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DIFFERENTIAL EQUATION APPROXIMATIONS OF

STOCHASTIC NETWORK PROCESSES: AN OPERATOR

SEMIGROUP APPROACH

ANDRÁS BÁTKAI, ISTVAN Z. KISS, ESZTER SIKOLYA, AND PÉTER L. SIMON

Abstract. The rigorous linking of exact stochastic models to mean-field ap-
proximations is studied. Starting from the differential equation point of view
the stochastic model is identified by its Kolmogorov equations, which is a
system of linear ODEs that depends on the state space size (N) and can be
written as u̇N = ANuN . Our results rely on the convergence of the transi-
tion matrices AN to an operator A. This convergence also implies that the
solutions uN converge to the solution u of u̇ = Au. The limiting ODE can be
easily used to derive simpler mean-field-type models such that the moments of
the stochastic process will converge uniformly to the solution of appropriately
chosen mean-field equations. A bi-product of this method is the proof that
the rate of convergence is O(1/N). In addition, it turns out that the proof
holds for cases that are slightly more general than the usual density dependent
one. Moreover, for Markov chains where the transition rates satisfy some sign
conditions, a new approach for proving convergence to the mean-field limit is
proposed. The starting point in this case is the derivation of a countable sys-
tem of ordinary differential equations for all the moments. This is followed by
the proof of a perturbation theorem for this infinite system, which in turn leads
to an estimate for the difference between the moments and the corresponding
quantities derived from the solution of the mean-field ODE.

1. Introduction

General birth-and-death models are at the basis of many real-world applications
ranging from queuing theory to disease transmission models, see Grimmett and
Stirzaker [9]. In particular, the analysis of such models involves the consideration
of Kolmogorov equations that simply describe the evolution of the probability of
a certain process being in a given state at a given time. One of the major draw-
backs of this approach is the large number of equations. This is very limiting from
an analysis viewpoint, and in addition, it also precludes the construction of a nu-
merical solution of the full or complete set of equations. Using techniques such
as lumping in Simon et al. [18] this can be circumvented and an equivalent exact
system with a tractable number of equations can be derived. However, often this
technique only works in the presence of significant system symmetries such as in
the case of a simple disease transmission model on a fully connected graph where
all nodes are topologically identical. This requirement rarely holds and highlights
the importance of approaches that deal with the complexity of the large number of
equations. Progress in this direction has been made as illustrated by the important
contributions of Kurtz [8], Bobrowski [4] and Darling and Norris [6].
Here we take a dynamical system type approach, where the Kolmogorov equations
are simply considered as a system of linear ODEs with a transition rate matrix
having specific properties such as special tri-diagonal structure and/or well defined
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functional form for the transmission rates. For example, consider a Markov chain
with finite state space {0, 1, . . . , N} and denote by pk(t) the probability that the
system is in state k at time t (with a given initial state that is not specified at the
moment). Assuming that starting from state k the system can move to either state
k − 1 or to state k + 1, the Kolmogorov equations of the Markov chain take the
form

(KE) ṗk = βk−1pk−1 − αkpk + δk+1pk+1, k = 0, . . . , N,

or, introducing the tri-diagonal matrix

AN :=




−α0 δ1 0 · · · · · · 0
β0 −α1 δ2 · · · · · · 0
0 β1 −α2 δ3 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · βN−2 −αN−1 δN
0 0 · · · 0 βN−1 −αN




and the coloumn vector p(t) = (p0(t), p1(t), . . . , pN(t))T ,

ṗ(t) = ANp(t).

The assumption on the tri-diagonality of the matrix can obviously be weakened,
however, most practical problems that motivate our work fall into this class. There-
fore, to be in line with applications and to make our results more transparent, the
tri-diagonal case will be considered.
Here we assume that the coefficients βk and δk are asymptotically density dependent
in the sense that

(1.1) βk = BN (k), δk = DN (k),

and the following limits exist for all x ∈ [0, 1],

(1.2) β(x) = lim
N→∞

BN (Nx)

N
, δ(x) = lim

N→∞

DN (Nx)

N
,

with β and δ (at least) continuous functions, and

(1.3) αk = βk + δk, k = 0, . . . , N.

