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Abstract

We derive the asymptotic distribution of the total length Ln of a
Beta(2 − α,α)-coalescent tree for 1 < α < 2, starting from n indi-
viduals. There are two regimes: If α ≤ 1

2(1 +
√
5), then Ln suitably

rescaled has a stable limit distribution of index α. Otherwise Ln just
has to be shifted by a constant (depending on n) to get convergence
to a non-degenerate limit distribution. As a consequence we obtain
the limit distribution of the number Sn of segregation sites.

Keywords and phrases. Beta-coalescent, coupling, point process, sta-
ble distribution.
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1 Introduction and result

In this paper we investigate the asymptotic distribution of the suitably nor-
malized length Ln of a n-coalescent of the Beta(2−α, α)-type with 1 < α < 2.
As a corollary we obtain the asymptotic distribution of the associated num-
ber Sn of segregating sites, which is the basis of the Watterson estimator
[18] for the rate θ of mutation of the DNA. Here we recall that coalescents
with multiple merging such as Beta-coalescents have been considered in the
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literature as model for the genealogical relationship within certain maritime
species [6, 9].

Beta-coalescents (and more generally Λ-coalescents, as introduced by Pit-
man [15] and Sagitov [16]) possess a rich underlying partition structure, which
is nicely presented in detail in N. Berestycki [3]. For our purposes it is not
necessary to recall all these details, we refer to the following condensed de-
scription of a n-coalescent:

Imagine n particles (blocks in a partition), which coalesce into a single
particle within a random number of steps. This happens in the manner
of a continuous time Markov chain. Namely, if there are currently m > 1
particles, then they merge to l particles at a rate ρm,l with 1 ≤ l ≤ m − 1.
Thus

ρm = ρm,1 + · · ·+ ρm,m−1

is the total merging rate and

Pm,l =
ρm,l
ρm

, 1 ≤ l ≤ m− 1 ,

gives the probability of a jump from m to l.
In these models the rates ρm,l have a specific consistency structure arising

from the merging mechanism. As follows from Pitman [15] they are in general
of the form

ρm,m−k+1 =

(

m

k

)
∫ 1

0

tk−2(1− t)m−k Λ(dt) , 2 ≤ k ≤ m ,

where Λ(dt) is a finite measure on [0, 1]. The choice Λ = δ0 corresponds to
the original model due to Kingman [12], then ρm,l = 0 for l 6= m− 1. In this
paper we assume

Λ(dt) = 1
Γ(2−α)Γ(α)

t1−α(1− t)α−1 dt ,

thus

ρm,m−k+1 =
1

Γ(2−α)Γ(α)

(

m

k

)

B(k − α,m− k + α) ,

where B(a, b) denotes the ordinary Beta-function. Then the underlying coa-
lescent is called the Beta(2−α, α)-coalescent. For α = 1 it is the Bolthausen-
Sznitman coalescent [5] and the case α = 2 can be linked with Kingman’s
coalescent.
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The situation can be descriped as follows: There are the merging times
0 = T0 < T1 < · · · < Tτn and there is the imbedded time discrete Markov
chain n = X0 > X1 > · · · > Xτn = 1, where Xi is the number of particles
(partition blocks) after i merging events. This Markov chain has transition
probabilities Pm,l and, given the event Xi = m with m > 1, the waiting time
Ti+1 − Ti to the next jump is exponential with expectation 1/ρm. Since a
point process description is convenient later, we name the point process

µn =
τn−1
∑

i=0

δXi
(1)

on {2, 3, . . .} the coalescent’s point process downwards from n, shortly the
CPP(n).

This dynamics can be vizualised by a coalescent tree with a root and n
leaves. The leaves are located at height T0 = 0 and the root at height Tτn
above. At height Ti there are Xi nodes representing the particles after i
coalescing events. The total branch length of this tree is given by

Ln =

τn−1
∑

i=0

Xi(Ti+1 − Ti) . (2)

For 1 < α < 2 the asymptotic magnitude of Ln is obtained by Berestycki
et al in [2], it is proportional to n2−α. The asymptotic distribution of Ln is
easily derived for the Kingman coalescent, see [7], it is Gumbel. The case
of a Bolthausen-Sznitman coalescent is treated by Drmota et al [8], here Ln
properly normalized is asymptotically stable. The case 0 < α < 1 of a Beta-
coalescent is contained in more general results of Möhle [13]. Partial results
for the Beta-coalescent with 1 < α < 2 have been obtained by Delmas et al
[7].

In this paper we derive the asymptotic distribution of the Beta-coalescent
for 1 < α < 2. Let ς denote a real-valued random variable with a distribution,
which is stable of index α and normalized by the properties

E(ς) = 0 , P(ς > x) = o(x−α) , P(ς < −x) ∼ x−α (3)

for x → ∞. Thus it is maximally skewed among the stable distributions of
index α.

Also let

c1 =
Γ(α)α(α− 1)

2− α
, c2 =

Γ(α)α(α− 1)1+
1

α

Γ(2− α)
1

α

.
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Theorem 1. For the Beta-coalescent with 1 < α < 2:

(i) If 1 < α < 1
2
(1 +

√
5) (thus 1 + α− α2 > 0), then

Ln − c1n
2−α

n
1

α
+1−α

d→ c2ς

(1 + α− α2)
1

α

.

(ii) If α = 1
2
(1 +

√
5), then

Ln − c1n
2−α

(logn)
1

α

d→ c2ς .

(iii) If 1
2
(1 +

√
5) < α < 2, then

Ln − c1n
2−α d→ η ,

where η is a non-degenerate random variable.

In fact it is not difficult to see from the proof that η has a density with
respect to Lebesgue measure.

