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Abstract—We consider the optimal choice problem by a risk-bearing function for an insurer to
divide risks between him and his clients in a dynamic insurance model, the so-called Cramer–
Lundberg risk process. In this setting, we take into account restrictions imposed on policyholder
risks, either on the mean value or a constraint with probability one. We solve the optimal control
problem on an infinite time interval for the optimality criterion of the stationary coefficient of
variation. We show that in the model with a restriction on average risk the stop-loss insurance
strategy will be most profitable. For a probability one restriction, the optimal insurance is a
combination of a stop-loss strategy and a deductible. We show that these results extend to a
number of problems with other optimality criteria, e.g., the problems of maximizing unit utility
and minimizing the probability of deviating from the mean value.
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1. INTRODUCTION

The classical Cramer–Lundberg risk process that describes capital dynamics in an insurance
company has the form

Xt = x0 + ct−
Nt∑

i=1

Yi, (1)

where x0 > 0 is the initial capital of the company, {Nt} is the Poisson process of the claims
with parameter λ that defines the number of filed claims, i.e., the number of insurance events, on
the interval [0, t]; {Yi} are independent identically distributed insurance payments (or risks) with
distribution function F (x) and a finite second moment E Y 2 < ∞, which do not depend on {Nt}.
The speed c of accumulating insurance premium is determined by the mean value principle (see,

e.g., [1,2]). That is, the total premium on [0, t] equals (1+α)EXt , where the total loss isXt =
N(t)∑
i=1

Yi,

and α > 0 is a predefined load coefficient that shows the mark-up, in percents, over the average
risk EXt. Since ENt = λt, the speed of premium accumulation is c = (1 + α)λE Y .

Studying the optimization problem of risk-bearing in insurance began with the work [3], where,
for a static model, it was shown that the optimal risk-bearing from the viewpoint of expected
policyholder (client) utility is a deductible. In [4], a description of Pareto optimal risk-bearing
functions was presented, and, in particular, it was shown that the solution of the risk-bearing
problem leads to a stop-loss risk-bearing if the risk-bearing function is chosen by the insurance
company (the insurer). The situation when an insurer has the choice of insuring and reinsuring
each individual risk is considered in [5].

The optimal control problem in dynamic insurance models based on the Cramer–Lundberg risk
process has been studied in [6–11]. In [6], the problem of minimizing the ruin probability for
an insurer by selecting reinsurance in the class of stop-loss risk-bearing functions applied to each
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Fig. 1. Trajectory of the controlled risk process.

policyholder’s risk has been studied. The work [7] is devoted to the same problem, but in the case
when the insurer has the option of proportional reinsuring and investing in a risky asset. In a
close problem setting, but without reinsurance control, the problem of minimizing ruin probability
has been studied in [8], where the asymptotics of the target functional has been determined. The
risk process arising as a diffuse approximation of the Cramer–Lundberg process was studied in [9],
where optimal investing and proportional reinsurance strategies were found for the cases of both
unlimited investing budget (for the case of using short sales) and if a constraint is present. The
problem with another optimality criteria, namely the expected consuming utility of a policyholder,
was solved in [10], where optimal investing and insuring strategies were found.

The main feature distinguishing this work from previous studies are bounds on the risk re-
maining with the client after insurance. These (upper) bounds are natural from the policyholder’s
point of view; he would like to avoid “large” (in some sense) losses. In this work, we consider
both a constraint on average risk and a “hard” constraint with probability one. Managing the risk
process consists of selecting an insurance strategy (we do not consider the possibilities of reinsur-
ance and investment management). While the basic instrument for finding an optimal strategy
in the above-mentioned works has been the Hamilton–Jacobi–Bellman equation, which can very
seldom be solved analytically and usually requires numerical methods, the present paper reduces
the optimal control problem to the static case and obtain an analytic form for the optimal strategy.
A similar problem setting was considered in [11], where simultaneous optimization of insurance and
reinsurance during the risk process was allowed. However, in that paper average maximal insurer
losses are being minimized, while the present work uses other criteria, e.g., the stationary variation
criterion. Besides, significantly, in [11], a constraint with probability one was not considered.