We note that the usually used density dependence means that β(x) = BN (Nx)
N

for
all N (similarly for DN).
In order to get a differential equation approximation of the Markov chain for N →
∞, the random variables XN (t), forming a continuous time Markov process, with
values in {

0,
1

N
,
2

N
, . . . , 1

}

are considered. Then

pk(t) = P

(
XN (t) =

k

N

)

can be expressed in terms of the transition probabilities as

pk(t) =

N∑

j=0

pj,k(t)pj(0),

where the transition probabilities are

pj,k(t) = P

(
XN(t) =

k

N
|XN (0) =

j

N

)
.
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Combining this with the Kolmogorov Equation (KE), it is straightforward to show
that the transition matrix is given by

TN(t) := [pj,k(t)] = eA
⊤

N
t.

As a simple calculation shows in Subsection 3.b, the approximating mean-field
differential equation to the Markov chain can be written as

(1.4) ẋ = β(x) − δ(x).

The problem of rigorously linking exact stochastic models to mean-field approxi-
mations goes back to the early work of Kurtz [13, 14]. Kurtz studied pure-jump
density dependent Markov processes where apart from providing a method for the
derivation of the mean-field model he also used solid mathematical arguments to
prove the stochastic convergence of the exact to the mean-field model. His ear-
lier results [13, 14] relied on Trotter type approximation theorems for operator
semigroups. Later on, the results were embedded in the more general context of
Martingale Theory [8]. A detailed survey of the subject from the probabilistic point
of view is by Darling and Norris [6]. Building on this and similar work, McVinish
and Pollett [16] have recently extended the differential equation approximation to
the case of heterogeneous density dependent Markov chains, where the coefficients
of the transition rates may vary with the nodes. The results by Kurtz and others
in this area have been cited and extensively used by modelers in areas such as ecol-
ogy and epidemiology to justify the validity of heuristically formulated mean-field
models. The existence of several approximation models, often based on different
modelling intuitions and approaches, has recently highlighted the need to try and
unify these and test their performance against the exact stochastic models, see
House and Keeling [11]. Some steps in these directions have been made by Ball and
Neal, and Lindquist el al. [2, 15], where the authors clearly state the link between
exact and mean-field models.
The probabilistic approach given by Ethier and Kurtz, and Darling and Norris in
[8, 6] yields weak or stochastic convergence of the Markov chain to the solution of
the differential equation. Here we have a more moderate goal, namely to prove that
the expected value of the Markov process converges to the solution of the differential
equation as N → ∞, and to prove that the discrepancy between the two is of order
1/N . The benefit of framing the question in this simpler or different way lies in
a less technical and more accessible proof. This will mainly rely on well-known
results from semigroup theory compared to the combination of highly specialist
tools and results from probability theory. For the applied semigroup methods see
also Bátkai, Csomós and Nickel [3] and references therein. This simpler approach,
based on the expected value of the Markov chain, is also motivated by practical
considerations, namely that usually the goodness of the approximation is tested
by comparing the average of many individual simulations to the output from the
simplified approximate model. This can be a satisfactory and sufficient comparison
since, according to our knowledge, weak and stochastic converges is rarely tested.
The main result of the paper can be formulated in the following Theorem, where
we assume uniformity for the convergence in (1.2).

Theorem 1. Let

y1(t) =

N∑

k=0

k

N
pk(t)

be the expected value and let x be the solution of (1.4) with initial condition x(0) =
y1(0). Let us assume that the limits in (1.2) are uniform in the sense that there
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exists a number L, such that for all x ∈ [0, 1]

(1.5) |β(x) −
BN (Nx)

N
| ≤

L

N
.

Then for any t0 > 0 there exists a constant C, such that

|x(t)− y1(t)| ≤
C

N
, t ∈ [0, t0].

Since the essence of the Theorem is well-known we highlight the novelties of our

approach in the paper.

• The proof is self-contained in the sense that no general, abstract, theorem
or combination of theorems are used. The result is based on the simple fact
that if the operators AN converge to the operator A in a certain sense as
N → ∞, then the operator semigroup TN generated by AN converges to
the semigroup T generated by A. This result is formulated in Lemma 5.

