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On Decoding Irregular Tanner Codes

Guy Even Nissim Halabit

Abstract

We present a new combinatorial characterization for logdimality of a codeword
in irregular Tanner codes. This characterization is a gdizetion of [Arora, Daskalakis,
Steurer; 2009] and [Vontobel; 2010]. The main novelty irstbharacterization is that it
is based on a conical combination of subtrees in the comipotéiees. These subtrees
may have any degree in the local-code nodes and may have iy feven greater than
the girth). We prove that local-optimality in this new chetexization implies Maximum-
Likelihood (ML) optimality and LP-optimality. We also shatvat it is possible to compute
efficiently a certificate for the local-optimality of a codexd given the channel output.

We apply this characterization to regular Tanner codes. \espa lower bound on the
noise threshold in channels such as BSC and AWGNC. When tke isdbelow this lower
bound, the probability that LP decoding fails diminishesilolg exponentially in the girth
of the Tanner graph.

We use local optimality also to design an iterative mesgagsing algorithm for de-
coding irregular LDPC codes. This new algorithm is guaraditto find the locally op-
timal codeword if such a codeword exists. Moreover, an Mttiteate as well as an
LP-certificate are proved if a locally optimal codeword &xis

*School of Electrical Engineering, Tel-Aviv  University, HAviv 69978, Israel.
E-mail:guy@ng. tau.ac.il .

fSchool of Electrical  Engineering, Tel-Aviv  University, HAviv 69978, Israel.
E-mail:ni ssi mh@ng.tau. ac.il.


http://arxiv.org/abs/1107.2677v1

1 Introduction

Modern coding theory deals with finding good error corregtoodes that have efficient en-
coders and decoders (JRUO8]). Many of the decoders for nmocledes are suboptimal in the
sense that they may fail to correct errors that are corrdptedmaximum-likelihood (ML) de-
coder, but they are practical thanks to their simplicity affetiency. Message-passing iterative
decoding algorithms based on belief-propagation (see[&al63,/BGT93| Mac99, LMSS01,
RUO1]) and linear-programming (LP) decoding [Fel03, FWKa&e examples of such subop-
timal decoders.

Many works deal with low-density parity-check (LDPC) co@esl generalizations of LDPC
codes. LDPC codes were first defined by Gallager [Gal63] wiygested several message-
passing iterative decoding algorithms (e.g., “sum-prétjudanner [Tan81] introduced graph
representations of linear codes based on bipartite grapdsvariable nodes and constraint
nodes, and viewed iterative decoding as message-pasgjogdtiains over the edges of the
Tanner graph. In the standard setting, constraint nodepetathe parity function. In the gen-
eralized setting, constraint nodes use a local error-ctingecode. One may view a constraint
node with a linear local-code as a coalescing of multipl&y&heck nodes. Therefore, a code
may have a sparser and smaller representation when refgésena Tanner code in the gen-
eralized setting. Sipser and Spielman [SS96] studied Tasodes based on expanders graphs
and analyzed a simple bit-flipping decoding algorithm.

Wiberg et al. WLK95| Wib96] developed the use of graphical models fortegsatically
describing instances of known decoding algorithms. Fomgxe, the “sum-product” algorithm
and the “min-sum” algorithm are generic iterative messagesing decoding algorithms that
apply to any graph realization of a Tanner code. Wibsdrgl. proved that the min-sum algo-
rithm can be viewed as a dynamic programming algorithm tbatputes the ML-codeword if
the Tanner graph is a tree. Although Tanner graphs are yswaltrees, the min-sum algorithm
proceeds as if the graph is a tree. For LDPC codes, Wigtealfy characterized a necessary con-
dition for decoding failures of the min-sum algorithm by gag¢ive” cost trees, calleshinimal
deviations

Linear programming (LP) decoding was introduced by Feldnvdainwright and Karger
[Fel03,[FWKO5] for binary linear codes. LP-decoding is lthea solving a fractional relax-
ation of an integer program that models the problem of MLediéng. LP decoding has been
applied to several codes, among them: RA codes, turbo-tiles, LDPC codes, and expander
codes. Our work is motivated by the problem of finite-lengtl average-case analysis of suc-
cessful LP-decoding of Tanner codes. There are very fewswnkthis problem, and they deal
only with specific cases. For example, Feldman and SteingF&6alyzed special expander
codes, and Goldenberg and Burshtein [GB10] deal with repeaimulate codes.

Previous results. Combinatorial characterizations of sufficient conditibmssuccessful de-
coding are based on so called “certificates”. That is, giveataived word; and a codeword,
we are interested in a one-sided error test that answersudstigns: isc optimal with respect
to y? is it unique? Note that the test may answer “no” for a pasitnstance. We call these
testscertificatesfor the optimality of a codeword. Upper bounds on the wordmeprobability
are obtained by lower bounds on the probability that a ceatii exists.

Koetter and Vontobe[ [KV06] analyzed LP decoding of reguBxPC codes. Their analy-
sis is based on decomposing each codeword (and pseudocdi¢ava finite set of minimal



structured trees (i.e., skinny trees) with uniform vertesights. Aroraet al. [ADS09] extended
the work in [KVOE] by introducing nonuniform weights to thertices in the skinny trees,
and definedocal-optimality For a BSC, Aroraet al. proved that local optimality implies
both ML-optimality and LP-optimality. They presented arabsis technique that performs
a finite-length density evolution of a min-sum process tovprbounds on the probability of

a decoding error. Arorat al. also pointed out that it is possible to design a re-weighted
version of the min-sum decoder that finds the locally-optionaleword if such exists. This
work was further extended inh [HE11] to memoryless chanriéig. analyses presented in these
works [KV06,/ADS09/ HE11] are limited to skinny trees, thadia of which is bounded by a
guarter of the girth of the Tanner graph.

Vontobel [Von10] extended the decomposition of a codewanttl(pseudocodeword) to
skinny trees in graph covers (that originate in algebraookogy). This enabled Vontobel to
mitigate the limitation on the height by the girth. The degasition is obtained by a random
walk, and applies also to irregular Tanner graphs.

Jian and Pfister [JP10] analyzed a special case of the ateshmax-product decoder [FKOO],
for regular LDPC codes. They considered skinny trees in tmeputation tree, the height of
which is greater than the girth of the Tanner graph. Usingreation properties and consis-
tency conditions, they proved sufficient conditions undarolv the message-passing decoder
converges to a locally optimal codeword. This convergense ianplies convergence to the
LP-optimum and therefore to the ML-codeword.

Contributions. Our contribution is threefold. (i) We present a new comlonat charac-
terization of local-optimality for Tanner codes with resp& any memoryless binary-input
output symmetric (MBIOS) channel. This characterizatioovples an ML-certificate and an
LP-certificate for a given codeword. Based on this new chiaraation, we present two appli-
cations of local-optimality. (ii) In the case of regular Tem codes, we present an analysis of
LP-decoding failure. (iii) In the case of irregular LDPC e3¢ we present a new message pass-
ing decoding algorithm, calledwms. TheNwwms algorithm is guaranteed to find the locally
optimal codeword if such exists. More details of our conttibns are provided below.

A new combinatorial characterization of local-optimality irregular Tanner codes with
respect to any memoryless binary-input output-symmeMiglOS) channel is presented. This
characterization uses subtrees in the computation tredicivthe degree of local-code nodes
is not limited to2 (as opposed to skinny trees in previous analyses). We phateldcal-
optimality in this characterization implies ML-optimali{Theorenib). We utilize the equiv-
alence of graph cover decoding and LP-decoding for Tanndes;amplied by Vontobel and
Koetter [VKOE], to prove that local-optimality suffices alor LP-optimality (Theoreral7), as
one would expect. We present an efficient dynamic programralgorithm that computes a
local-optimality certificate for a codeword with respectatgiven channel output.

Because trees in our new characterization may have degigges ithan two, they contain
more vertices. Hence this characterization leads to ingmrdnounds for successful decoding
of regular Tanner codes (Theorems 11 22). These boutelsdeke probabilistic analysis
of the min-sum process by Aroet al. [ADS09] to a sum-min-sum process on regular trees.
For regular Tanner codes, we prove bounds on the word embeapility of LP-decoding under
MBIOS channels that are inverse doubly-exponential in iité gf the Tanner graph. We also
prove bounds on the threshold of regular Tanner codes wharseet graphs have logarithmic
girth. This means that if the noise in the channel is below thigeshold, then the decoding
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error diminishes as a function of the block length. Note ffainer graphs with logarithmic
girth can be constructed explicitly (see e.g., [Gal63]).

