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The Group of Primitive Almost Pythagorean Triples

Nikolai A. Krylov and Lindsay M. Kulzer

Abstract

We consider the triples of integer numbers that are solutions of the equation

x
2 + qy

2 = z
2, where q is a fixed, square-free arbitrary positive integer. The set

of equivalence classes of these triples forms an abelian group under the operation

coming from complex multiplication. We investigate the algebraic structure of

this group and give a complete analysis when q ∈ {2, 3, 5, 6}.
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1 Introduction and the group of PPTs

The set of Pythagorean triples has various interesting structures. One of such struc-
tures is induced by a binary operation introduced by Taussky in [6]. Recall that a
Pythagorean triple (PT from now on) is an ordered triple (a, b, c) of natural numbers
satisfying the identity a2+ b2 = c2, and given two such triples (a1, b1, c1) and (a2, b2, c2)
we can produce another one using the following operation

A := a1a2 + b1b2, B := a1b2 − a2b1, C := c1c2. (1)

The natural relation (a, b, c) ≃ (λa, λb, λc) for ∀λ ∈ N, called projectivization, is
an equivalence relation on this set. The operation mentioned above induces an abelian
group structure on the set of equivalence classes of PTs where the identity element is
the class of (1, 0, 1). When a, b and c have no common prime divisors, the triple (a, b, c)
is called primitive. It’s easy to see that every equivalence class contains exactly one
primitive Pythagorean triple. Thus the set of all primitive Pythagorean triples (PPTs
from now on) forms an abelian group under the operation given in (1). The algebraic
structure of this group, denoted by P, was investigated by Eckert in [2], where he
proved that the group of PPTs is a free abelian group generated by all primitive triples
(a, b, c), where a > b and c is a prime number of the linear form c = 4n+ 1.

It is not hard to notice that the composition law (1) naturally extends to the
solutions of the Diophantine equation

X2 + q · Y 2 = Z2 (2)

1

http://arxiv.org/abs/1107.2860v1


where q is a fixed, square-free arbitrary positive integer. Via projectivization, we obtain
a well defined binary operation on the set of equivalence classes of solutions to (2). The
immediate questions rise: Do we get a group? What kind of a group?

With the above in mind, we will consider in this paper the set of triples we call al-
most Pythagorean triples, which are solutions to the equation (2). As in the case of PTs,
each equivalence class here contains exactly one primitive almost Pythagorean triple
and therefore the set of equivalence classes is the set of Primitive Almost Pythagorean

Triples (PAPTs from now on).

In the next two sections we explain exactly how the set of all PAPTs forms an
abelian group and investigate the algebraic structure of this group. We give a complete
description of this group for q ∈ {2, 3, 5, 6}, similar to the one given in [2]. We also
prove that for q ≥ 7 the group of PAPTs is free abelian of infinite rank, but in those
cases, the set of generators requires a different description.

2 Group of PAPTs

Let Tq denote the set of all integer triples (a, b, c) ∈ Z×Z×N such that a2+q·b2 = c2. We
introduce the following relation on Tq: two triples (a, b, c) and (A,B,C) are equivalent
if there exist m,n ∈ Z \ {0} such that m(a, b, c) = n(A,B,C), where m(a, b, c) =
(ma,mb, |mc|). It is a straight forward check that this is an equivalence relation (also
known as projectivization). We will denote the equivalence class of (a, b, c) by [a, b, c].
Note that [a, b, c] = [−a,−b, c], but [a, b, c] 6= [−a, b, c]. We will denote the set of these
equivalence classes by Pq. Now we define a binary operation on Pq that generalizes the
one on the set of PPTs defined by (1).

Definition 1. For two arbitrary classes [a, b, c], [A,B,C] ∈ Pq define their sum by the

formula

[a, b, c] + [A,B,C] := [aA− qbB, aB + bA, cC].

It is a routine check that this definition is independent of a particular choice of a
triple and thus the binary operation is well defined. Here are two examples:
If q = 7, [3, 1, 4] + [3, 1, 4] + [3, 1, 4] = [3, 1, 4] + [2, 6, 16] = [−36, 20, 64] = [−9, 5, 16].
If q = 14, [5, 2, 9] + [13, 2, 15] = [9, 36, 135] = [1, 4, 15].

Since [a, b, c] + [1, 0, 1] = [a, b, c], [a, b, c] + [−a, b, c] = [−a2 − qb2, 0, c2] = [c2, 0, c2], and
the operation is associative (this check is left for the reader), we obtain the following

Theorem 1. (Pq, +) is an abelian group. The identity element is [1, 0, 1] and the

inverse of [a, b, c] is [a,−b, c] = [−a, b, c].