Let us proceed to the formal description of the model in question, i.e., the controlled risk process.
Suppose that at the payment moment t = ti (i ≥ 0, t0 = 0) the insurer makes a decision, i.e., chooses
a risk-bearing function It(·), which means that now It(Yi+1) is the share of the next payment
reimbursed to the client, and the premium accumulation speed becomes equal ct = (1+α)λE It(Y )
until the next payment. The controlled risk process is, then,

Xt = x0 +

t∫

0

csds−
Nt∑

j=1

Itj−1(Yj), (2)

where admissible strategies I = {It} are nonanticipating controls measurable with respect to the
natural filtration {Ft} and satisfying standard inequalities 0 ≤ It(x) ≤ x on [0,∞) (in other words,
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reimbursement is always nonnegative and does not exceed the client’s damage). The trajectory of
the Xt process is shown on Fig. 1.

The process operation interval is supposed to be infinite, and after determining the target
functional J [I] that characterizes the process operation quality this problem, without additional
constraints, takes the form

min (max)J [I], (3)

where the minimum (maximum) is taken over the set of admissible insurance strategies I = {It}
defined above.

In Section 2, we consider the stationary coefficient of variation as the minimization criterion J [I]
and study both cases of the constraints on policyholder risk: a bound on the mean value and a
bound with probability one. Optimal insurance risk-bearing functions are substantially different in
these two cases; in the former case stop-loss insurance is optimal, while in the latter case the so-
called SD-insurance, which is a combination of the stop-loss strategy and the deductible, becomes
optimal. We present optimality equations that define parameters of these insurance strategies for
both constraint types. To construct optimal strategies, we have first reduced the original problem
to a static optimization problem and, second, used the methods of moments theory to the latter, in
particular, the Neyman–Pearson lemma. In Section 3, this method is used to solve the problem with
another criterion, insurer utility (a linear function of the expectation and variance) per unit of time.
The form of optimal insurance risk-bearing functions is the same, only the optimality equations
for parameters of these risk-bearing functions have changed. In Section 4, as the minimization
criterion we have considered the probability of a time normalized risk process to deviate from the
mean value. In the first case of a bound on the average risk stop loss insurance remains the solution,
while in the case of a bound with probability one the solution will be a degenerate SD insurance,
namely a deductible. At the end of this work, we show a numerical example that illustrates our
results for the case of an exponential distribution of the payments.

2. MINIMIZATION PROBLEM FOR THE STATIONARY COEFFICIENT OF VARIATION

Suppose that the functional minimized in problem (3) has the form of an upper limit

J [I] = lim
t→∞DXt/E Xt. (4)

Similar to a well-known term in risk theory, we call this functional the “stationary coefficient of
variation,” despite the fact that usually this term means a ratio of the standard deviation, not the
variance, to the expectation. In our case, even for an unmanaged risk process (1) (considering the

fact that E
Nt∑
i=1

Yi = λtE Y and D
Nt∑
i=1

Yi = λtE Y 2) the process

lim
t→∞

√
DXt

EXt
= lim

t→∞

√
λtE Y 2

x0 + αλtE Y

is always zero, so as the criterion we select the ratio of the variance of Xt to the average value.
In insurance (see, e.g., [2]), the variation coefficient is often used as an estimate of a company’s
financial stability: the less it is, the better the insurance portfolio is balanced.