Specifically, we consider as an example 16)-regular Tanner codes with (j}6, 11, 4]-
extended Hamming codes as local-codes, and (ii) logarttlginth Tanner graphs. The rate
of such codes is at leadt375. For the case of a binary symmetric channel (BSC) with bit
flipping probabilityp, we prove a lower bound ¢f = 0.044 on the noise threshold. How does
this result compare with results on expander Tanner codég?efror correction capability of
expander codes depends on the expansion, thus a fairlydagree and huge block-lengths
are required to achieve good error correction. Our exanghlesronly on al6-regular graph
with logarithmic girth. Feldman and Stein [FS05] provedtth@ decoding can asymptotically
achieve capacity with a special family of expander Tannédeso They also presented a worst-
case analysis, which in the case of a code rat@ 35, proves that LP decoding can recover
any pattern of at mosi.0008 N bit flips. This implies a lower bound gf* = 0.0008 on the
threshold. The best results for iterative decoding of sxg@aeder codes, reported by Skachek
and Roth[[SR0O3], imply a lower bound pf = 0.0016 on the threshold of a certain iterative
decoder.

Finally, motivated by the weights and degree normalizaitiche characterization of local-
optimality, we present a new message-passing iterativediteg algorithm for irregular LDPC
codes, called theormalized weighted min-sufnwms) algorithm. The characterization of
local-optimality for irregular LDPC codes has two param&t€) a certificate depth, and (ii) a
vector of layer weight® € R/.. We prove that thewms decoder computes the ML codeword
if a locally-optimal codeword exists (Theorém 23). The tiamel message complexity Rivms
iSO(|E| - h) where|E| is the number of edges in the Tanner graph.

Various weighting methods of message-passing algorithased on belief-propagation
were explored by several researchers (see €é.9., [FK0O, HDE™05,[JP10]). The analy-
ses and results of which are asymptotic (e.g., based ontdenwsiution [RUO1]) and limited
to regular LDPC codes. Moreover, no bounds on the time andagescomplexity are proved.
The NwwMs algorithm comes with a guarantee for computing the ML codewathin / itera-
tions if a local-optimality certificate of depthexists for some codeword. Moreover, the output
of NwMs can be efficiently certified. For the case of regular LDPC sotlee previous bounds
on the probability that a local-optimality certificate @si$ADS09,/HE11] also apply to the
probability ofNwMs decoding success.

The remainder of this paper is organized as follows. Se@igmovides background on
ML-decoding and LP-decoding of Tanner codes over MBIOS nkln Section 3 presents
combinatorial certificate, that applies both to ML-decagdamd LP-decoding, for codewords of
Tanner codes. In Sectidh 4, we prove a structural decomoéitr codewords of Tanner codes
used as a key element in the proof of the main theorem of thequesection. In Sectidd 5 we
use the combinatorial characterization of local-optityat bound the error probability of LP
decoding for regular Tanner codes. Seciibn 6 presents\wthes iterative decoding algorithm
for irregular LDPC codes, followed by a proof in Sectidon 7tthevms finds the locally-optimal
codeword if such exists. We conclude in Secfibn 8.



2 Preliminaries

Graph Terminology. Let N;(v) denote the set of neighbors of noden graphG, and for a
setS C V letNg(S) £ ,cs Na(v). Let P,,(G) denote a shortest path between nodesd
win G. Letdg(r,v) denote the distance (i.e., length of a shortest path) betwedes- andv
in G, and letgirth(G) denote the length of the shortest cyclein

An induced subgrapis a subgraph obtained by deleting a set of vertices. sthmgraph
of G = (V, F) induced byS C V, denoted byGg, consists ofS and all edges irF, both
endpoints of which are contained $h

Tanner-codes and Tanner graph representation. Let G = (V U J, E') denote an edge-

labeled bipartite-graph, whedé = {vy,...,vx} is a set ofN vertices calledsariable nodes
and7 = {C},...,C;} is a set ofJ vertices calledocal-code nodesWe denote the degree of
Cj by n;.

Letc” 2 {C’: C isan [nj, k;,d;] code, j € [J]} denote a set off local-codes The
local codeC’ corresponds to the local-code nade e J. We say that; participatesin Cif
(v;, C;) isan edge irE. The edges incident to each local-code n6gare labeled1, ..., n,}.
This labeling indicates the index of a variable nodes in tihreasponding local-code.

Let awordxr = (x1,...,2y) € {0,1}" denote an assignment to variable node¥.ir_et
V; denote the ordered set of variable nodes\ia(C};) according to labels of edges incident
to C;. Denote byry, € {0,1}" the projection of the word: = (xy,...,7y) Onto entries
associated with;.

The Tanner codeﬂ(G,@j) based on the labelethnner graph is the set of vectors €
{0,1}" such thatr, is a codeword i’ for everyj € [J].

Let d; denote the minimum distance of the local c@le The minimum local distance*
of a Tanner codé€(G, Ej) is the minimum distance of the local codes, id.= min; d;.

If the bipartite graph igd., dg)-regular, i.e., the vertices i have degreel; and the
vertices in7 have degreédy, then the graph defines(d;,, dr)-regular Tanner code

If the Tanner graph is sparse, i.85| = O(N), then it defines dow-density Tanner code
A parity codeis the code that contains all binary words with even Hammieggiv. Tanner
codes with parity local codes that are based on sparse Tgnaehs are calletbw-density
parity-check (LDPC) codes

Consider a Tanner cod&(G,C” ), whereC” = {C’}ie. We say that a word: =
(21, ..., zy) satisfiedocal-codeC’ if zy, € C’. The set of words thatsatisfythe local-cod€”
is denoted by/, i.e.,C’ = {z € {0,1}" : a2y, € C’}. The resulting cod€’ is theextension
of the local-code&®’ from lengthn, to length/N. We denote the set of extended local-codes in
¢’ byc7. Clearly,C(G,C”) C ¢i. It holds that

ca.cly=c. (1)
]

JjeJ
LP decoding of Tanner codes over memoryless channelsLet ¢; € {0,1} andy;, € R

denote theth transmitted binary symbol (channel input) and itrereceived symbol (chan-
nel output), respectively. Anemoryless binary-input output-symmei{idBIOS) channel is
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defined by a conditional probability density functigfy;|c; = a) for a € {0,1}, that satis-
fies f(y;]0) = f(—w:|1). The binary erasure channel (BEC), binary symmetric chiai3&C)
and binary-input additive white Gaussian noise (BI-AWGNaonel are examples for MBIOS
channels. In MBIOS channels, thag-likelihood ratio(LLR) vector A € RY is defined by
Ni(y;) 2 In (£&19=0) for every input biti. For a linear cod€, Maximum-Likelihood (ML)

. Mf(ygle=1)
decodings equivalent to

M (y) = argmin(A(y), z), 2)
x€conv(C)
whereconv(C) denotes the convex hull of the s&t
In general, solving the optimization problem(in (2) for lareodes is intractable [BMvT78].
Feldmaret al. [Fel03,[FWKO05] introduced a linear programming relaxationthe problem of
ML decoding of Tanner codes whose local codes are parityscotleis definition is based on
a fundamental polytope that corresponds to the Tanner graplVe consider an extension of
this definition to the case in which the local codes are atyjtas follows. Thegeneralized

fundamental polytop® 2 P(G,C”) of a Tanner cod€ = C(G,C” ) is defined by

P& () conv(C). (3)

ciecd

Note that a Tanner code may have multiple representatioasTiayner graph and local codes.
Moreover, different representatiofis, EJ) of the same Tanner codemay yield different gen-

eralized fundamental polytop@(G,EJ). If the degree of each local-code node is constant,
then the generalized fundamental polytope can be repesseyt) (| 7|) variables and(|.7|)
constraints. If, in addition, the Tanner graph is sparsently| = O(N), and the general-
ized fundamental polytope has an efficient representatoich Tanner codes are often called
generalized low-density parity-check codes

Given an LLR vector\ for a received word;, LP-decoding is defined by the following

linear program:

P (y) £ argmin (A\(y), z). 4)
2eP(GCY)

The difference between ML-decoding and LP-decoding is tiratfundamental polytope

P(G,EJ) may strictly contain the convex hull @f. Vertices ofP(G,@J) that are not code-
words ofC must have fractional components and are cgisgludocodewords

3 A Combinatorial Certificate for an ML Codeword

In this section we present combinatorial certificates fateseords of Tanner codes that apply
both to ML-decoding and LP-decoding. A certificate is a pritat a given codeword is the
unigue solution of maximume-likelihood decoding and linpamgramming decoding. The cer-
tificate is based on combinatorial weighted structures énTdnner graph, referred to Exal
configurations These local configurations generalize the minimal condiions (skinny trees)
presented by Vontobel [Vonl10] as extension to Areral. [ADS09]. We note that for Tanner
codes, the support of each weighted local configurationtim@cessarily a local valid configu-
ration. For a given codeword, the certificate is computed dyremic-programming algorithm
on the Tanner graph of the code.