The purpose of this paper is to see what the algebraic structure of (Pq, +) is, and
how it depends on q. From now on we will denote this group simply by Pq. Please note
that every equivalence class [a, b, c] ∈ Pq can be represented uniquely by a primitive
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triple (α, β, γ) ∈ Tq, where α > 0. In particular, this gives us freedom to refer to
primitive triples to describe elements of the group.

Remark 1: Note that this group can also be viewed in terms of 3 × 3 matrices with
matrix multiplication as the group operation. One should assign to (a, b, c) ∈ Tq the
matrix 



a b
√
q 0

−b
√
q a 0

0 0 c



 ∈











x y
√
q 0

−y
√
q x 0

0 0 z





∣
∣
∣
∣
∣
∣

x, y ∈ Z

z ∈ N

x2 + qy2 = z2







and use the corresponding equivalence relation.

Remark 2: The group Pq is a natural generalization of the group P of PPTs. However,
P1 is not isomorphic to P. The key point here is that the triple (0, 1, 1) /∈ Tq, when
q > 1, and the inverse of [a, b, c] is [a,−b, c] = [−a, b, c]. In particular, it forces the
consideration of triples with a and b being all integers and not only positive ones. As a
result, the triples (1, 0, 1) and (0, 1, 1) are not equivalent in T1. In order for the binary
operation on the set of PPTs to be well defined, the triple (0, 1, 1) must be equivalent to
the identity triple (1, 0, 1) (see formulae (5) on page 23 of [2]). The relation between our
group P1 and the group P of PPTs is given by the following direct sum decomposition

P1
∼= P⊕ Z/2Z,

where the 2-torsion subgroup Z/2Z is generated by the element [0, 1, 1]. To prove this,
one uses the map f : P⊕ Z/2Z −→ P1 defined by the following formula.

f
(
(a, b, c), n

)
:=

{
[a, b, c] + [1, 0, 1] = [a, b, c] if n = 0
[a, b, c] + [0, 1, 1] = [−b, a, c] if n = 1

It’s easy to see that this f is an isomorphism.

3 Algebraic structure of Pq

The classical enumeration of primitive pythagorean triples in the form

(a, b, c) = (u2 − v2, 2uv, u2 + v2) or

(
u2 − v2

2
, uv,

u2 + v2

2

)

is a useful component in understanding the group structure on the set of PPTs. We
assume here that integers u and v have no common prime divisors, otherwise (a, b, c)
won’t be primitive. One could use the Diophantus chord method (see for example §1.7
of [5]) to derive such enumeration of all PPTs. This method can be generalized to
enumerate all solutions to (2) for all square-free q > 1. In particular, if a primitive
triple (a, b, c) ∈ Tq, then there exists a pair (u, v) of integers with no common prime
divisors, such that

(a, b, c) = (±(u2 − qv2), 2uv, u2 + qv2) or

(

±u2 − qv2

2
, uv,

u2 + qv2

2

)

.

3



We can use this enumeration right away to prove that if c is prime, and (a, b, c) ∈ Tq,
then such a pair of integers (a, b) is essentially unique. Here is the precise statement.

Claim 1. If c is prime and

x2 + qy2 = c2 = a2 + qb2, where abxy 6= 0

then (x, y) = (h1a, h2b), where hi = ±1.

Proof. We apply Lemma 5.48 from §5.5. of [7]. When 2c = u2+ qv2 the proof needs an
additional argument explaining why not just β/α0 but β/(2α0) will be in the ring of
integers. It can be easily done considering separate cases of even and odd q and using
the fact that if q is odd, then u and v used in the enumeration are both odd, and if q
is even, then u will be even and v will be odd. We leave details to the reader.

We will use these results when we discuss generators of Pq below, but first we will
find for which q > 1 the group Pq will have elements of finite order.

3.1 Torsion in Pq

We follow Eckert’s geometric argument ([2], page 24) to understand the torsion of Pq.

Lemma 1. If q = 2 or q > 3, then Pq is torsionfree. P3
∼= F3 ⊕ Z/3Z, where F3 is a

free abelian group.