This transition at the golden ratio 1
2
(1+

√
5) gets manifest already in the

results of Delmas et al [7]. They also show that the number τn of collisions,
properly rescaled, has asymptotically a stable distribution. This latter result
has been independently obtained by Gnedin and Yakubovitch [11].

The region within the coalescent tree, where the random fluctuations of
Ln asymptotically arise, are different in the three cases. In case (i) fluctu-
ations come from everywhere between root and leaves, whereas in case (iii)
they mainly originate at the neighborhood of the root. Then we have to
take care of those summands Xi(Ti+1− Ti) within Ln, which have an index i
close to τn. In the intermediate case (ii) the primary contribution stems from
summands with index i such that τn − n1−ε ≤ i ≤ τn − nε with 0 < ε < 1

2
.

To get hold of the these fluctuations, in proving the theorem we loosely
speaking turn around the order of summation in Ln =

∑τn−1
i=0 Xi(Ti+1 − Ti).

We shall handle the reversed order by means of two point processes µ and ν
on {2, 3, . . .}. The first one gives the asymptotic particle numbers seen from
the root of the tree. Here we use Schweinsberg’s result [17] implying that the
Beta-coalescent comes down from infinity for 1 < α < 2, see [3], Corollary 3.2.
(Therefore our method of proof does not apply to the case of the Bolthausen-
Sznitman coalescent.) The second one is a classical stationary renewal point
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process, which can be reversed without difficulty. Two different couplings
establish the links. Thereby the exponential holding times are left aside at
first stage. In this respect our approach to the Beta-coalescent differs from
others as in Birkner et al [4] or Berestyki et al [1].

Coalescent trees are used as a model for the genealogical relationship of n
individuals backwards to their most recent ancestor. Then one imagines that
mutations are assigned to positions on the tree’s branches in the manner of a
Poisson point process with rate θ. Let Sn be the number of these segregation
sites (see [3], section 2.3.4). Given Ln the distribution of Sn is Poisson with
mean θLn. To get the asymptotic distribution one splits Sn into parts:

Sn − θc1n
2−α = (Sn − θLn) + θ(Ln − c1n

2−α) .

Since Ln/c1n
2−α converges to 1 in probability, the first summand is asymp-

totically normal and also asymptotically independent from the second one.
Its normalizing constant is (θLn)

− 1

2 ∼ (θc1)
− 1

2n
α
2
−1. Again there are two

regimes: n1−α
2 = o(n

1

α
+1−α), iff α <

√
2. Partial results are contained in

Delmas et al [7]. We obtain:

Corollary 2. Let ζ denote a standard normal random variable, which is

independent from ς.

(i) If 1 < α <
√
2, then

Sn − θc1n
2−α

n
1

α
+1−α

d→ θc2ς

(1 + α− α2)
1

α

.

(ii) If α =
√
2, then

Sn − θc1n
2−α

n1−α
2

d→
√

θc1ζ +
θc2ς

(1 + α− α2)
1

α

.

(iii) If
√
2 < α < 2, then

Sn − θc1n
2−α

n1−α
2

d→
√

θc1ζ .

This is the organisation of the paper: Section 2 contains an elementary
coupling of two N-valued random variables. It is used in section 3, where we
introduce and analyse coalescent’s point processes, and in section 4, where
we couple these point processes to stationary point processes. Section 5
assembles two auxiliary results on sums of independent random variables.
Finally the proof of Theorem 1 is given in section 6.
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2 A coupling

In this section let the natural number m be fixed. We introduce a coupling of
the transition probabilities Pm,l and a distribution, which does not depend on
m. From the representation of the Beta-function by means of the Γ-function
and its functional equation we have

ρm,m−k+1 =
1

Γ(2−α)Γ(α)

m!

Γ(m)

Γ(k − α)

k!

Γ(m− k + α)

(m− k)!

= 1
Γ(2−α)Γ(α)

Γ(k − α)

Γ(k + 1)

(m− k + 1) · · ·m
(m− k + α) · · · (m− 1 + α)

Γ(m+ α)

Γ(m)
,

thus

Pm,m−k = dmk
Γ(k + 1− α)

Γ(k + 2)
, k ≥ 1

with

dmk = dm
(m− k) · · · (m− 1)

(m+ α− k − 1) · · · (m+ α− 2)

and a normalizing constant dm > 0 (also dependent on α). Recall from the
introduction that given X0 = m the quantities Pm,m−k are the weights of
the distribution of the downward jump U = X0 − X1. For a more detailed
discussion of this ’law of first jump’ we refer to Delmas et al [7].

It is natural to relate this distribution to the distribution of some random
variable V with values in N and distribution given by

P(V = k) =
α

Γ(2− α)

Γ(k + 1− α)

Γ(k + 2)
, k ≥ 1 . (4)

This kind of distribution appears for Beta-coalescents already in Berestycki
et al [1] (in the context of frequency spectra) as well as in Delmas et al
[7]. There the normalizing constant is determined and the following formulas
derived:

E(V ) =
1

α− 1
and P(V ≥ k) =

1

Γ(2− α)

Γ(k + 1− α)

Γ(k + 1)
. (5)

From Stirling’s approximation

P(V = k) ∼ α

Γ(2− α)
k−α−1 and P(V ≥ k) ∼ 1

Γ(2− α)
k−α . (6)
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The sequence dmk is decreasing in k for fixed m, thus the same is true for
Pm,m−k/P(V = k). Therefore V stochastically dominates the jump size U ,
that is for all k ≥ 1

P(U ≥ k | X0 = m) ≤ P(V ≥ k) . (7)

We like to investigate a coupling of U and V , where U ≤ V a.s. It is fairly
obvious that this can be achieved in such a way that

P(U = k | V = k) = 1 ∧ Pm,m−k

P(V =k)
= 1 ∧ dmk

d
. (8)

(Indeed one may put

P(U = j | V = k) =
(

1− Pm,m−k

P(V = k)

)+ (Pm,m−j −P(V = j))+

P(U < km)−P(V < km)

for j 6= k with km = min{k ≥ 1 : Pm,m−k ≤ P(V = k)}. There are other
possibilities, later it will be only important that we commit to one of them.)