Notation: Lety € R" denote the word received from the channel. het \(y) denote the
LLR vector fory. LetG = (V U J, E) denote a Tanner graph, and (&(7) denote a Tanner
code based ot with minimum local distance*. Letx € C(G) be a candidate fat™ % (y)
andzf (y).

Definition 1 (Path-Prefix Tree)Consider a grapity = (V, F) and anode: € V. LetV denote
the set of all backtrackless pathsd@hwith length at most that start at node-, and let

~

E

>

{(pl,pg) cVxV | p1is a prefix of po, [p1| +1 = |p2|}.

We identify the empty path i with r. Denote by7*(G) £ (V, E) the path-prefix treeof G
rooted at node- with heighth. We denote the fact that a pathe V ends atv € V, byp ~ v.

When dealing with the analysis of belief propagation aldpons on graphical models, the
path-prefix tree of a Tanner gragh rooted at a variable node is usually referred to as the
computation tree We make the distinction between the computation tree amgbéth-prefix
tree since we consider also path-prefix trees of subgraplsTainner grapltz and are not
necessarily rooted at a variable node. We denote verticdeeipath-prefix tree by,u, etc.
Vertices inG are denoted by, u, etc.

The following definitions expand the combinatorial notidmonimal valid deviations [Wib96]
and weighted minimal local-deviations (skinny trees) [AIISVon10] to the case of Tanner
codes.

Definition 2 (d-tree) Consider a Tanner grapty = (V U J, E). Ad-tree T|r, h,d](G), of
heighth rooted at node- is a subtree of/*(G) such that every variable node has full degree
and every local-code node has degtee

Definition 3 (w-weighted subtree)Consider a Tanner graply = (VU J,FE). LetT; =
(VU J, E) denote a subtree 6f*(@), and letw = (wy, . .., wy) € R" denote a non-negative
weight vector. Leﬂ;(“’) . V\{#} — R denote a weight function for variable nodesfpas
follows.

Wy 1

(W) () A
T = o) dogr, (@)~ 1

T

5)
€ Pao\ {70}

wheret = (@1 ando ~ v. Let Tf(“’) denote the subtreg; with the weights defined ifl(5).

We refer tcﬂ;(“’) as aw-weighted subtree.

For anyw-weighted subtreg." of 7(G), let 7[T"’] € RIV! denote the projection of
7;(“’) to the Tanner grapty. That is, for every variable nodein G,

Kw:{zmwﬁww>ﬁ&m@~w%@

e[ T (6)

0 otherwise.

For two vectorsr € {0,1}¥ andf € [0,1]", letz & f € [0,1]" denote theelative
point defined by(z & f); = |x; — fi| [Fel03]. The following definition is an extension of
local-optimality [ADS09| Von1D0] to Tanner codes on memesd channels.



Definition 4 (local-optimality) LetC(G) c {0, 1} denote a Tanner code with minimum local
distanced*, and letw € [0,1]"\{0"} denote a non-negative weight vector of lengthFor
any integer2 < d < d, let BC(;”) denote the set of all vectors corresponding to projections b
w-weightedd-trees toG, i.e., Bc(lw) = {ng[T™[r,2h,d)(G)] | r is a variable node in G}. A
codewordz € {0, 1}V is (h, w, d)-locally optimal forx € RY if for all vectors3 € B\,

NzdB) > (\x). (7)

Note thatB'"”) C [0,1)" for every weight vectorw € [0,1]". Based on random walks
on the Tanner graph, Vontobel showed tfiatw, 2)-local optimality is sufficient both for ML-
optimality and LP-optimality. The random walks are defineteirms derived from the general-
ized fundamental polytope. We extend the results of Vortialoe 10] to “thicker” skinny-trees
by using probabilistic combinatorial arguments on grapitstae properties of graph cover de-
coding [VKOS]. Specifically, we prove thdt, w, d)-local optimality, for any2 < d < d*,
implies LP optimality (Theorerl 7). Given the decompositidhemma8 proved in Sectidn 4,
the following theorem is obtained by modification of the drod [ADS09, Theorem 2] or
[HE11, Theorem 6].

Theorem 5 (local-optimality is sufficient for ML) LetC(G) denote a Tanner code with mini-
mum local distancé*. Leth be some positive integer and= (w, ..., w;) € [0, 1]" denote a
non-negative weight vector. Latc R” denote the LLR vector received from the channel, and
suppose that is an(h, w, d)-locally optimal codeword foA and some < d < d*. Thenz is
also the unigue maximum-likelihood codeword for

Proof. We use the decomposition proved in Seciibn 4 to show thawknyecodeword:’ # =z,
(A, 2') > (\,x). Sincez = z @ 2’ is a codeword, by Lemnid 8 there exists a distribution over
the seiij“), such thaIEBeBw)ﬁ = az. Letf : [0,1]Y — R be the affine linear function defined

d

by f(u) & (A, z @ u) = (A, z) + SN (—1)% \u,. Then,

A\ zx) < EﬁeBw)()\,x@B} (by local-optimality ofz)
d

= (N zdEPB) (by linearity of f and linearity of expectatign
Az @ az) (by Lemmd. 8
N (1—a)r+alzdz2))

= (N1 —a)z+ax)
(1 —a)(\x)+al\ 2.

which implies that A, z') > (), z) as desired. O

In order to prove a sufficient condition for LP optimality, wensider graph cover decoding
introduced by Vontobel and Koetter [VKD5]. We note that thamacterization of graph cover
decoding and its connection to LP decoding can be extend#tketoase of Tanner codes in
the generalized setting. We use the terms and notation dblehand Koetter [VKO5] in the
statement of Lemmld 6. The following lemma shows that logaireality based oni-trees is
preserved after lifting to an/-cover. Note that the weight vector must be scaled by thercove
degreel!.



Lemma 6. LetC(G) denote a Tanner code with minimum local distariteand letG' denote
anyM-cover ofG. Letw € [0, 5;]"\{0"} for some positive integér. Suppose that € C(G) is
an (h, w, d)-locally optimal codeword foh € R for some2 < d < d*. Leti = 2™ € C(G)
and\ = \™ ¢ RN'M denote thel/-lifts of z and \, respectively. Thed is an (h, M - w, d)-

locally optimal codeword foA.

Proof. Assume thatt = ™ is not a(h, M - w, d)-locally optimal codeword foi = AT,
Then, there exists@tree7 = T, h, d|(G) rooted at some variable nodec V, such that the
projections = 75 [T ™M )] € [0,1]¥M of the (M - w)-weightedd-tree T M) onto (i satisfies

A\ z®B) < (N 7). (8)

Note that forz € {0, 1}¥*™ and its projection: = p(z) € RY, it holds that

—(\z) = (\z), and 9

Shieh) = (rep) (10
wheres = 74[T™)] € [0, 1]V is the projection of thes-weightedd-tree7T onto the base graph
G. From [8), [9), and (10) we get thax, z) > (A, x @ j3), contradicting our assumption on the
(h,w, d)-local optimality ofz. Thereforei is a(h, M - w, d)-locally optimal codeword foa
inC(Q). O

The following theorem is obtained as a corollary of Theotéaml Lemmal6. The proof
is based on arguments utilizing properties of graph coveodiag. Those arguments are used
for a reduction from ML-optimality to LP-optimality simiftao the reduction presented in the
proof of [HE11, Theorem 8].