• The proof automatically implies the rate of convergence, namely it can be
shown that the difference between the expected value and the solution of
the mean-field ODE is of order 1/N .

• Our tools make it possible to extend the above convergence results from
density dependent Markov chains to the more general case of asymptotically
density dependent Markov chains.

• For Markov chains where the transition rates satisfy some specific sign con-
ditions, a completely new approach is presented. This is based on deriving
a countable system of ordinary differential equations for the moments of a
distribution of interest and proving a perturbation theorem for this infinite
system.

The paper is structured as follows. In Section 2 we motivate our work via two exam-
ples and/or applications: an adaptive network model with random link activation
and deletion, and a SIS type epidemic model on a static graph. The derivation of
ODEs for the moments is presented in Section 3 together with the heuristic con-
struction of the mean-filed equation for the first moment. In Section 4, we present
our new approach and use it to prove Theorem 1. In Section 5, we present the
derivation of an infinite system of ODEs for the moments (only in the density de-
pendent case) and we show how this leads to a new approach that can be used to
derive estimates for all moments, directly from the ODE. This is contrast with the
usual approach where only the expected value of the Markov chain is estimated.

2. Motivation

In this Section we present two important examples that motivate our investigations.
Recently, it has become more and more important to understand the relation be-
tween the dynamics on a network and the dynamics of the network, see Gross and
Blasius [10]. In the case of epidemic propagation on networks it is straightforward
to assume that the propagation of the epidemic has an effect on the structure of
the network. For example, susceptible individuals try to cut their links in order to
minimize their exposure to infection. This leads to a change in network structure
which in turn impacts on how the epidemic spreads. The first step in modeling
this phenomenon is an appropriate dynamic network model such as the recently
proposed globally-constrained Random Link Activation-Deletion (RLAD) model.
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This can be described in terms of Kolmogorov equations as follows,

pk(t)

dt
= α(N − (k − 1))

(
1−

k − 1

Kmax
1

)
pk−1(t)

−

[
α(N − k)

(
1−

k

Kmax
1

)
+ ωk

]
pk(t) + ω(k + 1)pk+1(t),

k = 0, . . . , N,

where pk(t) denotes the probability that at time t there are k activated links in the
network, and N is the total number of potential edges. It is assumed that non-
active links are activated independently at random at rate α and that existing links
are broken independently at random at rate ω. Furthermore, the link creation is
globally constrained by introducing a carrying capacity Kmax

1 , that is the network
can only support a certain number of edges as given by Kmax

1 .
Using the above notation, here

βk = α(N − k)

(
1−

k

Kmax
1

)
, δk = ωk, αk = βk + δk, k = 0, . . . , N,

α−1 = δN+1 = 0

with Kmax
1 being of order N . These coefficients clearly satisfy (1.2) and (1.3).

The second motivation comes from epidemiology where a paradigm disease trans-
mission model is the simple susceptible-infected-susceptible (SIS) model on a com-
pletely connected graph with N nodes, i.e. all individuals are connected to each
other. From the disease dynamic viewpoint, each individual is either susceptible
(S) or infected (I) – the susceptible ones can be infected at a certain rate (β) if
linked to at least one infected individual and the infected ones can recover at a
given rate (γ) and become susceptible again. It is known that in this case the 2N -
dimensional system of Kolmogorov equations can be lumped to a N+1-dimensional
system, see Simon, Taylor and Kiss [18].
The lumped Kolmogorov equations take again the form (KE) with

βk = βk(N − k)/N, δk = γk, αk = βk + δk, k = 0, . . . , N,

β−1 = δN+1 = 0.

These coefficients also satisfy (1.2) and (1.3). We note that in the case of a homo-
geneous random graph we get a similar system with a slightly different meaning of
the coefficients.