Lemma 3. For a coupling (U, V ) fulfilling (8) it holds

P(U 6= V ) ≤ 1

(α− 1)m
and P(V ≥ k | U 6= V ) ≤ ck1−α .

for all k ≥ 1 and some c <∞, which does not depend on m.

Proof. Because of α < 2

(m− k) · · · (m− 1)

(m+ α− k − 1) · · · (m+ α− 2)
≥ (m− k) · · · (m− 1)

(m− k + 1) · · ·m =
m− k

m

and because of α > 1

(m+ α− k − 1) · · · (m+ α− 2)

(m− k) · · · (m− 1)
≥

(m+ α− 1

m

)k

≥ 1 + k
α− 1

m
,

consequently

1− k

m
≤ dmk

dm
≤ 1

1 + (α− 1) k
m

.

It follows
(

1− k

m

)

P(V = k) ≤ d

dm
Pm,m−k ≤ P(V = k)
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for all k ≥ 1 with d = α/Γ(2− α). Summing over k yields

1− 1

m
E(V ) ≤ d

dm
≤ 1 or 1 ≤ dm

d
≤ 1

(1− 1
(α−1)m

)+
.

Combining the estimates we end up with

1− k

m
≤ dmk

d
≤ 1

(1 + (α− 1) k
m
)(1− 1

(α−1)m
)+

(9)

for all k ≥ 1.
Now from (8), (9)

P(U 6= V ) =
∑

k≥1

(P(V = k)− Pm,m−k)
+

=
∑

k≥1

P(V = k)(1− dmk

d
)+ ≤

∑

k≥1

P(V = k)
k

m
,

thus from (5)

P(U 6= V ) ≤ 1

(α− 1)m

which is our first claim.
Also, letting m ≥ 2/(α− 1) and k′ = 2⌈(α− 1)−2 + (α− 1)−1⌉ then

(1 + (α− 1) k
′

m
)(1− 1

(α−1)m
)+ = 1 + (α− 1) k

′

m
− 1

(α−1)m
− k′

m2

≥ 1 + α−1
2

k′

m
− 1

(α−1)m
≥ 1 + 1

m
.

From (9)

1− dmk′

d
≥ 1− 1

1 + 1
m

≥ 1

2m

and from (8)

P(U 6= V ) ≥ P(U 6= k′, V = k′) = (1− dmk′

d
)+P(V = k′) ≥ 1

2m
P(V = k′)

for m ≥ 2/(α− 1). It follows that there is a η > 0 such that for all m ≥ 1

P(U 6= V ) ≥ 1

ηm
.
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Now from (8) and (9)

P(V = k | U 6= V ) =
P(U 6= k, V = k)

P(U 6= V )

=
(1− dmk

d
)+

P(U 6= V )
P(V = k) ≤ ηkP(V = k) ,

and the second claim follows from (6).

3 The coalescent’s point process

Let µ denote a point process on {2, 3, . . .}. For any interval I let µI be the
point process on {2, 3, . . .} given by

µI(B) = µ(B ∩ I) , B ⊂ {2, 3, . . .} .

We call µ a coalescent’s point process downwards from ∞, shortly a
CPP(∞), if the following properties hold:

• µ({2, 3, . . .}) = ∞ and µ({n}) = 0 or 1 for any n ≥ 2 a.s.

• For n ≥ 2 we have: Given the event µ({n}) = 1 and given µ[n+1,∞) the
point process µ[2,n] is a CPP(n) a.s.

Recall that a point process is called a CPP(n), if it can be represented as in
(1).

Theorem 4. Let 1 < α < 2. Then the CPP(∞) exists and is unique in

distribution.

We prepare the proof by two lemmas.

Lemma 5. Let µ be a CPP(n) with 1 < n ≤ ∞. Then for any ε > 0 there is

a natural number r such that for any interval I = [a, b] with 2 ≤ a < b < n
and b− a ≥ r we have

P(µ(I) = 0) ≤ ε .

Proof. For I = [a, b]

{µ(I) = 0} =
n
⋃

m=b+1

{

µ({m}) = 1, µ([a,m− 1]) = 0
}

a.s. ,
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since µ({n}) = 1 for n < ∞ and µ({2, 3, . . .}) = ∞ a.s. for n = ∞. Thus
from (1)

P(µ(I) = 0) ≤
n

∑

m=b+1

P(X1 < a | X0 = m) .

Applying (7) to U = X0 −X1 it follows that

P(µ(I) = 0) ≤
n

∑

m=b+1

P(V > m− a) ≤
∞
∑

k=1

P(V > b− a+ k) . (10)

Since E(V ) <∞, this series is convergent and the claim follows.

The next lemma prepares coupling of CPPs.

Lemma 6. Let µ, µ′ be two independent CPPs coming down from n, n′ ≤ ∞.

Then for any ε > 0 there is a natural number s such that for any b sufficiently

large and n, n′ > b we have

P
(

µ({j}) = µ′({j}) = 1 for some j = b− s, . . . , b]
)

≥ 1− ε .

Proof. First let n < ∞. We construct a coupling of a CCP(n) µ to an
i.i.d. random sequence. Consider random variables U1, V1, U2, V2, . . . and
n = X0, X1, . . . with Xi = n−U1−· · ·−Ui, which are constructed inductively
as follows: If U1, V1, . . . , Ui, Vi are already gotten, then given the values of
these random variables let Vi+1 be a copy of the random variable V from
section 2 and couple Ui+1 to Vi+1 as in section 2, withm = Xi. For definitness
put Ui+1 = 0 if Xi = 1. Then V1, V2, . . . are i.i.d. random variables with
distribution (4) and X0 > X1 > . . . > Xτn−1 are the points of a CPP(n) µ
down from n, where τn is the natural number i such that Xi = 1 for the first
time.