Theorem 7 (local optimality is sufficient for LP optimality)For every Tanner codé(G) with
minimum local distancé*, there exists a constait such that, if

1. w e [0, 5]\ {0"}, and
2. xis an(h,w,d)-locally optimal codeword foA € R and some < d < d*,

thenx is also the unique optimal LP solution given

3.1 \Verifying local optimality

LetG = (VU J, E) denote a Tanner graph, andd&t5) denote a Tanner code with minimum
local distanced*. Let h denote a positive integer and € [0,1]". Consider a codeword
x € C(G) and any intege? < d < d*.

Let “x” denote a coordinate-wise vector multiplication. Lemimarplies that the mapping
(z,\) — (0N, bx \), whereb; = (—1)%, preserves local optimality. That is, verifying whether
zis (h,w, d)-locally optimal for)\ is equivalent to verifying that" is (h, w, d)-locally optimal
for X' £ b« \. However,0" is locally optimal for)\’ iff N ) (N, 5B) = 0.

Given an LLR vector\, one can find by a simple dyngmic programming algorithm the
w-weightedd-tree 7* rooted at variable node, such that its projectiof* minimizes(\’, )
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for all vectorsg corresponding to projections af-weightedd-trees rooted at. Values are
propagated from the leaves tﬁ(“’)(G) to the rootr. In every step, a node propagates to
its parent the minimum cost of the suktree that hangs from it iﬂ?(“’)(G), based on the
minimum values received from its children. In fact, messpggsing algorithms run dynamic
programming algorithms on computation trees for every no6t simultaneously.

For a setS of real values, letnin”{S} denote theth smallest member is. Algorithm
VERIFY-LO(z, A\, h, w, d), listed as Algorithnill, is a message-passing algorithm abgtuts
trueif a given codeword: is (h, w, d)-locally optimal for\, otherwise returnfalse For each
edge(v, C'), each iteratiord € {1, ..., h} (“for” loop in Line 3) consists of one messagéLC
from the variable node to the check nodé¢’, and one messagéClLU from C' to v. Hence, the
time and message complexity of Algoritiin 10| E| - h).

Algorithm 1 VERIFY-LO(z, A\, h,w,d) - An iterative verification algorithm. Given an LLR
vector\ € RV, a codewordr € {0, 1}V, level weightsw € R", and parameted € IN,,
outputs true” if xis (h, w, d)-locally optimal for\, otherwise outputsfalsé'.

1: Initialize: Vo € V1 A = A, - (—=1)™

2: VC € T, Vv e N(C): &) 0
fori=0toh —1do

forall v eV, C € N(v) do

Nf}llc — d:)gh A+ degG — 2 CreN\C) Ngj@

end for

for all CGJ,UEN( )

end for
10: end for
11: forall v € V do
120 iy <= ZCGN( M(C}‘Lﬁi)
13:  if p, < 0then {mln costw-weightedd-tree rooted at has non-positive valye
14: return false;
15:  end if
16: end for
17: return true;

©X N ~®

4 Constructing Codewords from Weighted Trees Projections

This section features Lemrha 8, which is the key structuraht@ in the proof of Theorei 5.
This Lemma shows that every codeword of a Tanner code canrstraoted by a summation
over a finite set of projections of weighted trees in the cotan trees of-.

Lemma 8. LetC(G) denote a Tanner code with minimum local distadteand leth denote

some positive integer. For every codewarg4 0V, and for every2 < d < d*, there exists a
distribution overd-trees7 of G of heighth and a positive integeH such that, for every weight
vectorw € [0, %]"\{0"}, there exists an € (0, 1], such that

ETGB((;U) [Wg[ﬂ] = ax.

10



Proof sketch.Every codeword: € C(G) can be decomposed inte||; weighted path-prefix
trees (see Lemnid 9). Every weighted path-prefix tree is aeoocembination of weighted
d-trees (see Lemniall0). Putting these two results togethktsyiemmals. O

For a codeword: € C(G) C {0,1}?, let G, denote the subgraph of the Tanner graph
induced byl, UN (V) whereV, = {v; | z; = 1}.

Lemma 9. LetC((G) denote a Tanner code and letdenote some positive integer. For every
codewordz # 0V, and for every weight vectar € R”,

O w) w= > melT(GL)].

t=1 r:xrr=1
Proof. Let us consider two variable nodesv € G,. Notice that|{t € T'(G,) : o ~
v} = |[{a € TMG,) : 4 ~ u}|. Indeed, for every path from the root f*(G.) to a node

o € {d :  ~ v}, there exists a unique reversed path/ji(G,) from the root to a node
such thati ~ u. Let J = ,7) denote a path in the path-prefix trgé rooted atv, then
= (r,..., ) denotes the corresponding reversed path in the path-pregist.

Consider an all-one weight vectgr= 1". In (I1)-(12), let7,"” £ T,"(G,), deg(-) £
degg, (), d(-,+) & dyana,) (-, +), 7 ~ r, andi ~ u. Letq o p denote the concatenation of path
g with pathp. Equation[(1l) holds for every < i < 2h.

> e = X% > T(Te0)
{P=(v,...,7):d(v,7)=i} {7 =(,...,0):d(v,0)=i—1} {FEN (a):d(v,F)=4}
1
= >, >, WTJ”)(?)
{7 =(v,..;0):d(v,8)=i—1} {FEN (4):d(v,?)=i}
1
= 7Y . - -
ZA . T () i Z . deg(u) —1
{{=(v,...,0):d(v,2)=i—1} {reN (a):d(v,7)=1}

= > (). (11)

{q=(v,...,0):d(v,d)=i—1}

Note that the reversed patfis and‘7 in the summations of {11) end at a nolsuch that
0 ~ v. Equation[(1ll) implies that the sum of aHweighted assignments to nod&s- v in
{ﬁ(")(Gx) : z, = 1} that correspond to paths of lengttoes not depend an

In particular, for; = 1, 2{7:(%?)} ’ﬁn(")(?) = 1. It follows that for everyl < i < 2h,

S g -1

{(F=(0,..7):d(v,) =i}

(12)

Note that for every two variable nodesr, it holds that7," (0) = Wawp)/2 - T ( ).

Hence) " 5 _ . . #).diw. =2 TV (%) = w;. We conclude that for every variable node G,
h

> T = (D> w) (13)
rix,=1 i=1

and the claim follows. O
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Lemma 10. For every connected subgraghs of a Tanner grapltz, letd* denote the minimal
degree of a local-code node (#s. Then for every variable nodee Gy, a positive integerh,
2 < d < d*, and every weight vectar € R”, it holds that

T,(Gs) = E[T™)[r,2h,d)(Gs)]
with respect to a uniform distribution ovértreesT of G5 rooted atr with height2h.

Proof. Consider a subgrapfs of a Tanner grapltz, and a positive integed < d*. Let
7;(“’)(6*5) denote anv-weighted path-prefix tree rooted at nadeith height2h. We want to
show that the uniform distribution overweightedi-trees has the property that the expectation
of trees over the distribution equa]*é“’)(GS).

We grow ad-tree rooted at randomly in the path-prefix treg*"(G). That is, start from
the rootr. For each variable node take all it's children, and for eadallcode node choose
d distinct children uniformly at random. Léf|r,2h,d] denote such a randomitree, and
consider a variable node € 7.2*(G). Note that7™)[r, 2h, d]() is constant and does not
depend on the random process. Equafioh (14) develops tladitgqu

E[7"[r, 2k, d](0)] = T,")(9).