3. Momentum approach

The basic idea of getting an approximating differential equation is to calculate the
time derivative of the expected value by using the Kolmogorov equations. Since the
obtained equation is not self-contained, it needs to be closed by using some closure
approximation. In this Section we derive first equations for the derivatives of every
moment, then we briefly show how to get the simplest mean-field approximation
for the first moment. This is also discussed in the case of asymptotically density
dependent Markov chains.

3.a. Differential equations for the moments. Introducing the moments

(3.1) yn(t) =

N∑

k=0

(
k

N

)n

pk(t), n = 1, 2, . . . ,
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(y1(t) is the expected value we are mainly interested in) we follow Simon and Kiss
[17] to derive the differential equations for yn(t) starting from the Kolmogorov
equations (KE). To get the time derivative of yn the following Lemma will be used.

Lemma 2. Let rk (k = 0, 1, 2, . . .) be a sequence and let r(t) =
∑N

k=0 rkpk(t),
where pk(t) is given by (KE). Then

ṙ =

N∑

k=0

(βk(rk+1 − rk) + δk(rk−1 − rk))pk.

Proof. From (KE) we obtain

ṙ =

N∑

k=0

rkṗk =

N∑

k=1

rkβk−1pk−1 −

N∑

k=0

rkαkpk +

N−1∑

k=0

rkδk+1pk+1

=

N−1∑

k=0

rk+1βkpk −

N∑

k=0

rkαkpk +

N∑

k=1

rk−1δkpk.

Using that βN = 0, δ0 = 0 and αk = βk + δk we get

ṙ =
N∑

k=0

(rk+1βk − rk(βk + δk) + rk−1δk) pk =
N∑

k=0

(βk(rk+1− rk)+ δk(rk−1− rk))pk.

�

Before applying Lemma 2 with rk = (k/N)n, it is useful to define the following two
new expressions

Rk,n =
(k + 1)n − kn − nkn−1

Nn−1
, Qk,n =

(k − 1)n − kn + nkn−1

Nn−1
.

Let us introduce

(3.2) dn(t) =

N∑

k=0

(βkRk,n + δkQk,n)pk(t).

Combining these with Lemma 2 leads to

ẏn(t) =
N∑

k=0

(
βk

N

(
n
kn−1

Nn−1
+Rk,n

)
+

δk
N

(
−n

kn−1

Nn−1
+Qk,n

))
pk(t)

hence

(3.3) ẏn(t) = n ·

N∑

k=0

βk − δk
N

·

(
k

N

)n−1

· pk(t) +
1

N
dn(t).

Using the binomial theorem Rk,n and Qk,n can be expressed in terms of the powers
of k, hence dn can be expressed as dn(t) =

∑n

m=1 dnmym(t) with some coefficients
dnm. The dn terms contain N , hence to use the 1/N → 0 limit it has to be shown
that dn remains bounded as N goes to infinity. This is proved in the next lemma.

Lemma 3. For the functions dn the following estimates hold

0 ≤ dn(t) ≤ c ·
n(n− 1)

2
for all t ≥ 0.
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Proof. Taylor’s theorem, with second degree remainder in Lagrange form, states
that

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(ξ)
(x − x0)

2

2
,

where ξ is between x0 and x. This simple result can be used to find estimates for
both Rk,n and Qk,n. In particular, applying the above result when f(x) = xn,
x = k + 1 and x0 = k gives

Rk,n =
n(n− 1)

2

ξn−2

Nn−1

with some ξ ∈ [k, k + 1]. Similarly, when x = k − 1 and x0 = k, we obtain

Qk,n =
n(n− 1)

2

ηn−2

Nn−1

with some η ∈ [k, k + 1]. Hence, Rk,n and Qk,n are non-negative yielding that
dn(t) ≥ 0. On the other hand, ξ/N ≤ 1 and η/N ≤ 1 and (1.1) lead to the
inequality given below

βkRk,n + δkQk,n ≤
n(n− 1)

2

(
βk

N
+

δk
N

)
≤ c ·

n(n− 1)

2
.

Hence, the statement follows immediately from (3.2) and using that
∑N

k=0 pk(t) =
1. �

We show two possible ways to turn (3.3) into an ODE. First, we use the approxima-
tion E(F (X)) = F (E(X) (where E stands for the expected value and F is a given
measurable function) to derive the mean-field approximation. Then assuming that
the Markov chain is density dependent and the functions β and δ are polynomials,
we derive an infinite system of ODEs for the moments.