Now let k be a natural number. Then Xi−1 ≥ n−U1−· · ·−Uk for i ≤ k.
Thus for any η > 0 and n ≥ 6kη−1E(V ) + 2 from Lemma 3

P
(

Ui 6= Vi for some i ≤ k, U1 + · · ·+ Uk ≤ 6kη−1E(V )
)

≤
k

∑

i=1

P
(

Ui 6= Vi, Xi−1 ≥ n− 6kη−1E(V )
)

≤ k

(α− 1)(n− 6kη−1E(V ))
,

thus

P
(

Ui 6= Vi for some i ≤ k, U1 + · · ·+ Uk ≤ 6kη−1E(V )
)

≤ η

6
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if n is large enough. Also E(Ui) ≤ E(V ) because of (7), thus from Markov’s
inequality

P
(

U1 + · · ·+ Uk > 6kη−1E(V )
)

≤ η

6
. (11)

and consequently

P(Ui 6= Vi for some i ≤ k) ≤ η

3

if n is sufficiently large (depending on η and k).
Next let l be a natural number and n′ = n+ l. Let U ′

1, V
′
1 , U

′
2, V

′
2 , . . . and

n′ = X ′
0, X

′
1, . . . an analogue construction with random variables, which are

independent of U1, V1, U2, V2, . . . Then also

P(U ′
i 6= V ′

i for some i ≤ k) ≤ η

3
.

Moreover because V has finite expectation and because of independence from
classical results on recurrent random walks

P
(

j
∑

i=1

Vi 6=
j

∑

i=1

V ′
i − l for all j ≤ k

)

≤ η

6
,

if only k is sufficiently large (depending on l). Combining the estimates we
obtain

P
(

j
∑

i=1

Ui 6=
j

∑

i=1

U ′
i − l for all j ≤ k

)

≤ 5η

6
.

For the corresponding independent CPPs µ and µ′ coming down from n and
n′ = n+ l this implies together with (11)

P
(

µ({j}) = µ′({j}) = 1 for some j ∈ [n− 6kη−1E(V ), n]
)

≥ 1− η .

Leaving aside the coupling procedure we have proved: Let η > 0, let l be
a natural number and let µ and µ′ denote independent CPPs coming down
from n <∞ and n′ = n+ l. Then there is a natural number r′ such that

P
(

µ({j}) = µ′({j}) = 1 for some j = n− r′, . . . , n
)

≥ 1− η , (12)

if only n is large enough.

11



With this preparation we come to the proof of the lemma. Let ε > 0,
b ≥ 2 and let n, n′ > b. Denote

M = max
{

k ≤ b : µ({k}) = 1
}

, M ′ = max
{

k ≤ b : µ′({k}) = 1
}

(with the convention M = 1, if µ([2, b]) = 0). From Lemma 5

P
(

M,M ′ ∈ [b− r, b]
)

≥ 1− ε

2

for some r and b > r + 2. Then

P
(

µ({j}) = µ′({j}) = 1 for no j ∈ [b− r′ − r, b]
)

≤ ε

2
+P

(

µ({j}) = µ′({j}) = 1 for no j ∈ [b− r′ − r, b]; b− r ≤M,M ′ ≤ b
)

≤ ε

2
+ 2

∑

b−r≤m<m′≤b

P
(

µ({j}) = µ′({j}) = 1

for no j = m− r′, . . . , m | X0 = m,X ′
0 = m′

)

From (12) it follows that the right-hand probabilities are bounded by η =
ε/4r2, if b is only sufficiently large. Then

P
(

µ({j}) = µ′({j}) = 1 for no j ∈ [b− r′ − r, b]
)

≤ ε ,

which is our claim with s = r + r′.

As a corollary we note:

Lemma 7. Let µ and µ′ be two independent CPP(∞). Then a.s. µ({j}) =
µ′({j}) = 1 for infinitely many j ∈ N.

Proof. From the preceding lemma there are numbers numbers b1 < b2 < · · ·
such that

P(µ({j}) = µ′({j}) = 1 for no j = bk, . . . , bk+1]) ≤ 2−k .

Now an application of the Borel-Cantelli Lemma gives the claim.

Proof of Theorem 4. The existence follows from the fact that for α > 1 the
corresponding Beta-coalescent (Πt)t≥0 comes down from infinity [17], which
means that the number of blocks in Πt is a finite number Nt for each t > 0.
Put µ({k}) = 1, iff Nt = k for some t > 0.

Uniqueness follows from the last lemma and a standard coupling argu-
ment.
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4 A bigger coupling

Now let ν a stationary renewal point process on {2, 3, . . .}, that is, if we
denote the points of ν by 2 ≤ R1 < R2 < · · · , then the increments Ri+1−Ri

are independent for i ≥ 0 (with R0 = 1) and Ri+1 − Ri has for i ≥ 1 the
distribution (4). A stationary version of the process exists, since E(V ) <∞,
such that the distribution of R1 may be adjusted in the usual way to obtain
stationarity:

P(R1 = r) =
P(V ≥ r − 1)

E(V )
, r = 2, 3, . . . (13)

Stationarity is of advantage for us. Then ν may be considered as restriction
of a stationary point process on Z. Such a process is invariant in distribution
under the transformation z 7→ z0 − z, z ∈ Z with z0 ∈ Z. Therefore ν,
restricted to {2, . . . , n} looks the same, when considered upwards or down-
wards.