E[T"[r,2h,d|(3)] = > Pr(TTr,2h,d]) - T"[r, 2h, d|(d)
{TIr2hdeT?(Gs)}
— > Pr(T[r, 2h,d)) - T™[r, 2h, d)(0)
{T[r2h,d|€T2"(Ggs):DET[r,2h,d]}
= T, 2h, d](D) - > Pr(TTr, 2h, d])

{Tr,2h,d|€T2"(Gs):0€T [r,2h,d]}
= T(W) [T‘, 2h7 d](ﬁ) ' PI'(QA} € T[T’ 2h’ d])

w 0 d 3 1
= TW[r2hd)0)- ][] deg(i) — 1
A€ Prp\{r,0}nT

_ Wiy H 1

deg(0) - (d = D)Aen iy de8l®) — 1

H d—1
deg(u) — 1

aePp\{r,0}nT 8(1)
_ Waga)/2 1

deg(v) aezgl\{r} deg(a) — 1
= T™)(5) (14)

as required. O

5 Bounds on Error Probability Using Local-Optimality
In this section we analyze the probability that a local oplity certificate for regular Tanner

codes exists, and therefore LP decoding succeeds. Thesanialpased on the study of a “sum-
min-sum” process that characterizéfrees of a regular Tanner graph. We prove upper bounds

12



on the error probability of LP decoding of regular Tannereod memoryless channels. The
upper bounds on the error probability imply lower boundstanthreshold of LP decoding. We
apply the analysis to binary symmetric channels, and coenpair results with previous results
on expander codes. The analysis presented in this secti@najizes the probabilistic analysis
of Aroraet al.[ADS09] from 2-trees (skinny trees) t@-trees for anyl > 2.

In the remainder of this section, we restrict our discusgidid,,, dr)-regular Tanner codes
with minimum local distance* among the local codes. Létdenote a parameter such that
2<d<d.

Theorem_1ll summarizes the main results presented in thi®sdor binary symmetric
channels, and generalizes to any MBIOS channel as desénilssttiori 5.8. Concrete bounds
are given for g2, 16)-regular Tanner code with code rate at l6a875 when using16, 11, 4]-
extended Hamming codes as local codes.

Theorem 11.LetG denote gd;,, dr)-regular bipartite graph with girtty, and letC(G) denote
a Tanner code based ar with minimum local distancé* of the local codes. Let € C(G) be

a codeword. Suppose thate {0,1}" is obtained from by flipping every bit independently
with probabilityp. Then,

1. [finite length bound] Letl = dy, p < po, (dr,dr) = (2,16), andd* = 4. For the values
of dy andp, in Table[1a it holds that is the unique optimal solution to the LP decoder
with probability at least

1
Pr (LP(y) = :E) >1—-N- C(d—1)L49J

for some constant < 1.

2. [asymptotic bound] Letl = dy, (dr,dgr) = (2,16), d* = 4, andg = Q(log N) suffi-
ciently large. For the values ef, andp, in Tablel1b it holds that is the unique optimal
solution to the LP decoder with probability at lealst- exp(—N7) for some constant
0 < v < 1, provided thaip < po(dp).

3. Forany(d;,dr) and2 < d < d*s.t.(dp — 1)(d — 1) > 2, the codeword: is the unique

1
optimal solution to the LP decoder with probability at least N - ¢((@z-D@-1)19) g5
some constant < 1, provided that

min {(Cl(p, d,dp,dg,t)) - (c2(p, d, dL,dR,t))l/(dlL'd/_l)} -1

t=0

=

where
d—1 d dy J
Cl(p7 d7 dL7 dR7 t) = < é%)pk(l _ p>(le*k)e*t(d’72k) 4 < Z < k}f)pk<1 . p)lek) etd/
k=0 k=d’
d/R —t t\d
C2(p7 d7 dLudRat) = d' ((1 _p>€ + pe ) .

13



| [do| po |

“finite” 3 | 0.0086

4 1 0.0218

“asymptotic” 3 | 0.019
ymp 11 0.044

Table 1: Computed values of, for finite dy < d* in Theoreni Ill. Values are presented for
(2,16)-Tanner code with rate at lea$375 when using[16, 11, 4]-extended Hamming codes
as local codes. (a) finite-length boundp < p, bound on the word error probability that
is inverse doubly-exponential in the girth of the Tannerpgra (b) asymptotic-bound: For
g = Q(log N) sufficiently large, LP decoder succeeds w.p. at l@éastexp(—N7) for some
constant) < v < 1, provided thap < po(dp).

Proof Outline. Theoren_1ll follows from Lemma_ 114, Lemrhal 17, Corollary 20, &utol-
lary 21 as follows. The first part, that states a finite-lengtult, follows from Lemma_14
and Corollarie§ 20 and 21 by taking= 0 < h < 1girth(G) which holds for any Tanner
graphG. The second part, that deals with an asymptotic resulpvalfrom Lemma 14 and
Corollaried 20 and 21 by fixing = 10 and takingg = Q(log V) sufficiently large such that

s < h = O(log N) < 1girth(G). It therefore provides a lower bound on the threshold of
LP-decoding. The third part, that states a finite-lengthultder any (d;, dr)-regular LDPC
code, follows from Lemmga14 and Lemina 17. O

How does this result compare with results on expander Tasougs? The error correction
capability of expander codes depends on the expansion atffiaisly large degree and huge
block-lengths are required to achieve good error corractiOur example for which results
are stated in Theorem111.1 and] 11.2 relies only @fA-eegular graph with logarithmic girth.
Sipser and Spielman [SS96] studied Tanner codes based andaxqs graphs and analyzed
a simple bit-flipping iterative decoding algorithm. Thewovel scheme was further improved
over the years to follow, and it was shown that expander Tianodes carasymptotically
achieve capacity in the BSC with iterative decoding bitgiily schemel [A1,[BZ02,BZ04].

In these works, a worst-case analysis was performed as Wélé best result for iterative
decoding of such expander codes, reported by Skachek ahd&R03], implies a lower bound
of p* = 0.0016 on the threshold of a certain iterative decoder for fagg5 codes. Feldman
and Stein[[FS05] proved that LP-decoding @aymptoticallyachieve capacity with a special
family of expander Tanner codes. They also presented a+wasst analysis, which in the case
of a code rate 00.375, proves that LP decoding can recover any pattern of at mo8o8 N

bit flips. This implies a lower bound gf* = 0.0008 on the threshold. Those analyses yield
overly pessimistic predictions for the average-case. fdm@ll.2 implies that LP-decoding
can correct up t0.044 N bit flips with high probability.

We now provide more details and prove the lemmas and coeslaised in the proof of
Theoreni 11L.

In order to simplify the probabilistic analysis of algomtis for decoding linear codes over
symmetric channels, we apply the assumption that the edl-@@deword was transmitted, i.e.,
¢ = 0V. Note that the correctness of the all-zero assumption dkpen the employed decod-
ing algorithm. Although this assumption is trivial for ML deding because of the symmetry
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of a linear code&’(G), it is not immediately clear in the context of LP-decodingldfanet
al. [Fel03,[FWKO5] noticed that the fundamental polytdp&~) of Tanner codes with parity-
check local codes is highly symmetric, and proved that foabj-input output-symmetric chan-
nels, the probability that the LP decoder fails is indepandéthe transmitted codeword. The
symmetry property of the polytope remains also for the gaimad fundamental polytope of
Tanner codes based on non-trivial linear local codes. Thirgone can assume that= 0V
when analyzing LP-decoding failure for linear Tanner cod&ke following lemma gives a
structural characterization for the event of LP-decodailyfe if c = 0V.

Lemma 12. Assume that the all-zero codeword was transmitted, and letR”™ denote the
log-likelihood ratio for the received word. If the LP decodails to decode to the all-zero
codeword, then for every € R"\{0"} and2 < d < d* there exists a vectaf € Bc(lw) such
that (A, 3) < 0.