Proof. Let us assume that q ≥ 2, and suppose the triple (a, b, c) is a solution of (2),
that is we can identify point (a/c,

√
q · b/c) with eiα on the unit circle U. Then a circle

S1

r with radius r = α/(2π) is made to roll inside U in the counterclockwise direction.
The radius r is chosen this way so that the length of the circle S1

r equals length of the
smaller arc of U between the points eiα and e0 = (1, 0). Let us denote the point (1, 0)
by P and assume that this point moves inside the unit disk when S1

r rolls inside U.
When 1 = kr for some positive integer k, this point P traces out a curve known as a
hypocycloid. In this case the point P will mark off k− 1 distinct points on U and will
return to its initial position (1, 0) so the hypocycloid will have exactly k cusps. If P
doesn’t return to (1, 0) after the first revolution around the origin, it might come back
to (1, 0) after, say n, such revolutions. In that case n · 2π = m · α, for some m ∈ N.
Thus, α is a rational multiple of π, or to be more precise,

α = π · 2n
m

Due to Corollary 3.12 of [4] (see Ch.3, Sec.5), in such a case the only possible rational
values of cos(α) are 0,±1

2
,±1. Since cos(α) = a/c, where a 6= 0, we see that Pq might

have a torsion only if a/c = ±1/2 or a/c = ±1. In the latter case we must have
q · b2 = 0, which implies that the element [a, b, c] is the identity of Pq. Suppose now
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a/c = ±1/2. Then qb2 = 3a2 and if 3 6= q we will have a prime t 6= 3 dividing q. We can
assume without loss of generality that gcd(a, b) = 1, hence we obtain t|a and therefore
t2|qb2. Since q is square-free, we must have t|b2, which contradicts that gcd(a, b) = 1.
Therefore if q = 2 or q > 3, Pq is torsionfree. Suppose now q = 3. Then we obtain
a = ±b and we can multiply [a, b, c] by −1, if needed, to conclude that [a, b, c] = [1, 1, 2]
or [a, b, c] = [1,−1, 2]. We have 〈[a, b, c]〉 ∼= Z/3Z in both these cases. It implies that
P3/(Z/3Z) is free abelian and hence P3

∼= F3 ⊕ Z/3Z.

3.2 On generators of Pq when q ≤ 6

In this subsection we assume that 2 ≤ q ≤ 6, and will describe the generators of Pq

similar to the way it was done by Eckert in his proposition on pages 25 and 26 of [2].
We will use Fq to denote the free subgroup of Pq. As follows from 3.1 above, Fq = Pq,
for q 6= 3, and P3

∼= F3 ⊕ (Z/3Z).

The key point in Eckert’s description of the generators of the group of primitive
pythagorean triples is the fact that a prime p can be a hypothenuse in a pythagorean
triangle if and only if p ≡ 1 (mod 4). Our next lemma generalizes this fact to the cases
of primitive triples from Tq, with q ∈ {2, 3, 5, 6}.

Lemma 2. If (a, b, c) ∈ T2 is primitive and p is a prime divisor of c, then there exist

u, v ∈ Z such that p = u2 + 2v2. If (a, b, c) ∈ T3 is primitive and p is a prime divisor

of c, then either p = 2 or there exist u, v ∈ Z such that p = u2 + 3v2. If (a, b, c) ∈ Tq

is primitive where q = 5 or q = 6, and p is a prime divisor of c, then ∃u, v ∈ Z such

that p = u2 + qv2 or 2p = u2 + qv2.

Proof. Consider (a, b, c) ∈ Tq. Since a2 + qb2 = c2 where q ∈ {2, 3, 5, 6}, it follows
from the generalized Diophantus chord method that ∃s, t ∈ Z such that c = s2 + qt2

or 2c = s2 + qt2. Suppose c = pn1

1
· . . . · pnk

k , is the prime decomposition of c.

Case 1: q = 2. We want to show that each prime pi dividing c can be written in the
form pi = u2 + 2v2 for some u, v ∈ Z (note that if q is even, pi 6= 2). It is well known
that a prime p can be written in the form

p = u2 + 2v2 ⇐⇒ p = 8n+ 1 or p = 8n+ 3, for some integer n

(see chapter 9 of [5], or chapter 1 of [1]). Thus it’s enough to show that if a prime p|c
then p = 8n + 1 or p = 8n + 3. Since p|c, and c = s2 + qt2 or 2c = s2 + qt2 we see
that ∃m ∈ Z such that pm = s2 + 2t2 and hence −2t2 ≡ s2 (mod p), i.e. the Legendre
Symbol (−2t2

p
) = 1. Using basic properties of the Legendre symbol, it implies that

(−2

p
) = 1. But (−2

p
) = 1 iff p = 8n + 1 or p = 8n + 3 as follows from the supplements

to quadratic reciprocity law. This finishes the case with q = 2.