In this section we introduce a coupling between ν and the CPP(∞) µ,
which allows us later to replace µ by ν. Given b ≥ 2 let as above

M = max{k ≤ b : µ({k}) = 1} , M ′ = max{k ≤ b : ν({k}) = 1} .

Again, if there is no k ≤ b such that µ({k}) = 1, we putM = 1, and similary
forM ′. Let λb and λ

′
b denote the distributions ofM andM ′ (both dependent

on b).
Now for r ∈ N we consider the following construction of µ and ν, restricted

to [2r−1 + 1, 2r]. Take any coupling (M,M ′) of λ2r and λ′2r . Given (M,M ′)
construct random variables U1, V1, U2, V2, . . . inductively as in the proof of
Lemma 6, using the coupling of section 2. Here we start with X0 =M . Also
let Y0 =M ′,

Xi =M − U1 − · · · − Ui , Yi =M ′ − V1 − · · · − Vi , i ≥ 1 , (14)

and

N = min{i ≥ 0 : Xi ≤ 2r−1} , N ′ = min{i ≥ 0 : Yi ≤ 2r−1} . (15)

The whole construction is interrupted at the moment N ∨ N ′. Maybe
M,M ′ ≤ 2r−1, then no step of the construction is required. Clearly the
following statements are true:

13



• The point process
∑N−1

i=0 δXi
is equal in distribution to µ, restricted to

[2r−1 + 1, 2r].

• The point process
∑N ′−1

i=0 δYi is equal in distribution to ν, restricted to
[2r−1 + 1, 2r].

• XN and YN ′ ∨ 1 have the distributions λ2r−1 and λ′2r−1.

The complete coupling is

Φr(M,M ′) =
(

N−1
∑

i=0

δXi
,
N ′−1
∑

i=0

δYi , XN , YN ′ ∨ 1
)

(16)

= (φr1, φ
r
2, φ

r
3, φ

r
4) (say) .

Its distribution is uniquely determined by the distribution of the coupling
(U, V ) from section 2. The following continuity property is obvious:

• If we have a sequence (Mn,M
′
n) of couplings of λ2r and λ′2r such that

(Mn,M
′
n)

d→ (M,M ′), then (M,M ′) is also a coupling of λ2r and λ′2r
and

Φr(Mn,M
′
n)

d→ Φr(M,M ′) .

Another obvious fact is that this construction can be iterated: Given
Φr(M,M ′) we construct Φr−1(φr3, φ

r
4) and so forth. Thus starting with the

independent coupling (M,M ′) (i.e. M and M ′ are independent) we obtain
the tupel

Ψr =
(

Φ1,r(M1,r,M
′
1,r),Φ

2,r(M2,r,M
′
2,r), . . . ,Φ

r,r(Mr,r,M
′
r,r)

)

,

where (Mr,r,M
′
r,r) = (M,M ′) and (Ms,r,M

′
s,r) = (φs+1,r

3 , φs+1,r
4 ) for s < r.

Since Ms,r and M
′
s,r are no longer independent in general, the tupels Ψr are

initially not consistent for different r. To enforce consistency note that for
fixed s the distributions of (Ms,r,M

′
s,r) are tight for r ≥ s, since they take

values in the finite set {1, . . . , 2s} × {1, . . . , 2s}. Thus by a diagonalisation
argument we may obtain a sequence 1 ≤ r1 < r2 < · · · such that

(Ms,rn,Ms,rn)
d→ (Ms,∞,M

′
s,∞)

for certain couplings (Ms,∞,M
′
s,∞) of λ2s and λ′2s .
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If we use instead of the independent coupling (M,M ′) now (Mr,∞,M
′
r,∞)

as starting configuration in the construction of Ψr, then we gain consistency
in the sence that

Ψr−1 d
= (Φ1,r(M1,r,M

′
1,r),Φ

2,r(M2,r,M
′
2,r), . . . ,Φ

r−1,r(Mr−1,r,M
′
r−1,r)) .

Proceeding to the projective limit we obtain the ’big coupling’

Ψ∞ =
(

Φ1,∞(M1,∞,M
′
1,∞),Φ2,∞(M2,∞,M

′
2,∞), . . .

)

. (17)

It has the property that

µ =
∞
∑

r=1

φr,∞1 and ν =
∞
∑

r=1

φr,∞2 (18)

are coupled copies of our CPP(∞) and stationary point process.
In order to estimate the difference between both point processes we go

back to (14), (15) and estimate the tail of the distribution of

Dr = max
i≤N∧N ′

|Xi − Yi| . (19)

Lemma 8. There is a constant c > 0 such that for all r ≥ 1 and all t > 0

P(Dr > t) ≤ ct1−α

Proof. For i ≤ N ∧N ′ we have

|Xi − Yi| ≤
∑

j≤N∧N ′

|Uj − Vj |+ |X0 − Y0|

≤
∑

j≤N∧N ′

|Uj − Vj |+ (2r −M) + (2r −M ′) . (20)

From (6), (10)

P(2r −M > t) ≤
∑

k≥t

P(V ≥ k) ≤ ct1−α (21)

for a suitable c > 0.
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Because of stationarity 2r − M ′ and (R1 − 2) ∧ (2r − 1) are equal in
distribution, therefore because of (6), (13)

P(2r −M ′ > t) ≤ (R1 > t) ≤ ct1−α (22)

for a suitable c > 0.
Finally from Lemma 3 Uj 6= Vj occurs for j ≤ N at most with probability

p = 21−r/(α − 1) and then |Uj − Vj | ≤ Vj a.s. Also because of Lemma 3
these Vj can be stochastically dominated by random variables a + bζj with
constants a, b > 0 and positive i.i.d. random variables ζj, which possess a
stable distribution of index α − 1 and Laplace transform exp(−λα−1). Also
N∧N ′ ≤ 2r−1 = w (say). Thus