Proof. Consider the event where the LP decoder fails to decodeltheral codeword, i.e)V
is not a unique optimal LP solution. Theoréin 7 implies thare¢hexists a constait/ such
that, for everyw’ € [0, 1;]"\{0"}, the all-zero codeword is n¢t, w’, d)-locally optimal for.
That is, there exists a vectst = m¢[7®)[r, 2k, d|(G)] € B such that(), ') < 0. The
lemma follows by assigning’ = m - w, and scalings’ by M - ||w||« to obtains, as
required. 0

We therefore have for a fixddandw € R"\{0"} that

Pr{LP decoding fails} < Pr {Elﬁ € B;w) such that (A, 5) < O}C = ON}. (15)

5.1 Bounding Processes on Trees

Let G be a(dy,, dr)-regular Tanner graph, and fix< 1girth(G). Let7,2"(G) denote the path-
prefix tree rooted at a variable nodgwith height2h. Sinceh < 1girth(G), it follows that
the projection oﬁ;%h(G) to GG is a tree. We direct the edgeshf so that it is an in-branching
directed toward the roaf, (i.e., a rooted spanning tree with directed paths to theup&om
all the nodes). Fare {0,...,2h}, denote by the set of vertices OT;f)h at height (the leaves
have height and the root has height:). LetT C V(7,2") denote the vertex set of&atree
rooted aty.

Definition 13 ((h, w, d)-Process on &i;,, dr)-Tree) Letw € R/, denote a weight vector. Let
A denote an assignment of real values to the variable nod€s, pfve define thes-weighted

value of ad-treer by
h—1
val,(T; \) £ Z Z Wy Ay

=0 veTNVy

Namely, the sum of the values of variable nodesweighted according to their height.
Given a probability distribution over assignmentswe are interested in the probability

My qa, dp(h,w) = Pr,\{ min valy,(T; A) < 0}. (16)

TC’EQOh: T d—tree
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In other words]1, 4.4, .4, (h, w) is the probability that the minimum value over altrees of
height2h rooted in some variable nodg in a (d;, dg)-bipartite graphG is non-positive. For
every two rootsy, andv; the trees7>" and 7" are isomorphic, hencB) 4.4, 4, (h,w) does
not depend on the roat,.

With this notation, the following lemma connects betwees(th w, d)-process ofidy,, dr)-
trees and the event where the all-zero codewo(d.is, d)-locally optimal. We apply a union
bound utilizing Lemma_12, as follows.

Lemma 14. Let G be a(dy,dg)-regular bipartite graph andv € R’ be a weight vector
with h < 1girth(G). Suppose thak € R" is the log-likelihood ratio of the word received
from the channel. Then, the transmitted codeword 0% is (h, o - w, d)-locally optimal for
a = (M - ||w||)~* with probability at least

1 — N -Myg4,.45(h,w), wherew, =wy,_;-d;' - (d — D (d— 1)
and with at least the same probability= 0" is also the unique optimal LP solution givan

Note the two different weight notations that we use for cstesicy with [ADS09]: (i)w
denotes weight vector in the context(@f, w, d)-local optimality certificate, and (ity denotes
weight vector in the context af-trees in thg h, w, d)-process. A one-to-one correspondence
between these two vectors is givenday= wy,_;-d;* - (d — 1) "+ (d— 1) for0 <1 < T,
From this point on, we will use only in this section.

Following Lemma_1#4, it is sufficient to estimate the prob@ypill, 4, 4, (h, w) for a given
weight vectot, a distribution of a random vectar constan < d < d* ,and degree§i;, dg).
Aroraet al.[ADSQ9] introduced a recursion for estimating and boundivegprobability of the
existence of &-tree (skinny tree) with non-positive value ir{/a w, 2)-process. We generalize
the recursion and its analysisderees with2 < d < d*.

For a setS of real values, leinin!!{S} denote theith smallest member it$. Let {~}

denote an ensemble of i.i.d. random variables. Define randmmmablesX, ..., X;_; and
Yy, ..., Y1 with the following recursion:
Yo = woy (17)
d—1
X; = > min{y® .y (0<1<h) (18)
=1
Y, = wy+ XY 4.+ x50 (0<1<h) (19)
The notationX™, ..., X® andY®, ... Y*) denotes: mutually independent copies of the

random variables( andY’, respectively. Each instance Bf, 0 < [ < h, uses an independent
instance of a random variabie Note that for every < [ < h, thed — 1 order statistic random
variables{ min{v,"", ... v“" "V} . 1 <i < d— 1} in Equation[(IB) are dependent.
Consider a directed trég = 7, of height2h, rooted at node,. Associate variable nodes
of 7 at height2/ with copies ofY;, and check nodes at height + 1 with copies ofX;, for
0 < I < h. Note that any realization of the random variabje$ to variable nodes iff” can be
viewed as an assignmeht Thus, the minimum value of &tree of 7 equalsy" ", X" . This
implies that the recursion ib (L 7)-(19) defines a dynamigpmming algorithm for computing
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Min, 7. » d—iree Valy(7; A). NOw, let the components of the LLR vectarbe i.i.d. random
variables distributed identically tpy}, then

My ad, ., (R w) {th < } (20)

Given a distribution of 7} and a finite “height’h, it is possible to compute the distribution
of X; andY; according to the recursion in_(17)-(19). The following tvemrimas play a major
role in proving bounds ol 4.4, 4, (h, w).

Lemma 15(JADS09]). For everyt > 0
_ d
I g,y dn (B, w) < (Be™X0-1)"
Letd £d—1,d}, =d;, —1anddy, = dg — 1.

Lemma 16 (following [ADS09]). For 0 < s <[ < h, we have
(d’L.d/)l—S l—s—1 y ) (d/L-d’)k
Ee % £ (]Ee_tx's) . H ((C;If) (]Ee_twl—’”)d) )

k=0

Proof. We prove the claim by induction on the differenice s. We first derive an equality for
Ee~" and a bound folEe~**:. SinceY; is the sum of mutually independent variables,

Ee ™ = (Be ™7 (Be~¥-1) ", (21)
By definition of X; we have the following bound,

e—tXl — —tz] 1mln {Y()1<z<d .}

d/
_ Heftmin[j]{Yl('):lgigd’R}

> I

SC[dl):|S|=d" i€S

N

Therefore, from linearity of expectation and sm{:}él() Rl are mutually independent vari-

ables, we have
d ¢
Ee ™%t < <d}’%) <Eetyl) . (22)

By substituting((211) in[(22), we get

) /o &
Ee ™ <Eetxll> (d}’%) <Eet“’”) : (23)

which proves the induction basis where- [ — 1. Suppose, therefore, that the lemma holds for
[ — s =1, we now prove it fol — (s — 1) =i + 1. Then by substitutind (23) in the induction
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hypothesis, we have

(dy-d)l = los=1 N (dp-d)*
EeftXl < EeftXS X H R (E@itwl*kﬁ/)d
AN d,

k=0

()= ey k

(d,d) /o & s : \ (@)
< {(Ee_tXSl) (C;If) (]Ee—twsv) } H ((Cf;') (Ee‘twl—w)d )
k=0

(d )=t s A @zd)”
_ <Ee—txs1) 'H((f) (Ee—th—w)d)
2 )

k=0
which concludes the correctness of the induction step foiference ofl — s + 1. O

Based on these bounds, in the following subsection we presenrete bounds di,, 4.4, 4,,(h, w)
for the BSC. This technique may be applied to other memosydagry-input output-symmetric
channels as well, e.g., an analysis for BI-AWGN channel aanealization of the analysis pre-
sented in[[HE11].

5.2 Analysis for Binary Symmetric Channel

Consider the binary symmetric channel with crossover griiba p denoted by BSGY). In
the case that the all-zero codeword is transmitted, thergianput isc; = 0 for every:.
Hence,Pr ()\i = —log(%)) = p, andPr ()\Z- = +log(1%p)) = 1—p. Sincell, 44, a5 (h,w)
is invariant under positive scaling of the vectgrwe consider in the following analysis the
scaled vecton in which \; = +1 w.p. p, and—1 w.p. (1 — p).

Following the ideas in the analysis of Aroed al. [ADSQ09], we apply a simple analysis
in the case of uniform weight vectar. Then, we present improved bounds by using a non-
uniform weight vector.

