 200, (k — 1) maxja;| + > 200, Y lail
k=2 k=1 i€F?
< 0. 5”Zazxm1” + 225% 1 SUP Z|02|

kicF

and therefore |37 @i, || < 43772 0oy, SUPReg, D icplail-
So we have the following

(3.3) HZ T, || < 4260% ) sup Z\all for all (a;);,

kicF

where G, = So, N{k, k+1,... }.
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Proof of the Theorem [3.8. Let € = (e, )nen be the basis of X. Using that for every j € N
and every ) .. p aje; special convex combination of the basis it holds

el

see |7, 9]. It follows readily that 6,,(€) € [0,,26,] and 4, = 0.

Since the space X contains a a block sequence (y,)nen generating ¢4-spreading model it
follows that

HZaiyiH > CZ!CM\ VneN,FeS,Nn{n,n+1,...}.
i i€F

By the previous reasoning we pick a M = (m;) € [N] and a sequence oy, ,* w such that
>k kda, < 0o and ([B3) holds. Setting M =", 64, , we have

HZZ: aiem,|| <8 Zk: By SIP > lail

kieF

M
< sipe sup 3
¢ k Fegy iEF

SM
< T”Z aiyill -

It follows that the operator extending the mapping y, — x,, factors through a cp-saturated
space and hence is strictly singular. O

3.3. Remarks and questions. As a corollary to Theorem [3:4] part (1), we obtain that the
(non-modified) Tzafriri space Y has an asymptotic ¢ subspace Z which satisfies a blocking
principle in the sense of [14]. The only known spaces with a blocking principle so far were
similar to 7', T and their variations. The two major ingredients used in [14] for proving
the minimality of 7™ are the blocking principle and the saturation with ¢7’s. It is shown in
[21] that Tzafriri space Y contains uniformly ¢2’s. It is not known whether Y is uniformly
saturated with £ ’s. In the opposite direction, we do not know if Z contains a convexified
Tsirelson space T?) (which is equivalent to its modified version).

In 1977 Altshuler [2] (cf. e.g. [26]) constructed a Banach space with a symmetric basis
which contains no /£, or cp, and all its symmetric basic sequences are equivalent. In 1981 C.
Read [31] constructed a space with, up to equivalence, precisely two symmetric bases. More
precisely, Read proved that any symmetric basic sequence in his space CR is equivalent
either to the u.v.b. of #1 or to one of the two symmetric bases of CR. A careful look at the
papers of Altshuler and Read shows that their proofs work similarly for the more general
case of all subsymmetric basic sequences. This observation leads to the following questions:

Question 1. Does there exist a space in which all subsymmetric basic sequences are
equivalent to one basis, and that basis is not symmetric?

We remark that Altshuler’s space has a natural subsymmetric version but we do not know
if it satisfies the above property.

Question 2. Does there exist a space with exactly two subsymmetric bases, which are
not symmetric?
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