2.1. The Case of Bounded Average Risk

It is easy to see that the functional (4) reaches the minimal zero value in case if all risk-bearing
functions are zero, It(x) ≡ 0, which means that the company refuses to insure at all. In this
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case, Xt = x0 and DXt/E Xt = 0. To avoid this situation, in which the clients’ desire to insure
their risks is completely ignored, we introduce an additional constraint: we consider admissible
only those insurance risk-bearing functions I which satisfy an upper bound on the average risk
remaining with the client (policyholder) after insurance, E {Y − It(Y )} ≤ C. Here t is the (fixed)
payment moment, C ∈ [0, E Y ) is the constant defined by the policyholder that defines the maximal
average risk he agrees to have left. An equivalent constraint on the insurer’s risk can be written as
E It(Y ) ≥ M , where M = E Y − C. Our subject in this subsection is the problem of minimizing
the functional defined in (4) with additional constraints

J [I] → min, E It(Y ) ≥M. (5)

Theorem 1. In problem (5), the minimum is achieved on the stationary strategy I∗(·) indepen-
dent on the current process state. The optimal risk-bearing function is the stop-loss insurance
I∗(x) = x∧ k∗ (here and below x∧ y denotes min{x, y}), where parameter k∗ is the only root of the

equation
k∫

0
F̄ (x)dx =M , where F̄ (x) = 1− F (x).

Proof. According to definition (2), the risk process is a controlled Markov uniform process with
infinite horizon (see, e.g., [12]). We define the Bellman function V (t, x) = infI J [I] for a process on
the interval [t,∞) with initial state Xt = x. Due to the specifics of the considered J [I] criterion,
we have V (t, x) = V (0, x) and V (t, x) = V (t, 0). Therefore, since the class of Markov strategies is
sufficient for solving the optimization problem, we get that the minimum in problem (5) can be
searched for in the class of constant strategies It(·) = I(·), i.e., strategies independent of both the
decision making moment t and the current state x.

In the class of these strategies, by the Wald’s identity we get

EXt = x0 + αλtE I(Y ) and DXt = λtE I2(Y ), (6)

therefore, (4) implies that the original problem (5) takes the form

J [I] ≡ E I2(Y )/(αE I(Y )) → min, E I(Y ) ≥M. (7)

The set of admissible risk-bearing functions I here is the set of Borel functions satisfying inequalities
0 ≤ I(x) ≤ x, E I(Y ) ≥M .

For a solution (7), we use the approach employed in [11] for a similar problem: we first show
that the solution of an auxiliary problem

inf
I:E I(Y )=m

J [I] (8)

with parameter m ∈ [M,E Y ] is a stop-loss insurance x ∧ km, and then find the value of km for
the problem (7). Since J [I] increases in E I2(Y ) for a fixed E I(Y ), minimization in (8) reduces to
minimizing E I2(Y ). Since E I2(Y ) is a convex function of I, an admissible risk-bearing function I∗m
minimizes E I2(Y ) if and only if the derivative

d

dρ
E {ρI∗m(Y ) + (1− ρ)I(Y )}2

∣∣∣
ρ=1

= 2

T∫

0

I∗m(x)[I∗m(x)− I(x)]dF (x) ≤ 0

for any admissible I. This is equivalent to the fact that I∗m is a solution of the problem

min
I

∞∫

0

I∗m(x)I(x)dF (x) with constraint

∞∫

0

I(x)dF (x) = m.
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By the Neyman–Pearson lemma (see, e.g., [13]), an admissible risk-bearing function I∗m is optimal
in this problem if and only if there exists a constant k such that

I∗m(x) =

{
0, if I∗m(x)− k > 0
x, if I∗m(x)− k < 0

up to a set of zero F -measure.

It is easy to see that the only function satisfying this condition is I∗m(x) = x ∧ k, where k = km is

defined by E [Y ∧ k] = m, i.e.,
k∫

0
F̄ (x)dx = m.

Returning to problem (7), we note that

inf
I:EI(Y )≥M

J [I] = inf
m∈[M,EY ]

min
I:EI(Y )=m

J [I],

and the internal minimum in the right-hand side is reached, as we have shown, on I∗m(x) = x∧ km.
Then the left-hand side problem is equivalent to minimizing over all risk-bearing functions I(x) =
x ∧ k, k ≥ kM . After substituting a stop-loss risk-bearing function in the expression for J [I] in (7)

we get J [I] =
k∫

0
2xF̄ (x)dx

/{
α

k∫

0
F̄ (x)dx

}
. By differentiating, it is easy to show that this function

increases in k, so the optimal risk-bearing function in (7) is I∗(x) = x ∧ k∗ with k∗ = kM .