∑

j≤N∧N ′ |Uj−Vj| is stochastically dominated
by the random variable

W =
w
∑

j=0

(a + bζj)Ij

where Ij are i.i.d. Bernoulli with success probability p. Let ϕ(λ) =
exp(−aλ − (bλ)α−1) be the Laplace transform of a + bζj . Then W has the
Laplace transform

σ(λ) =
(

1− p(1− ϕ(λ))
)w

It follows 1−σ(λ) ≤ wp(1−ϕ(λ)) ≤ (1−ϕ(λ))/(α−1). From the well-known
identity λ

∫∞

0
e−λxP(W > x) dx = 1− σ(λ) it follows that

e−1P(W > t) ≤ t−1

∫ ∞

0

e−x/tP(W > x) dx

= 1− σ(1/t) ≤ 1
α−1

(

1− exp(−at−1 − (bt)1−α)
)

.

Thus

P
(

∑

j≤N∧N ′

|Uj − Vj| > t
)

≤ P(W > t) ≤ ct1−α (23)

for a suitable c > 0. Using the estimates (21) to (23) in (20) yields our
claim.

Additionally we note that

|N −N ′| ≤ Dr . (24)

Indeed, if N < N ′, then XN ≤ 2r−1, thus YN ≤ 2r−1 +Dr. Further YN ′−1 >
2r−1, which implies N ′ − 1 − N ≤ YN − YN ′−1 ≤ Dr − 1. The case N ′ < N
is treated in the same way.
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5 On sums of independent random variables

The following lemma can be deduced from well-known results (see f.e. Petrov
[14]), but a direct proof seems more convenient. Let

γ =
1

α− 1
.

Lemma 9. Let V1, V2, . . . be i.i.d. copies of the random variable (4). Then

for any β ∈ R and any ε > 0 a.s.

n
∑

k=1

k−β(Vk − γ) = ηn + o(n
1

α
−β+ε) ,

where ηn is a.s. convergent.

Proof. Let ε > 0. A short calculation gives that E(V 2
k ;Vk ≤ k

1

α
+ε) is of order

k
2

α
−1+(2−α)ε, thus

∞
∑

k=1

k−
1

α
−ε(Vk1Vk≤k

1
α+ε −E(Vk;Vk ≤ k

1

α
+ε))

is a.s. convergent. Also E(Vk;Vk > k
1

α
+ε) is of order less than k

1

α
−1 and

P(Vk > k
1

α
+ε) is of order k−1−αε such that Vk > k

1

α
+ε occurs only finitely

often a.s. Thus
∞
∑

k=1

k−
1

α
−ε(Vk − γ)

is a.s. convergent for all ε > 0.
For β > 1

α
it follows that the sum

∑n
k=1 k

−β(Vk − γ) is a.s. convergent,

which is our claim (then the term o(n
1

α
−β+ε) is superfluous). In the case

β ≤ 1
α
by Kronecker’s Lemma a.s.

n
∑

k=1

k−β(Vk − γ) = o(n
1

α
−β+ε) ,

which again is our claim (now ηn is superfluous).

Next recall that ς denotes a random variable with maximally skewed stable
distribution of index α as in (3). The following result can be deduced from a
general statement on triangular arrays of independent random variables (see
[10], chapter XVII, section 7), however a direct proof seems easier.
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Lemma 10. Let V1, V2, . . . be independent copies of the random variable (4).
Then the following holds true:

(i) Let 1 < α < 1
2
(1 +

√
5). Then

nα−1− 1

α

n
∑

k=1

k1−α(Vk − γ)
d→ −cς ,

where

c =
(

(1 + α− α2)Γ(2− α)
)−

1

α .

(ii) For α = 1
2
(1 +

√
5)

(log n)−
1

α

n
∑

k=1

k1−α(Vk − γ)
d→ −ς

Γ(2− α)
1

α

.

Proof. (i): From (5), (6) and the theory of stable laws it follows that

n− 1

α (V1 + · · ·+ Vn − γn)
d→ −ς

Γ(2− α)
1

α

.

We express this relation by means of the characteristic functions ϕ(u) and

eψ(u) of V −γ and −ς/Γ(2−α)1/α: ϕ(n− 1

αu)n → eψ(u) for all u ∈ R or slightly
more general

ϕ(vnn
− 1

αu)n → eψ(u) ,

if vn → 1. Since ϕn(u) = ϕ(vnn
− 1

αu) is again a characteristic function, it
follows from Feller [10], chapter XVII.1 Theorem 1, that for n→ ∞

n
(

ϕ(vnn
−

1

αu)− 1
)

→ ψ(u)

or
ϕ(su)− 1 ∼ sαψ(u) , as s→ 0

for all real u. Since α − α2 > −1 for α < 1
2
(1 +

√
5), it follows that with

ζ = (1 + α− α2)
1

α

n
∑

k=1

(

ϕ
( ζk1−α

n1−α+ 1

α

u
)

− 1
)

∼ ψ(u)

n
∑

k=1

( ζk1−α

n1−α+ 1

α

)α

→ ψ(u) .
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Similarly
n

∑

k=1

∣

∣

∣
ϕ
( ζk1−α

n1−α+ 1

α

u
)

− 1
∣

∣

∣
→ |ψ(u)|

and consequently

n
∑

k=1

∣

∣

∣
ϕ
( ζk1−α

n1−α+ 1

α

u
)

− 1
∣

∣

∣

2

≤ max
k=1,...,n

∣

∣

∣
ϕ
( ζk1−α

n1−α+ 1

α

u
)

− 1
∣

∣

∣

n
∑

k=1

∣

∣

∣
ϕ
( ζk1−α

n1−α+ 1

α

u
)

− 1
∣

∣

∣
→ 0

for n→ ∞.
In order to transfer these limit results to characteristic functions we use

that for all complex numbers z with |z| ≤ 1

|z − ez−1| ≤ c|z − 1|2

for some c > 0. Therefore, if |z1|, . . . , |zn| ≤ 1,

∣

∣z1 · · · zn − e(z1−1)+···+(zn−1)
∣

∣ ≤
n

∑

k=1

|zk − ezk−1| ≤ c
n

∑

k=1

|zk − 1|2

We put zk = zkn(u) = ϕ
(

ζk1−α

n1−α+ 1
α
u
)

. Then the right-hand side goes to zero

and we obtain
z1n(u) · · · znn(u) → eψ(u) .