5.2.1 Uniform Weights

Consider the case whete = 1. Letc¢; £ Ee ™0 ande, £ (d%) (Ee~*)?, and define

d
¢ 2 minggc; - c;/(dfd Y Note thate; < ¢y (see Equatiori(22)).We consider the case where

¢ < 1. By substituting notations af, andc, in Lemma_16 fors = 0, we have

tX )t dp i\ (@)t
(o) L))
k=0

-1
v anl H 1k
k=0

EeftXl

N

= o) S )t

. (df-d)l -1

— o), AT
B/ O L U
— (Cl . CQd’L»d’fl) o dl-d' -1

o) =1

N
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By Lemmé1h, we conclude that
H)\,d,dhdR(h, ]_h) < CdL'(d'L-d’)h’l_dL'

To analyze parameters for whidh, 44, 4,(h, 1") — 0, we need to compute andc, as
functions ofp, d, d; anddg. Note that

r Ao\ ok (1 _ o\dp—k /
X, - d — 2k W.p.(kg/p (1d/ p)er ,V%.O<k<d, (24)
—d' wW.p. D Ry ( ;f’)pk(l —p)inh.
Therefore,
a1
Cl(p, d, dL,dR,t) _ < ;)pk(l _p)(d/Rfk)eft(d/ka) (25)
k=0
dy, d
—l—(Z ( kR)pk(l — p)d/Rk) e and (26)
k=d'
dr —t t\d
ca(p,d,dp,dg,t) = (d’) ((1 —pe —i—pe) ) (27)

The above calculations give the following boundlg, 4, 4, (., 17).

Lemma 17. Letp € (0,1) and letd,d;,dr > 2 s.t. d; - d' > 2. Denote byc; andc, the

functions defined in(25)-(27). If the following conditiasiatisfied

t=0

=

¢ = min {(Cl(p7 d7 dL7dR7t)) ’ (C2<p7 d7 dLudR7t))1/(dlL.d/_1)} < 17

then forh € IN andw = 1", we have

I da, a5 (hw) < cdody" ™ —dr,
Note thatll, 44, 4, (h, 1) decreases doubly-exponentially as a functioh.of
For (2, 16)-regular graphs and € {3, 4}, we obtain the following corollary.

Corollary 18. Letd; = 2, anddy = 16.

1. Letd = 3 andp < 0.0067. Then, there exists a constant 1 such that for everyy € IN
andw = 1",
M gd,.4,(h, 1") < At

2. Letd =4 andp < 0.0165. Then, there exists a constant 1 such that for every € IN
andw = 1",
H)\,d,dL,dR(ha lh) < Cghil-

The bound orp for which Corollary[18 applies grows with. This fact confirms that
analysis based on bigger trees, i®trees withd > 2 instead of skinny trees, implies better
bounds on the error probability and higher lower bounds erthieshold. Also, fod > 2, we
may apply the analysis t@, dr)-regular codes; a case that is not applicable by the anaiysis
Aroraet al. [ADS09].
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5.2.2 Improved Bounds Using Non-Uniform Weights

The following lemma implies an improved bound O 44, 4, (h,w) using a non-uniform
weight vectorw.

Lemma 19. Letp € (0, %) and letd,dy,dr > 2 s.t.d} - d > 2. Suppose that for somec IN
and some weight vectar € R?,

min {Ee™"} < ((Cff) (2v/p(1 —p))d/)dlﬂd/l- (28)

Letw € R" denote the concatenation of the vectdre R: and the vectorp, ..., p) €
R’}[S. Then, for every, > s there exist constants< 1 andp > 0 such that

d/

L
d/ d’ dpd -1 (A g yh—s—1
Iy ady.dn (h, w?) < <<d’f) (2v/p(1 —p)) ) R A

Proof. By Lemmd16, we have

(di-d/)h7571—1

(dy, -y =51 d A e
Eeftthl g (EetXS) . ((dll%) (Eeftpn) )

Note thatlEe~*" is minimized fore’” = /p(1 — p). Hence,

(dp-d)h=s=t o\ aa
Ee "1 (Ee_tXS) . ((dl’%) (2v/p(1 —p)) )
d/ .d/)hfsfl d/ B 1
d dhd'—1
(M evmm=m) "

S [(Ee_txs) ((?7) (24/p(1 —p))d’)di"l”‘l}( i

Letc = ming {Ee_txs ((if?‘) (2¢/p(1 - p))d ) - } By (28),c < 1. Lett* = argmin,., Ee ¥,
then

1
Fe~t Xn-1 < c(dL'd —pheet ((dl,%) (2 p(l _p>)d) ’ '

Using Lemma b, we conclude that

dr,

' —1)h—s— d, o\ a1
My ady g (hw®) < @ d =0 1'<<d]f%)(2 p(1 —p)) ) o

and the lemma follows. O
Consider a weight vectas with componentss; = ((d;, — 1)(d — 1))'. This weight vector

has the effect that ik assigns the same value to every variable node, then evelyhew skinny
treer contributes equally toal(7; \). Forh > s, consider a weight vectar?) ¢ R" defined

by



S Po S Po

0 | 0.0086 4 | 0.0164
1| 0.011 5 | 0.0171
2 | 0.0139 6 | 0.0177
3 | 0.0154 10 | 0.0192

Table 2: Computed values gf for finite s in Corollary(20. Values are presented {af,, dr) =
(2,16) andd = 3.

S Po s po

0 | 0.0218 4 0.039
1 | 0.0305 5 0.0405
2 | 0.0351 6 0.0415
3 | 0.0375 10 0.044

Table 3: Computed values pf for finite s in Corollary(21. Values are presented faf, , dr) =
(2,16) andd = 4.

Note that the first components of,?) are non-uniform while the other components are uni-
form.

For a giverp, d, d;,, anddg, and for a concrete valuewe can compute the distribution of
X, using the recursion i (17)-(19). Moreover, we can also agiethe valuenin,., Ee ¥,
For (2, 16)-regular graphs and we obtain the following corollariesrdllary 20 is stated for
the case wheré = 3, and Corollary 21l is stated for the case whére 4.

Corollary 20. Letp < po, d = 3, d;, = 2, anddr = 16. For the following values g, and s
in Table(2 it holds that there exists a constant 1 such that for every: > s,

h—s

1 —1 2
Oy ad,.ap(h,w) < Eo(p(l —p)) " C

Corollary 21. Letp < po, d = 4, d;, = 2, anddr = 16. For the following values gf, and s
in Table[3 it holds that there exists a constant 1 such that for every: > s,

h—s
. 03

Y

1
) da,.dp(h,w) < %(p(l —p))

Note that for a fixeds, the probabilityll, , 4, 4, (h,w) decreases doubly-exponentially as a
function of h. Since it's required that < h, Corollaries 2D an 21 apply only to codes whose
Tanner graphs have girth larger théin

5.3 Analysis for MBIOS channels

Theoren_ 1l generalizes to MBIOS channels as follows.
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Theorem 22. Let G denote a(d;, dr)-regular bipartite graph with girthQ2(log N), and let
C(G) c {0,1}" denote a Tanner code based Grwith minimum local distancé*. Consider
an MBIOS channel, and suppose thatt R” is the word obtained from the channel given
c = 0V. Let\ € R denote the log-likelihood ratio of the received channelestations. Then,
for any (d,,dr) and2 < d < d* s.t. (d, — 1)(d — 1) > 2, LP-decoding succeeds with
probability at leastl — exp(—N7) for some constarit < v < 1, provided that

1
dp — 1 _ @,-D@-D-1
o (4 ) T

where X, = "% I minf{\® . A@r-D} where the random variables” are distributed
identically and independently ta

6 Message-Passing Decoding with ML Guarantee for Irreg-
ular LDPC Codes

In this section we present a weighted min-sum decoder (Gallesms) for irregular LDPC
codes over memoryless binary-input output-symmetric ohn In Sectio]7 we prove that
the decoder computes the maximum-likelihood (ML) codewbedlocally-optimal codeword
exists (Theorerh 23). Moreover, an ML-certificate can be astexb efficiently for the output
of the decoder. Note that AlgorithmwmMms is not presented as a min-sum algorithm. However,
in SectiorLY, an equivalent min-sum version is presented.

From this point on, we deal with Tanner codes based on TamaphgG = {V U J, E'}
with parity-check local-codes. Local-code nodesc 7 in this case are callecheck nodes
The graphG may be either regular or irregular. Theorém 23 holds for yeVW@nner graph,
regardless of its girth, degrees, or density.