The optimal risk-bearing function form I∗(x) = x ∧ k∗ found in Theorem 1 is a well-known in
insurance practice contract with an insurance sum: if the client’s damages do not exceed k∗, they
are reimbursed completely, and if Y > k∗ then only the insurance sum k∗ is paid.

2.2. The Case of a Bound with Probability One

Suppose that we consider admissible only those risk-bearing functions which satisfy an upper
bound on the client’s risk satisfied with probability one: Y − It(Y ) ≤ q, where q is a constant given
by the policyholder. Any contract admissible from the policyholder’s point of view should leave
him risk (i.e., potential damage) at most q. An equivalent restriction on the insurer’s risk can be
written as It(x) ≥ (x− q)+, x ∈ [0,∞), where (x)+ denotes max{0, x}.

Theorem 2. The minimum in the problem

J [I] → min, It(x) ≥ (x− q)+, (9)

is achieved on a stationary strategy I∗(·) independent of the current process state. The optimal risk-
bearing function is a combination of stop-loss insurance and deductible, I∗(x) = (x ∧ k∗)∨ (x− q),
where x ∨ y denotes max{x, y}. The parameter k∗ is the only root of the equation

k∫

0

(k − x)F̄ (x)dx +

∞∫

k

(k − x)F̄ (x+ q)dx = 0. (10)

Proof. By repeating the arguments of the first part of the proof of Theorem 1, we get that it
suffices to consider stationary strategies independent of the current process state. Therefore, the
initial problem reduces to an analogue of problem (7):

J [I] ≡ E I2(Y )/(αE I(Y )) → min, (x− q)+ ≤ I(x) ≤ x. (11)

Just like in Theorem 1, to solve (11) we consider an auxiliary problem with an additional constraint

inf
I:E I(Y )=m

E I2(Y ).
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Applying the Neyman–Pearson lemma gives us necessary and sufficient optimality conditions in
this problem: there exists a constant k such that

I∗m(x) =

{
(x− q)+ if I∗m(x)− k > 0

x if I∗m(x)− k < 0.
(12)

We first assume that k < I∗m(0) (= 0). Then (see (12)) I∗m(x) ≡ (x − q)+. If I∗m(0) − k = 0
(i.e., k = 0) then I∗m(x) cannot become positive up until point q, since for such x (12) implies
the equality I∗m(x) = 0, which yields a contradiction. For x > q, the value of I∗m(x) coincides
with the lower bound x− q and, consequently, I∗m(x) ≡ (x − q)+. Suppose that k > I∗m(0). Then
from (12) we have I∗m(x) = x up until the point x = k of I∗m(x) − k touching the X axis. As x
increases from k upwards, the value I∗m(x) − k remains zero, since both increase and decrease of
this function would contradict (12). At the point x = k + q, it reaches the lower bound and, due
to (12), remains equal to x − q. As a result, we get that the optimal risk-bearing function has to
look like Ik(x) = (x ∧ k) ∨ (x− q), where k ≥ 0.

Now, to solve problem (11) with no additional constraints it remains to find min
k≥0

J [Ik], where

J [Ik] =
E I2k(Y )

αE Ik(Y )
=

2

⎛

⎝
k∫

0

xF̄ (x)dx+

∞∫

k

xF̄ (x+ q)dx

⎞

⎠

α

⎛

⎝
k∫

0

F̄ (x)dx+

∞∫

k

F̄ (x+ q)dx

⎞

⎠

. (13)

The derivative is

d

dk
J [Ik] = A(F̄ (k)− F̄ (k + q))