Since the product on the left-hand side is the characteristic function of
ζnα−1− 1

α

∑n
k=1 k

1−α(Vk − 1
α−1

) the claim follows.
(ii): This proof goes along the same lines using

n
∑

k=1

(

ϕ
( k1−α

(logn)
1

α

u
)

− 1
)

∼ ψ(u)

n
∑

k=1

( k1−α

(logn)
1

α

)α

.

Now α− α2 = −1, thus

n
∑

k=1

(

ϕ
( k1−α

(log n)
1

α

u
)

− 1
)

∼ ψ(u)
1

logn

n
∑

k=1

1

k
∼ ψ(u) ,

and the claim follows.
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6 Proof of Theorem 1

Again let 2 ≤ R1 < R2 < · · · be the points of the stationary point process ν
and denote

Vj = Rj+1 − Rj , j ≥ 1 .

The random variables V1, V2, . . . are i.i.d. with distribution (4).

Lemma 11. We have

∫

[2,n]

x1−α ν(dx) =
n2−α

γ(2− α)
− γ−α

∑

k≤n
γ

k1−α(Vk − γ) + δn

with

δn = ηn + oP (n
1

α2+1−α+ε)

for any ε > 0, where the random variables ηn are convergent in probability.

Proof. Our starting point is

∫

[2,n]

x1−α ν(dx) =
rn
∑

i=1

R1−α
i ,

where rn is such that Rrn ≤ n < Rrn+1. From Lemma 9 we have Rn − γn =
o(n

1

α
+ε) a.s., which implies rn − n

γ
= o(n

1

α
+ε) a.s.

By a Taylor expansion

R1−α
i = (γi)1−α + (1− α)(γi)−α(Ri − γi) + δ′i

= (γi)1−α + (1− α)(γi)−α
i−1
∑

j=1

(Vj − γ) + δ′′i (25)

where the remainder is a.s. of the order

δ′′i = O(i−α−1(Ri − γi)2) +O(i−α) = o(i
2

α
−α−1+ε) .

We consider now the sums of the different terms in (25):

rn
∑

i=1

(γi)1−α =
γ1−α

2− α
r2−αn + η′n , (26)
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where η′n is a.s. convergent. Further, putting an = (α− 1)
∑

i>n i
−α,

(1− α)

rn
∑

i=1

i−α
i−1
∑

j=1

(Vj − γ) = (1− α)

rn
∑

j=1

(Vj − γ)

rn
∑

i=j+1

i−α

= arn(Rrn+1 − R1 − γrn)−
rn
∑

j=1

aj(Vj − γ) .

The distribution of Rrn+1 − n does not depend on n because of stationarity,
thus arn(Rrn+1 − R1 − n) = OP (n

1−α). Also
∑n

j=1(aj − j1−α)(Vj − γ) is

a.s. convergent for α > 1, since an − n1−α = O(n−α) and since V has finite
expectation. It follows

(1− α)

rn
∑

i=1

i−α
i−1
∑

j=1

(Vj − γ)

= r1−αn (n− γrn)−
rn
∑

j=1

j1−α(Vj − γ) + η′′n +OP (n
1−α) , (27)

where η′′n is a.s. convergent. Next

rn
∑

i=1

δ′′i = η′′′n + o(n
2

α
−α+ε) a.s. (28)

for all ε > 0, where η′′′n is a.s. convergent. Note that this formula covers two
cases: If 2

α
< α, then the sum is a.s. convergent and the right-hand term is

superfluous. Otherwise the term η′′′n can be neglected.
Furthermore another Taylor expansion gives

n2−α

2− α
=

(γrn)
2−α

2− α
+ (γrn)

1−α(n− γrn) + o(n
2

α
−α+ε) a.s. (29)

Combining (25) to (29) gives

rn
∑

i=1

R1−α
i =

n2−α

γ(2− α)
− γ−α

rn
∑

j=1

j1−α(Vj − γ) + ηn + o(n
2

α
−α+ε) a.s. , (30)

where ηn is convergent in probability.
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Finally we consider the (loosely notated) difference

n/γ
∑

j=rn+1

j1−α(Vj − γ) =
∑

j≤n/γ

j1−α(Vj − γ)−
rn
∑

j=1

j1−α(Vj − γ) .

For any random sequence of natural numbers sn such that sn = o(n
1

α
+ε) a.s.

for all ε > 0

∑

i≤sn

(Vi − γ) = Rsn+1 − R1 − γsn = o(s
1

α
+ε

n ) = o(n
1

α2+2ε+ε2) a.s.

Since rn − n/γ = o(n
1

α
+ε) a.s. for any ε > 0, this implies for any ε > 0 in

probability
n/γ
∑

j=rn+1

(Vj − γ) = oP (n
1

α2+ε) .

This implies
∑n/γ

j=rn+1(Vj + γ) = oP (n
1

α
+ε). Therefore

∣

∣

∣

n/γ
∑

j=rn+1

j1−α(Vj − γ)
∣

∣

∣

≤ r1−αn

∣

∣

∣

n/γ
∑

j=rn+1

(Vj − γ)
∣

∣

∣
+
∣

∣

(

n
γ

)1−α − r1−αn

∣

∣

n/γ
∑

j=rn+1

(Vj + γ)

= oP (n
1

α2+1−α+ε) +O(n−α(n− γrn))oP (n
1

α
+ε)

= oP (n
1

α2+1−α+ε) + oP (n
2

α
−α+2ε) .