Case 2: Suppose now that q = 3. Then (1, 1, 2) ∈ T3 gives an example when c is
divisible by prime p = 2. Note also that prime p = 2 is of the form 2p = u2 + 3v2.
Assuming from now on that prime p dividing c is odd, we want to show that there

5



exist u, v ∈ Z such that p = u2 + 3v2, which is true if and only if ∃n ∈ Z such that
p = 3n+ 1 (see again [5] or [1]). Hence, in our case, it suffices to show that if p|c then
∃n ∈ Z such that p = 3n + 1. As in Case 1, ∃m ∈ Z such that pm = s2 + 3t2 for
some s, t ∈ Z. Therefore, we have that the Legendre Symbol (−3

p
) = 1, which holds iff

p = 3n + 1. One can prove this using the quadratic reciprocity law (e.g. [5], Section
6.8).

Case 3: Suppose now that q = 5. Note that in this case c must be odd. Indeed, if c
was even, x2 +5y2 would be divisible by 4, but on the other hand, since both of x and
y must be odd when q is odd and c is even, we see that x2+5y2 6≡ 0 (mod 4). Since p|c
then again ∃m ∈ Z such that pm = s2 + 5t2 for some s, t ∈ Z. I.e. (−5

p
) = 1. It is true

that for any integer n and odd prime p not dividing n that Legendre Symbol (−n

p
) = 1

iff p is represented by a primitive form ax2 + bxy + cy2 of discriminant −4n such that
a, b, and c are relatively prime (see Corollary 2.6 of [1]). Following an algorithm in
§2.A of [1] to show that every primitive quadratic form is equivalent to a reduced from,
one can show that the only two primitive reduced forms of discriminant −4 · 5 = −20
are x2 + 5y2 and 2x2 + 2xy + 3y2. Through a simple calculation its easy to see that a
prime p is of the form

p = 2x2 + 2xy + 3y2 ⇐⇒ 2p = x2 + 5y2.

This finishes the third case.

Case 4: Lastly, let’s consider the case when q = 6. Once again since p 6= 2 and p|c then
(−6

p
) = 1. Using the same Corollary used in case 3, we see that p must be represented

by a primitive quadratic form of discriminant −4 · 6 = −24. Also, following the same
algorithm used in case 3 to determine such primitive reduced forms, we find that there
are only two; x2+6y2 and 2x2+3y2. Through a simple calculation it can be determined
that a prime p is of the from

p = 2x2 + 3y2 ⇐⇒ 2p = x2 + 6y2.

Thus, the lemma is proven.

Remark: One could write prime divisors from this lemma in a linear form if needed. It
is a famous problem of classical number theory which primes can be expressed in the
form x2+ny2. The reader will find a complete solution of this problem in the book [1]
by Cox. For example, if p is prime, then for some n ∈ Z we have

p =







20n+ 1
20n+ 3
20n+ 7
20n+ 9

if and only if p = x2 + 5y2 or p = 2x2 + 2xy + 3y2. We refer the reader for the details
to chapter 1 of [1].
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Now we are ready to describe all generators of Pq, where q ∈ {2, 3, 5, 6}. Our proof
is similar to the proof given in [2] by Eckert, where he decomposes the hypothenuse
of a right triangle into the product of primes and after that peels off one prime at
a time, together with the corresponding sides of the right triangle. His description
of prime p ≡ 1 (mod 4) is equivalent to the statement that p can be written in the
form p = u2 + v2, for some integers u and v, which is the case of Fermat’s two square
theorem. In the theorem below we also use quadratic forms for the primes.

Theorem 2. Let us fix q ∈ {2, 3, 5, 6}. Then Pq is generated by the set of all triples

(a, b, p) ∈ Tq where a > 0, and p is prime such that ∃u, v ∈ Z with p = u2 + qv2, or
2p = u2 + qv2.

Proof. Take arbitrary [r, s, d] ∈ Pq and let us assume that (r, s, d) ∈ Tq will be the
corresponding primitive triple with r > 0, and the following prime decomposition of
d = pn1

1
· . . . · pnk

k . It is clear from what we’ve said above that d will be odd when
[r, s, d] ∈ Fq, and d will be even only if q = 3 and [r, s, d] /∈ F3. Our goal is to show
that

[r, s, d] =

k∑

i=1

ni · [ai, bi, pi], where ai > 0, ni · [ai, bi, pi] := [ai, bi, pi] + · · ·+ [ai, bi, pi]
︸ ︷︷ ︸

ni times

and pi is either of the form u2 + qv2, or of the form (u2 + qv2)/2. We deduce from our
Lemma 2 that each prime pi | d can be written in one of these two forms. Hence, for
all pi, ∃ai, bi ∈ Z such that a2i + qb2i = p2i . Indeed, if we have 2p = u2 + qv2, then

4p2 = (u2 − qv2)2 + 4q(uv)2

and since u2 + qv2 is even, u2 − qv2 will be even as well, and therefore we could write
α2 + qβ2 = p2, where α = (u2 − qv2)/2 and β = uv. Thus [ai, bi, pi] ∈ Pq.