⎡

⎣
k∫

0

(k − x)F̄ (x)dx+

∞∫

k

(k − x)F̄ (x+ q)dx

⎤

⎦ ,

where A = 2
/
⎛

⎝α
[
k∫

0
F̄ (x)dx+

∞∫

k
F̄ (x+ q)dx

]2⎞

⎠ > 0. If we denote the expression in square

brackets by ψ(k), we arrive at the representation

d

dk
J [Ik] = φ(k)ψ(k), (14)

where φ(k) ≥ 0 and, as differentiation readily yields, ψ(k) is an increasing function changing its sign
on [0,∞). Then the root k∗ of the equation ψ(k) = 0, i.e., Eq. (10), is the minimum point J [Ik].

The function I∗(x) obtained in Theorem 2 is, in a sense, a generalization of a deductible I(x) =
(x− q)+, since the tail of the damage distribution is left to the insurer; small damages are divided
according to stop-loss insurance, I(x) = x ∧ k. This form of a risk-bearing function has been
introduced in [11] under the name SD-insurance in order to solve the insurer utility maximization
problem on a certain set of risk-bearing functions. The form of I∗(x) is shown on Fig. 2.

The client only has a “middle” part of his initial risk left, Y − I∗(Y ) = (Y − k∗)+ ∧ q. This
situation is preferable for a policyholder with possible catastrophic values of damages than stop-loss
insurance, when for a large damage the insurer only pays the limit sum k∗.

3. MAXIMIZING THE UTILITY FUNCTIONAL

As the optimality criterion, we consider unit utility, or utility per unit of time

J [I] = lim
t→∞

1

t
[EXt − θDXt].
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Fig. 2. Optimal risk-bearing function I∗(x) for insurance.

The term “utility” is understood here in the sense of Markowitz theory [14], as a function depending
on risk mean and variance, increasing in the first argument and decreasing in the second. In this
case, we have selected a linear function U [Xt] = EXt − θDXt, where θ > 0 is a given weight.
Note that the variation coefficient minimization problem can also be thought of as a problem of
this type, but with a different utility function V [Xt] = EXt/DXt.

As above, the subject of our study is the problem with a restriction on average risk and the
problem with a probability one restriction:

J [I] → max, E It(Y ) ≥M, (15)

J [I] → max, It(x) ≥ (x− q)+. (16)

Theorem 3. Maximum values in (15), (16) are achieved on stationary strategies independent of
the current process state.

(1) Optimal risk-bearing function in (15) is a stop-loss insurance

I∗1 (x) = x ∧ [k∗ ∨ {α/(2θ)}],

where k∗ is as defined in Theorem 1.
(2) Optimal risk-bearing function in (16) is an SD-insurance

I∗2 (x) = [x ∧ {α/(2θ)}] ∨ (x− q).

Proof. The same arguments as in Theorem 1 prove that stationary strategies independent of the
current process state suffice, It(·) = I(·). Substituting expressions (6) for the mean and variance
of Xt, we get that on the class of these strategies the maximized functional is

J [I] = αE I(Y )− θE I2(Y ). (17)

(1) Repeating the arguments from the proof of Theorem 1, we arrive at the conclusion that
for problem (15), a stop-loss risk-bearing function Ik(x) = x ∧ k is optimal, and it remains to

find max
k≥kM

J [Ik] = max
k≥kM

α
k∫

0
F̄ (x)dx + 2θ

k∫

0
xF̄ (x)dx, where kM is defined as the root of equation

E Y ∧ k =M . The derivative is

d

dk
J [Ik] = F̄ (k)[α − 2θk],
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so the maximum point will be a zero of the derivative k0 = α/(2θ) if k0 ≥ kM , and the left boundary
point kM (= k∗) otherwise.

(2) Solving problem (16), we, similar to the proof of Theorem 2, get that the optimal risk-bearing
function is an SD-insurance Ik(x) = x∧ k∨ (x− q), where k ≥ 0. Substituting into (17) expressions
for E Ik(Y ) and E I2k(Y ), we obtain a problem of maximizing by k the function

max
k≥0

α

⎛

⎝
k∫

0

F̄ (x)dx+

∞∫

k

F̄ (x+ q)dx

⎞

⎠− 2θ

⎛

⎝
k∫

0

xF̄ (x)dx +

∞∫

k

xF̄ (x+ q)dx

⎞

⎠ .