Since 1
α2 + 1 ≥ 2

α
, we end up with

n/γ
∑

j=rn+1

j1−α(Vj − γ) = oP
(

n
1

α2+1−α+ε
)

.

Combining this estimate with (30) gives the claim.
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Proof of Theorem 1. The total length (2) of the n-coalescent can be rewritten
as

Ln =

τn−1
∑

i=0

Xi

ρXi

Ei

where E0, E1, . . . denote exponential random variables with expectation 1,
independent among themselves and from the Xi.

From Lemma 2.2 in Delmas et al [7] we have for m→ ∞

ρm = 1
αΓ(α)

mα +O(mα−1) . (31)

In the first step we replace the points n = X0 > X1 > · · · of a CPP(n)
by points of a CPP(∞): If we take independent versions of both then for
given ε > 0 by Lemma 6 there is a natural number s ≥ 1 such that with
probability at least 1 − ε they meet before n − s. From this moment both
CPPs can be coupled. Thus, letting n ≥ X ′

0 > X ′
1 > · · · be the points of the

coupled CPP(∞) within [2, n], independent of E0, E1, . . ., and

L′
n =

τ ′n−1
∑

i=0

X ′
i

ρX′

i

Ei ,

then due to the the coupling and (31) for n sufficiently big

P
(

|Ln − L′
n| > 3αΓ(α)n1−α(E0 + · · ·+ Es)

)

≤ ε .

Since α > 1, Ln − L′
n = oP (1), thus we may replace Ln by L′

n in our asymp-
totic considerations.

Thus we work now with a CPP(∞) µ, which we couple to a stationary
point process ν according to (17) and (18). Also let E0, E1, . . . be independent
of the whole coupling. We use the formula

L′
n =

∫

[2,n]

xEx
ρx

µ(dx) , (32)

in which the exponential random variables now are ordered differently. Since
∑

x≥1 x
−αEx <∞ a.s., it follows from (31) that

L′
n = αΓ(α)

∫

[2,n]

Ex
xα−1

µ(dx) + η1,n ,
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where η1,n is a.s. convergent.
Next

∑

x≥2 x
−1/2−ε(Ex − 1) is a.s. convergent for any ε > 0. It follows

that
∑

x≥2 x
1−α(Ex − 1) is a.s. convergent for α > 3

2
and else a.s. of order

O(n
3

2
−α+ε). Given µ the same holds true for

∫

[2,n]
Ex−1
xα−1 µ(dx), thus

L′
n = αΓ(α)

∫

[2,n]

x1−α µ(dx) + η2,n + o(n3/2−α+ε) a.s. ,

where again η2,n is a.s. convergent.
Next from (18) with 2s < n ≤ 2s+1

∫

[2,n]

x1−α µ(dx) =

∫

[2,n]

x1−α ν(dx)

+

s
∑

r=1

∫

[2r−1+1,2r]

x1−α (φr,∞1 (dx)− φr,∞2 (dx))

+

∫

[2s+1,n]

x1−α (φs,∞1 (dx)− φs,∞2 (dx))

From (19) and (24) we see that

∣

∣

∣

∫

[2r−1+1,2r ]

x1−α (φr,∞1 (dx)− φr,∞2 (dx))
∣

∣

∣

≤ 2r−1(α− 1)(2r−1)−αDr + 2(2r−1)1−αDr ,

and the same estimate holds for the last term above. In view of Lemma 8
and the Borel-Cantelli Lemma we conclude that

∫

[2,n]

x1−α µ(dx) =

∫

[2,n]

x1−α ν(dx) + η3,n

with η3,n a.s. convergent. Altogether

L′
n = αΓ(α)

∫

[2,n]

x1−α ν(dx) + η4,n + o(n3/2−α+ε) ,

where η4,n is a.s. convergent. Finally Lemma 11 gives a.s.

L′
n = Γ(α)α(α−1)

(2−α)
n2−α − Γ(α)α(α− 1)α

∑

k≤n
γ

k1−α(Vk − γ)

+ ηn + oP (n
1

α2 +1−α+ε) + o(n3/2−α+ε) (33)

24



for all ε > 0, where ηn now is convergent in probability.
We are ready to treat the different cases of Theorem 1:
If 1 < α < (1 +

√
5)/2, then we use that 1/α > 1/α2 and 1/α > 1/2.

Therefore the three remainder terms in (33) are all of order oP (n
1

α
+1−α) and

thus may be neglected. The result follows from an application of Lemma 10.
The case α = (1 +

√
5)/2 is treated in the same way.

If α > (1+
√
5)/2, then 1

α2 +1−α < 0 and 3/2−α < 0. Also from Lemma
9 it follows that

∑

k≤n
γ
k1−α(Vk − γ) is a.s. convergent. Thus it follows from

(33) that L′
n − Γ(α)α(α−1)

(2−α)
n2−α is convergent in probability. To see that the

limit of L′
n (and thus Ln) is nondegenerate, we go back to (32) resp.

L′
n−Γ(α)α(α−1)

(2−α)
n2−α

= 2αΓ(α)
ρ2

µ({2})E2 +
(

αΓ(α)

∫

[3,n]

xEx
ρx

µ(dx)− Γ(α)α(α−1)
(2−α)

n2−α
)

As shown the term in brackets in convergent in probability. Also µ({2}) = 1
with positive probability. Since the exponential variable E2 is independent
from the rest on the right-hand side, the whole limit has to be non-degenerate.
This finishes the proof.
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