3.b. The mean-field approximation. Since d1 = 0, applying (3.3) for n = 1 we
obtain

(3.4) ẏ1(t) =

N∑

k=0

(
BN (k)

N
−

DN (k)

N

)
· pk(t).

Using the asymptotic density dependence of the Markov chain (1.2), the right-hand
side can be approximated by

N∑

k=0

(
β

(
k

N

)
− δ

(
k

N

))
· pk(t).

In order to make the equation “closed” the approximation

(3.5)

N∑

k=0

(
β

(
k

N

)
− δ

(
k

N

))
· pk(t) ≈ β

(
N∑

k=0

k

N
· pk(t)

)
− δ

(
N∑

k=0

k

N
· pk(t)

)

will be used. Substituting this approximation into the equation (3.4) we obtain the
following differential equation

(ODE) ẋ = β(x) − δ(x).

This equation is known as the mean-field approximation of the original Kolmogorov
equation (KE).
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3.c. Infinite system of ODEs in the polynomial case. In this Subsection it
is assumed that the functions in (1.1) are polynomials and the Markov chain is
density dependent, that is,

(3.6)
βk

N
= β

(
k

N

)
,

δk
N

= δ

(
k

N

)

and

(3.7) β(x) =
l∑

j=0

gjx
j , δ(x) =

l∑

j=0

hjx
j .

Using this and denoting

(3.8) qj := gj − hj , j = 0, 1, . . . , l,

from (3.3) we obtain that

ẏn(t) = n ·

N∑

k=0

l∑

j=0

qj

(
k

N

)n+j−1

· pk(t) +
1

N
dn(t)

= n ·

l∑

j=0

qjyn+j−1(t) +
1

N
dn(t)(3.9)

with

(3.10) 0 ≤ dn(t) ≤ c ·
n · (n− 1)

2
.

Letting N → ∞ on the right-hand-side, we arrive at the following system

ḟn(t) = n ·

l∑

j=0

qjfn+j−1(t)

n = 1, 2, . . . ,(IE)

that can be regarded as a system of “approximating” differential equations for (3.9).
In Section 5 we are going to investigate how y1(t) can be approximated on finite
time intervals using the solution of this infinite system.

Remark 4. All the results for the infinite system obtained from here on remain
valid in the asymptotically density dependent case when

βk

N
=

l∑

j=0

g̃j(N)kj ,
δk
N

=

l∑

j=0

h̃j(N)kj

and

g̃j(N) =
gj
N j

+O

(
1

N j+1

)
, h̃j(N) =

hj

N j
+O

(
1

N j+1

)
, j = 0, . . . , l.

The only difference is that in (3.9) we obtain

ẏ(t) = n ·

l∑

j=0

qjyn+j−1(t) +
1

N
dn(t) +O

(
1

N

)
.
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4. Proof of Theorem 1

In this Section we prove that the solution of (ODE) is an O(1/N) approximation
of the expected value of the Markov chain, that is we prove Theorem 1.
Let us introduce the matrix AN as in Section 1

AN :=




−α0 δ1 0 · · · · · · 0
β0 −α1 δ2 · · · · · · 0
0 β1 −α2 δ3 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · βN−2 −αN−1 δN
0 0 · · · 0 βN−1 −αN




.

Then the operator families (TN (t))t≥0 defined as

TN (t) := [pj,k(t)] = eA
⊤

N
t

form uniformly continuous semigroups on CN+1 for each N ∈ N. This yields

(4.1) (TN (t)f)

(
j

N

)
=

N∑

k=0

f

(
k

N

)
· pj,k(t)

for f = (f0, . . . , fN ) ∈ C
N+1 where we make the identification

C
N+1 ≡

{
f : f maps {0,

1

N
,
2

N
, · · · , 1} to R

}
.