The derivative

d

dk
J [Ik] =

(
F̄ (k)− F̄ (k + q)

)
[α− 2θk]

equals the product φ(k)ψ(k) (see (14)), where φ(k) ≥ 0 and ψ(k) decreases, changing sign at point
k0 = α/(2θ), which is the maximal point of J [Ik].

The found optimal risk-bearing functions have the same form as solutions of coefficient of varia-
tion minimization problems (4) and (9). But while in (4) optimal risk-bearing employs the minimal
possible average insurer risk (E I∗(Y ) =M), now in (10), for a large enough load coefficient α, the
value k0= α/(2θ) > k∗ and the average risk E I∗1 (Y ) turn out to be shifted from the left bound-
ary. In this case, the first level α/(2θ) in the SD-insurance I∗2 coincides with the hold level in the
stop-loss insurance I∗1 .

4. MINIMIZING THE PROBABILITY OF DEVIATING
FROM AN “AVERAGE” TRAJECTORY

In this section, we study the situation when an insurer would like to minimize the “spread” of
values of Xt around the desired average value m(t) = EXt at a remote moment of time. As a
measure of this spread we take the probability of getting out of the ε-neighborhood of the time
normalized process. The minimized functional looks like

J [I] = lim
t→∞P

{∣∣∣∣
Xt − EXt√

t

∣∣∣∣ > ε

}
.

Consider both types of constraints, on average risk and with probability one:

J [I] → min, E It(Y ) ≥M, (18)

J [I] → min, It(x) ≥ (x− q)+. (19)

Theorem 4. Minimum values in problems (18), (19) are achieved on stationary strategies inde-
pendent of the current process state.

(1) The optimal risk-bearing function in (18) is a stop-loss insurance

I∗1 (x) = x ∧ k∗,

where k∗ is as defined in Theorem 1.

(2) The optimal risk-bearing function in (19) is a deductible

I∗2 (x) = (x− q)+.

AUTOMATION AND REMOTE CONTROL Vol. 71 No. 8 2010
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Proof.As above, after the arguments completely similar to the proof of the first part of Theorem 1
we get hat minimal values in (18) and (19) are achieved on constant strategies, i.e., on stationary
strategies independent of the current process state, It(·) = I(·). For this control, the random
process Xt for each fixed t is a complex Poisson random value (r.v.), and the normal convergence
theorem (see, e.g., [15]) implies that the distribution limit as t → ∞ for (Xt − EXt)/

√
t, where

EXt = x0+αλtE I(Y ), will be a normal r.v. with parameters μ = 0 and σ2 = λE I2(Y ). Therefore,
the expression for J [I] can be rewritten as 1 − (Φ0,σ(ε) − Φ0,σ(−ε)) or, passing to the standard
normal distribution function, J [I] = 1−Φ(ε/[λE I2(Y )])+Φ(−ε/[λE I2(Y )]). Since Φ(x) increases,
the minimization in J [I] reduces to minimizing E I2(Y ).

(1) For the solution of (18), passing to the problem minE I2(Y ), E I(Y ) = m, we find the
optimal risk-bearing function Ik(x) = x ∧ k, where k is defined by the equation E Ik(Y ) = m.
Taking into account that

d

dk
E I2k(Y ) =

d

dk
2

k∫

0

xF̄ (x)dx = 2kF̄ (k)

and, therefore, E I2k(Y ) increases in k, we get the solution of the problem (18): I∗1 (x) = x∧ k∗. As
in Theorem 1, k∗ is defined by the equation

k∫

0
F̄ (x)dx =M .

(2) The problem minE I2(Y ), I(x) ≥ (x − q)+ is analyzed similar to Theorem 2. In the
end, the optimal insurance is an SD-insurance Ik(x) = [x ∧ k] ∨ (x − q). Since E I2k(Y ) =

2

[
k∫

0
xF̄ (x)dx+

∞∫

k
xF̄ (x+ q)dx

]
, the derivative

d

dk
E I2k(Y ) = (F̄ (k)− F̄ (k + q))2k

has the form similar to (14). Consequently, the minimum point of J [Ik] over k ∈ [0,∞) will be
k∗ = 0. As a result, the optimal risk-bearing function is I∗2 (x) = (x− q)+.