Since Pq is a group, the equations

[r, s, d] =

{
[X1, Y1, D1] + [ak, bk, pk]
[X2, Y2, D2] + [−ak, bk, pk]

always have a solution with (Xi, Yi, Di) ∈ Z×Z×N. The key observation now is that
only one of the triples (Xi, Yi, Di) will be equivalent to a primitive triple (x, y, d1), with
d1 < d. Indeed, we have [r, s, d] = [X, Y,D]± [a, b, p] or

[X, Y,D] = [r, s, d]± [−a, b, p] =

{
[−ra− qsb, rb− sa, dp]
[ra− qsb, rb+ sa, dp]

Since p | d, we have dp ≡ 0 (mod p2) and hence it is enough to show that either
ra+ qsb ≡ rb− sa ≡ 0 (mod p2), or ra− qsb ≡ rb+ sa ≡ 0 (mod p2) (c.f. Lemma on
page 24 of [2]). From the following identity

(sa− rb)(sa+ rb) = s2a2 − r2b2 = s2(a2 + qb2)− b2(r2 + qs2) ≡ 0 (mod p2),
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we deduce that either p divides each of sa − rb and sa + rb, or p2 divides exactly
one of these two terms. In the first case p | 2sa, which is impossible if p is odd,
since then either a2 > p2 or (r, s, d) won’t be primitive. If we assume p = 2, then as
we explained in Lemma 2., q = 3 and therefore (a, b, p) = (1, 1, 2) so (ra − qsb, rb +
sa, dp) = (r − 3s, r + s, 2d). But r + s ≡ r − 3s (mod 4) and if 4 | r + s we can write
(ra − qsb, rb + sa, 2d) = 4

(
(r − 3s)/4, (r + s)/4, d1

)
, where d1 = d/2. If r + s ≡ 2

(mod 4), we will divide each element of the other triple by 4.

Thus we can assume from now on that p is an odd prime and that either p2 | sa−rb
or p2 | sa + rb. Let us assume without loss of generality that sa − rb = kp2 for some
k ∈ Z. Since the triple (−ra − qsb, rb − sa, dp) is a solution of (2), and the last two
elements are divisible by p2, it is obvious that the first element must be divisible by p2

too, i.e. that ra+ qsb = tp2. That implies that

[X, Y,D] = [−ra− qsb, rb− sa, dp] = [−t,−k, d1],

where d1 = d/p < d, which we wanted to show. The other case is solved similarly.
Note that only one of the two triples will have all three elements divisible by 4, which
means that only [a, b, p] or [−a, b, p] can be subtracted from the original element [r, s, d]
in such a way that the result will be in the required form.

Thus we can “peel off” the triple [ak, bk, pk] from the original one [r, s, d] ending up
with the element [x, y, d1], where new d1 < d. Note that we can always assume that
ak > 0 by using either [ak, bk, pk] or [−ak,−bk, pk]. Then simply keep “peeling off” until
all prime divisors of d give the required presentation of the element [r, s, d] as a linear
combination of the generators [ai, bi, pi].

3.3 On generators of Pq when q ≥ 7

It is interesting to see how the method of peeling off breaks down in specific cases of
q for q ≥ 7. Here are some examples of PAPTs (a, b, c) ∈ Tq, where c is divisible by a
prime p but there exist no nontrivial pair r, s ∈ Z, such that (r, s, p) ∈ Tq.

The primitive triple (1, 3, 8) ∈ T7 is a solution, where 8 is divisible by prime 2,
however, it is impossible to find nonzero a, b ∈ Z, such that a2 + 7b2 = 22.

In T14 the primitive triple (13, 2, 15) is a problematic solution for the same reason.
There are no nontrivial solutions for a2 + 14b2 = 32 or a2 + 14b2 = 52.

In T19 the primitive triple (9, 1, 10) give us the same issue with primes 2 and 5.

Further investigation is needed to describe all the generators of Pq when Tq contains
primitive triples that have such characteristic.
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