Assume for the sake of simplicity that on the right-hand-side of (ODE) the functions
β, δ ∈ C2[0, 1]. If we denote the solution of (ODE) with initial condition x0 by
ϕ(t, x0), then the operator family defined as

(4.2) (T (t)f)(x0) := f(ϕ(t, x0)), f ∈ C([0, 1]), t ≥ 0

defines a strongly continuous operator semigroup on C([0, 1]) (see Engel, Nagel [7,
Section 3.28]) with generator (A,D(A)). We also know that for f ∈ C1([0, 1])

(Af)(x0) = (β(x0)− δ(x0)) · f
′(x0).

The main idea is to approximate the semigroup (TN (t))t≥0 (that is, the solution

of the transposed (KE)) using the semigroup (T (t))t≥0 (that is, the solution of the

mean-field equation (ODE)). Observe that the semigroups act on different spaces:
the first one acts on XN := CN+1, the second one on X := C1([0, 1]). In order to
prove an approximation Theorem in a fixed space, we assume that there are linear
operators

JN : XN → X, JN (f) := g,(4.3)

PN : X → XN , PN (g) := f with f

(
k

N

)
= g

(
k

N

)
, k = 0, . . . , N(4.4)

such that ‖JN‖ ≤ 1, ‖PN‖ ≤ 1, N ∈ N, and

PNJN = IXN
, N ∈ N;

JNPNf → f, N → ∞ ∀f ∈ X

are satisfied (see Bátkai et al. [3, Definition 3.5]). The next Lemma formulates the
main approximation result in rigorous terms.
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Lemma 5. Assume that the conditions of Theorem 1 are satisfied. For (TN (t))t≥0

and (T (t))t≥0 the following holds: for all f ∈ C2([0, 1]) and t0 > 0 there exists

C = C(f, t0) > 0 such that for all t ∈ [0, t0]

(4.5) ‖(PNT (t)− TN(t)PN )f‖ ≤
C

N
,

where PN denotes the projection defined in (4.4).

Proof. For the generators AN , A, and for f ∈ C2([0, 1]) the following identities
hold:

(PNAf)

(
k

N

)
=

(
β

(
k

N

)
− δ

(
k

N

))
· f ′

(
k

N

)
;

(ANPNf)

(
k

N

)
=

βk

N
·
f(k+1

N
)− f( k

N
)

1
N

−
δk
N

·
f( k

N
)− f(k−1

N
)

1
N

,

k = 0, . . . , N. The idea of proving the estimate for the semigroups is to estimate
the difference of the generators. Their difference can be divided into two parts as
follows.

(PNAf)

(
k

N

)
− (ANPNf)

(
k

N

)
=

(
β

(
k

N

)
−

βk

N
− δ

(
k

N

)
+

δk
N

)
f ′

(
k

N

)

+
βk

N

(
f ′(

k

N
)−

f(k+1
N

)− f( k
N
)

1
N

)
+

δk
N

(
f( k

N
)− f(k−1

N
)

1
N

− f ′(
k

N
)

)
.

The first part can be estimated by using the asymptotic density dependence (1.5)
as

(4.6)

∣∣∣∣β
(

k

N

)
−

βk

N

∣∣∣∣ =
∣∣∣∣∣β
(

k

N

)
−

BN (N k
N
)

N

∣∣∣∣∣ ≤
L

N

and

(4.7)

∣∣∣∣δ
(

k

N

)
−

δk
N

∣∣∣∣ =
∣∣∣∣∣δ
(

k

N

)
−

DN(N k
N
)

N

∣∣∣∣∣ ≤
L

N

and using that f ′ is bounded.
The second part can be estimated by using Taylor’s formula for f ∈ C2([0, 1]). We
obtain that for each k = 0, . . . , N there exists ξk ∈ ( k

N
, k+1

N
) such that

(4.8)

∣∣∣∣∣
f(k+1

N
)− f( k

N
)

1
N

− f ′(
k

N
)

∣∣∣∣∣ =
∣∣∣∣N ·

f ′′(ξk)

2
·

1

N2

∣∣∣∣ ≤
1

2N
‖f ′′‖ .