Note that the optimal stop-loss insurance in (18) coincides with the risk-bearing function found
in Theorem 1, which minimizes the coefficient of variation. However, in problem (19) with a
“hard” constraint, unlike Theorem 2, the optimal solution is a deductible, a degenerate case of
SD-insurance where on the first level k∗ = 0. The policyholder selects a lower bound on the set of
admissible risk-bearing functions, and in this regard the chosen strategy is maximally cautious.

Remark 1. If in target functionals of problems (18), (19) we replace the inequality in deviation

probability P
{∣∣∣(Xt − EXt)/

√
t
∣∣∣ > ε

}
by a single-side inequality (Xt−EXt)/

√
t < −ε, the answer

will not change since minimizing J [I] = Φ(−ε/[λE I2(Y )]) reduces to minimizing E I2(Y ). If, on
the other hand, we use the inequality (Xt − EXt)/

√
t < ε, which means that the insurer would

like to maximize the probability of Xt exceeding the level EXt + ε
√
t, then the optimal risk-

bearing function changes. In this case, minimizing J [I] = 1 − Φ(ε/[λE I2(Y )]) is equivalent to
minimizing E I2(Y ). It is easy to see that the latter problem has the same solution I∗(x) = x for
restrictions on average risk and with probability one. For this strategy, the insurance company
takes up all risk of the clients hoping that the premium accumulation speed will be high enough so
that his capital exceeds (probabilistically) the value EXt+ε

√
t. Compared to optimal risk-bearing

functions found in Theorem 4, this kind of insurance is the least cautious, brought about by the
very problem setting in which the optimal risk-bearing function is the one that leads to maximal
deviation of Xt around its mean value.
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5. EXAMPLE

As an example illustrating our results, we consider the problem of Section 2 about minimizing
the stationary coefficient of variation J [I] = lim

t→∞DXt/E Xt under both kinds of constraints for

the case when payment distribution is exponential, F (x)
def
= P{Y ≤ x} = 1− e−x/μ.

(1) Suppose that a restriction has been imposed on the insurer’s average risk (see Subsection 2.1),

E Z
def
= E {Y − I(Y )} ≤ C, where 0 ≤ C < μ is a constant given by the policyholder. This restric-

tion can be rewritten as E I(Y ) ≥M , whereM = E Y −C. By Theorem 1, the optimal risk-bearing
function for the problem min

I
J [I] is a stop-loss insurance I∗(x) = x ∧ k∗, and the parameter k∗

(the holding level) is defined as the root of the equation
k∫

0
F̄ (x)dx = M . In case of exponential

distribution F (x), we get an equation μ(1− e−k/μ) =M , which implies

k∗ = μ ln

(
μ

μ−M

)
. (20)

Now (6) yields an expression for the optimal stationary coefficient of variation J [I∗] =

2
k∗∫

0
xF̄ (x)dx

/
(
α

k∗∫

0
F̄ (x)dx

)
and, taking (20) into account,

J [I∗] =
2μ

α

(
M − μ

M
ln

(
μ

μ−M

)
+ 1

)
.

We set the average payment value μ = 10 and the load coefficient α = 0.5. Results of computing
the optimal holding level k∗ and J∗ = J [I∗] for different values of the upper bound C on the insurer
average risk are shown in Table 1.