Since β and δ are bounded on [0, 1] (they are in C2[0, 1]), we obtain from (4.6) and

(4.7) that βk

N
, δk

N
are uniformly bounded for all k = 0, . . . , N and N ∈ N. Hence,

for all f ∈ C2([0, 1]) there exists K > 0 such that

(4.9) ‖(PNA−ANPN ) f‖ ≤
K

N
‖f ′′‖+

L

N
‖f ′‖.

It is easy to see that for all N , the operators T̃N (t) := JNTN(t)PN , t ≥ 0 form a
strongly continuous semigroup on X – where JN is defined in (4.3) – with generator

ÃN := JNANPN .
Using the variation of parameters formula (see e.g. Engel, Nagel [7, Corollary
III.1.7]), for the difference of the (projected) semigroups, and for f ∈ C2([0, 1])
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we obtain that

(PNT (t)− TN (t)PN ) f = PN

(
T (t)f − T̃N (t)f

)

=

∫ t

0

PN T̃N (t− s)
(
A− ÃN

)
T (s)f ds

=

∫ t

0

TN(t− s) (PNA−ANPN )T (s)f ds.

By the estimate in (4.9) and using that T (t) maps the subspace C2([0, 1]) of X into
itself (see Chicone [5, Theorem 1.3]), we obtain that for f ∈ C2([0, 1]) there exist
K∗ > 0 and L∗ > 0, such that

‖(PNT (t)− TN(t)PN ) f‖ ≤

∫ t

0

K∗

N
· ‖(T (s)f)′′‖+

L∗

N
· ‖(T (s)f)′‖ ds.

Since β, δ ∈ C2([0, 1]), the solution function ϕ of (ODE) is also a C2-function of
the initial data. Hence, for s ∈ [0, t] there exists Kt > 0 such that

‖(T (s)f)′′‖ = ‖(f ◦ ϕ(s, ·))′′‖ =
∥∥(f ′′ ◦ ϕ) · (ϕ′)2 + (f ′ ◦ ϕ) · ϕ′′

∥∥ ≤ Kt · ‖f‖C2

and similarly ‖(T (s)f)′‖ ≤ K∗
t · ‖f‖C2. This yields that for f ∈ C2([0, 1]) and

t0 > 0 there exists C = C(f, t0) > 0 such that for all t ∈ [0, t0]

‖ (PNT (t)− TN(t)PN ) f‖ ≤
C

N
.

�

Using this semigroup approximation Lemma we can now prove Theorem 1.

Proof of Theorem 1. We apply Lemma 5 for f = id[0,1]. We obtain that for any
t0 > 0 there exists C = C(id, t0) such that for all t ∈ [0, t0]

(4.10) ‖(PNT (t)− TN (t)PN ) id‖ ≤
C

N
.

Observe that by (3.1) and (4.1), the following relation holds

y1(t) =

N∑

k=0

k

N
· pk(t) =

N∑

k=0

k

N
·

N∑

j=0

pj,k(t) · pj(0)

=

N∑

j=0

pj(0)

N∑

k=0

id(
k

N
) · pj,k(t) =

N∑

j=0

pj(0) · (TN (t)PN id) (
j

N
)

= 〈p(0), TN(t)PN id〉.

Furthermore, using (4.2) it is easy to show that

(PNT (t)id) (
k

N
) = ϕ(t,

k

N
).

It can be seen that it is enough to prove the statement when the initial condition
is pm(0) = 1, pj(0) = 0, j 6= m. Then y1(0) =

m
N

yielding x(0) = m
N

and therefore

x(t) = ϕ
(
t, m

N

)
. Hence, combining the above facts we obtain

|y1(t)− x(t)| =
∣∣∣〈p(0), TN (t)PN id〉 − ϕ(t,

m

N
)
∣∣∣

=
∣∣∣(TN(t)PN id) (

m

N
)− (PNT (t)id) (

m

N
)
∣∣∣ ≤

C

N

where we used (4.10). �
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5. Infinite system of ODEs for the moments

In this Section we consider the infinite system of ODEs (3.9) for the moments and
its formal limit as N → ∞ (IE). Our aim here is to prove that the solutions of the
first system converge to those of the second as N → ∞ and t is in a bounded time
interval. That is, that the moments of the Markov chain converge to the solutions
of the infinite system (IE). As a bi-product of this result we get a completely new
proof of Theorem 1 under extra sign conditions on the transition rates.
In order to prove this general convergence result were are going to use the approach
of Kato [12] and Banasiak et al. [1].