Table 1

C 0 2 4 6 8 9

M = μ− C 10 8 6 4 2 1
k∗ ∞ 16.094 9.163 5.108 2.231 1.054
J∗ 40 23.905 15.565 9.350 4.297 2.071

The case k∗ = ∞ means that I∗(Y ) = Y ∧ k∗ = Y , i.e., the insurance company has to take up
all client’s risk under the constraint E I∗(Y ) ≥M with M = E Y (= 10).

(2) Suppose now that the policyholder requires that the restriction on his remaining risk Z
def
=

Y − I(Y ) must hold with probability one: Z ≤ q or, equivalently, I(x) ≥ (x− q)+. By Theorem 2,
a risk-bearing function I∗ minimizing the stationary coefficient of variation is an SD-insurance
I∗(x) = (x ∧ k∗) ∨ (x − q) with two holding levels k∗ and k∗ + q. The value of parameter k∗ is
defined by Eq. (10), which in this case looks like

μ(1− e−q/μ) + (k − μ)ek/μ = 0.
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Substituting the exponential distribution in (13), we get an expression for the optimal value of the
coefficient of variation

J [I∗] =

2

⎛

⎝
k∫

0

xF̄ (x)dx+

∞∫

k

xF̄ (x+ q)dx

⎞

⎠

α

⎛

⎝
k∫

0

F̄ (x)dx +

∞∫

k

F̄ (x+ q)dx

⎞

⎠

=
2μ[1− δ exp(−k/μ) + δ exp(−(k + q)/μ)]

α[1− exp(−k/μ) + exp(−(k + q)/μ)]
, where δ = 1 + k/μ.

For the same values μ = 10 and α = 0.5, computation results for the optimal holding level k∗ and
the value of the functional J∗ = J [I∗] are shown in Table 2.

Table 2

q 0 4 8 12 16 20

k∗ ∞ 8.606 7.363 6.265 5.304 4.470
J∗ 40 34.423 29.452 25.061 21.217 17.881

Increasing q means reducing the lower bound (x − q)+ of the set of admissible risk-bearing
function values, i.e., extending the minimization region J [I]. Therefore, the minimal value J∗ =
J [I∗] drops as q increases. The case q = 0, as in the first part of the example, means I∗(Y ) = Y ,
that is, the insurer takes up all client’s risk. The value of the level k∗, on the other hand, drops
as q decreases, which leads to reducing the share of risk I∗(Y ) = (Y ∧ k∗) ∨ (Y − q) held by the
insurer. In other works, the insurer becomes more cautious is the policyholder’s restrictions are
relaxed. This effect is similar to the results from the first part of the example (see Table 1), when
along with an increase in the upper bound C on an average client’s risk the level k∗ in the insurer’s
share of risk I∗(Y ) = Y ∧ k∗ decreased.

6. CONCLUSION

In this work, we have solved the problems of choosing optimal insurance strategies for the
insurer in a risk process of Cramer–Lundberg type on an infinite time interval for three optimality
criteria: stationary coefficient of variation, unit utility, and probability of the normalized process
deviating from the mean value. In all cases, we have considered two kinds of constraints on
the risk remaining with the client after insurance, namely a restriction on the mean value and a
restriction with probability one. The novelty in problem settings is, first, in the choice of target
functionals, not used earlier for a risk process, and, second, in residual risk constraints natural from
the policyholder’s point of view. Optimal strategy construction, unlike the traditional approach, is
based not on solving of the Hamilton–Jacobi–Bellman equation, but on reducing the problem to the
static case and then applying a well-known Neyman–Pearson lemma from the theory of moments.
We have shown that for restrictions of the first kind stop-loss insurance turns out to be optimal,
while for restrictions with probability one the optimal risk-bearing function is a special form of
SD-insurance, a combination of stop-loss insurance and a deductible. We have found optimality
equations defining parameters of insurance strategies. Practical applications of our result imply
optimization of risk-bearing schemes of an insurance company functioning over a long interval of
time. The most important here is the risk-bearing of “large” risks, including the choice of insurance
tariffs.
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