Lemma 6. Denote the formal operator

(Lf)n := n ·

l∑

j=0

qjfn+j−1, n = 1, 2, . . . .

Let
D(Lmax) :=

{
f ∈ ℓ1 : Lf ∈ ℓ1

}
, Lmax := L|D(Lmax).

Assume that q0, q2, . . . , ql ≥ 0, q1 ≤ 0 and

q0 + q1 + · · ·+ ql ≤ 0;(5.1)

q0 − 2q3 − 3q4 − 4q5 − · · · − (l − 1)ql ≤ 0.(5.2)

Then there exists an operator (L,D) such that L ⊂ Lmax and (L,D) is the generator
of a positive strongly continuous semigroup (T (t))t≥0 of contractions on ℓ1.

Proof. Building the infinite coefficient matrix for L, the assumptions imply that all
the column sums are less or equal than 0:

(5.3) (n+1)q0+nq1+(n−1)q2+(n−2)q3+ · · ·+(n− l+1)ql ≤ 0, n = 1, 2, . . . .

Hence, using the assumptions on the signs of the qj ’s, we can apply Theorem 1
of Kato in [12]. Though the assumptions of Kato’s theorem are referred to the
equality instead of the inequality in (5.3), the proof works without any changes in
our case. Thus, we do not repeat the proof here. �

Let us turn to our original question on the expected value y1(t) – that is, the first
coordinate of the solution of (3.9).

Theorem 7. Assume that the conditions of Lemma 6 are satisfied. Then there
exists an appropriate Banach space of sequences ℓ1w with norm ‖ · ‖w such that
for any initial condition y0 ∈ ℓ1w the solution y(t) := (yn(t))n∈N

of (3.9) and the
solution f(t) := (fn(t))n∈N

of (IE) satisfy

(5.4) ‖y(t)− f(t)‖w ≤
K

N
for t ∈ [0, T ],

that is the solution of (3.9) tends to the solution of (IE) in a finite time interval
as N → ∞.

Proof. Using the formal operator L as in Lemma 6, the system (3.9) can be written
as

ẏ(t) = Ly(t) +
1

N
d(t),

y(0) = y0,(5.5)

where d(t) := (dn(t))n∈N
. Denote by ℓ1w a weighted ℓ1 space of sequences such that

d(t) ∈ ℓ1w, t ∈ R+, e.g.,

‖x‖w :=

∞∑

n=1

|xn|r
n for x = (xn)n∈N with |r| < 1.
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In this case, by (3.10),

‖d(t)‖w ≤ c ·

∞∑

n=1

n(n− 1)rn =: K < ∞, t ∈ R+.

Applying Lemma 6 on the space ℓ1w, we obtain an operator (Lw, Dw) – acting
formally as L – which is the generator of a contraction semigroup (Tw(t))t≥0 on ℓ1w.

By the formula of variation of parameters for (5.5) (see, e.g., Engel and Nagel [7,
Corollary III.1.7]), we have

y(t) = Tw(t)y0 +
1

N
·

∫ t

0

Tw(t− s)d(s) ds(5.6)

= f(t) +
1

N
·

∫ t

0

Tw(t− s)d(s) ds(5.7)

for any y0 ∈ ℓ1w. Thus

(5.8) ‖y(t)− f(t)‖w ≤
1

N
·

∫ t

0

‖Tw(t− s)‖w · ‖d(t)‖w ds ≤
1

N
· t ·K,

and this implies (5.4). �

Remark 8. We note that the sign conditions of Lemma 6 hold in the case of globally
constrained random link activation-deletion process, but they do not hold in the
case of an SIS epidemic on a complete graph.
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the Alexander von Humboldt-Stiftung.

References

[1] J. Banasiak, N. Lachowicz and N. Moszyński, Semigroups for generalized brith-and-
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