Previous work. A huge number of works deal with message-passing decodiegdivit out
three works that can be viewed as precursors to our decoltjopgtam. Gallager [Gal63] pre-
sented the sum-product iterative decoding algorithm foPCcodes. Tanner [Tan81] viewed
iterative decoding algorithms as message passing algwitiver the edges of the Tanner graph.
Wiberg [Wib96] characterized decoding failures of the raum iterative decoding algorithm
by negative cost trees. Message-passing decoding algsritinoceed by iterations of “ping-
pong” messages between the variables nodes and the latalromles in the Tanner graph.
These messages are sent only along the edges.

Algorithm description.  Algorithm NWMS(, h, w), listed as Algorithmi R, is a normalized
w-weighted version of the min-sum algorithm for decoding fi@ncodes with parity-check
local-codes. The input to algorithmwms consists of an LLR vectoh € RY, an integer
h > 0 that determines the number of iterations, and a nonnegatight vectorw € R".
For each edgév, C'), each iteration consists of one message from the varialule m¢o the
check node” (that is, the “ping” message), and one message ftota v (that is, the “pong”
message). Hence, the time and message complexity of AlgugtisO(|E| - h).

Letu(” o denote the “ping” message from a variable node V' to an adjacent check-node

v—

C € J in iteration! of the algorithm. Similarly, Iepg)_w denotes the “pong” message from
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C € J tov € Viniteration/. Denote by, the final value computed by variable node ).
The output of the algorithna € {0, 1}V is computed locally by each variable node in Line 12.
Algorithm NwMs may be applied to any memoryless binary-input output-sytrimehan-

nel (e.g., BEC, BSC, AWGN, etc.) because the input is the LEBor.

Algorithm 2 NWMS(A, h, w) - An iterative normalized weighted min-sum decoding altjon.
Given an LLR vector € RY and level weightsy € R", outputs a binary string € {0, 1}V.

1: Initialize: VC € J, Vo € N(C) : u5 ) 0

2. foril=0toh —1do
3 forallveV,Ce N( ) do {“PING”}
4 0 wat ) 3 (1-1)
: NG degq (v) degG -1 C'eN(v)\{C} Her
5. end for
6: forall C € J,ve N(C)do{“PONG"}
l . l . 1
! ek ¢ (HU’EN(C)\{U} S'gn(ﬂif)ﬁc)) -minyeniengy {110l }
8: end for
9: end for
10: for all v € V do {Decision}
h—1
1% Ho = WoAy + ECEN(U) lu(C—w)
R 0 if ,u (h=1) 0,
12. X, <

1 otherwise.
13: end for

The following theorem states thatvms(\, h, w) computes arth, w, 2)—locally-optimal
codeword for) if such a codeword exists. The theorem implies that therst®®t most one
(h,w, 2)-locally optimal codeword. The proof of the theorem app&aSectioriy.

Theorem 23(NwMs guaranties local-optimality)etG = (VU J, E') denote a Tanner graph
and letC(G) c {0,1}" denote the corresponding Tanner code with parity-checélioodes.
Leth € N, and letw € R" denote a non-negative weight vector. bet R" denote the LLR
vector of the channel output. 4f € C(G) is an (h, w, 2)-locally optimal codeword fon, then
the outputz of NWMS(\, h, w) equalse.

The dynamic programming algorithm described in Sedtioltaribe used to verify whether
NWMS(A, h, w) outputs anh, w, 2)-locally optimal codeword. If so, then, by Theoréin 5, the
output ofNWMS(A, h, w) is the unique ML-codeword.

Corollary(32 states that for MBIOS channels, the probahifiatnwwms fails is independent
of the transmitted codeword. Hence, the following corgliara contra-positive of Theorem23
provided the all-zero codeword assumption.

Corollary 24. Assume that the all-zero codeword was transmitted, and let R denote
the log-likelihood ratio for the received word. If NWKSH, w) fails to decode the all-zero

codeword forw € R"\{0"}, then there exists a vectgre Bé“’) such that(\, ) < 0.

We therefore have for a fixddandw € R" \{0"} that
Pr{NWMS(}, h, w) fails} < Pr {38 € B(w such that (), 5) < 0’0 =0V} (29)
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Following Equation[(29), we note that for the case of reguR2PC codes, the previous
bounds on the probability that a local-optimality certife@xists [ADS09, HE11] also apply
to the probability ofNwMs decoding success. For example, consider)-regular LDPC
codes whose Tanner grapishave logarithmic girth, let = igirth(G) and define a constant
weight vectorw = 1. Then,NwMs(), h, w) succeeds in recovering the transmitted codeword
with probability at least — exp(—n”) for some constart < v < 1 in the following cases:
(1) In a BSC with crossover probability < 0.05 (implied by [ADS09, Theorem 5]). (2) In a
BI-AWGN channel withﬁ—g > 2.67dB (implied by [HE11, Theorem 1]).

It remains to explore good weighting schemes (choice oforset) and prove bounds on
the success probability of thevms decoder for specific families of irreqular LDPC codes.

7 Proof of Theorem[23

Proof outline. The proof of Theorerh 23 is based on two observations. (1) Weegnt an
equivalent algorithm, calledwms2 (Sectiorl 7.11). It is easier to prove that Algorithhewms2
outputs the all-zero codeword (¥ is locally optimal (Sectiong_7/2-7.3). (2) In Lemrmal 31
we prove that algorithnhwms is symmetric (Sectioh_7.4). The symmetry characterization
provides a mapping from every pdir, \) of a codeword and an LLR vector to a pé&ir*, \°)
of the all-zero codeword and a corresponding LLR veator

The proof of Theoremh 23 is obtained as follows. We prove th&@rapositive statement,
that is, if z # NWMS(A, h,w), thenz is not (h, w, 2)-locally optimal for \. Let z denote a
codeword, and defing ¢ {£1}" by b; £ (—1)%. Let “x+” denote a coordinate-wise vector
multiplication. DefineX’ 2 b x )\, soX = b * A\°. The proof is obtained by the following
derivations:

x # NWMS(A, h, w)
=1 # NWMS(b x \°, h, w)

=1 # 2O NWMS(A\’, h, w) [Lemma[31 symmetry]

=0V #£ NwMS(A\%, b, w)

=30 € Béw).O\O,ﬁ) <0 [Lemma 28 local optimality (LO)]
=bx N\ rdB) < (b*x )\, ) [Lemma[29 mapping preserves LO|

=(\z®F) < (\x)
=z is not (h,w, 2)—locally optimal for \. ~ QED

We now prove the three lemmas used in the foregoing proof.

7.1 NWMS2 : An Equivalent Version

The normalized weighted min-sum decoding algorithm prieskim sectiof 6 is input the log-
likelihood ratio. We refer to this algorithm as a min-sumalthm in light of the general
description of Wiberg[[Wib96]. In Wiberg’s description,exy check node finds a minimum
value from a set of functions on the incoming messages, aeny &ariable node computes the
sum of the incoming messages and its corresponding chabsehation. Hence the name
“min-sum”.
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Lety € RY denote channel observations. ko {0, 1}, define the log-likelihood of; by
Ai(a) £ —log (Pr(y;|c; = a)). Note that the log-likelihood ratid; for y; equals\;(1) — X;(0).

Algorithm Nwms2(A(0), A(1), h, w), listed as Algorithni3, is a normalized-weighted
min-sum algorithm. AlgorithhnNnwMs2 computes separate “reliabilities” fo0™ and “1”.
Namely,uffl)c( ) andu(l) ,(a) denote the messages corresponding to the assumption theat no
v is assigned the value(for a € {0, 1}).

Line 7 takes the main difference between the presentatiohigorithm[2 and Algorithm 8.
The computation in Line 7 of the messa,g@_) ) from check nodeC to variable node
proceeds as follows. Consider assignments {0 1}deg to variable nodes adjacent ©
with even weight, i.e., parity local codewords, such that= a. For every such assignment
the check nodé’ computes the sum of the incoming messa@fég,c(xu) from the neighboring
nodesu € N(C)\ {v} other tharv, according to their assignmenj by z. Then, the message

u(égv(a) equals to the minimum value over the valid summations.

Algorithm 3 NWMS2(\(0), A(1), h, w) - An iterative normalized weighted min-sum decoding
algorithm. Given an log-likelihood vectors(a) € RY for a € {0,1} and level weights
w € R", outputs a binary string € {0, 1}*.
: Initialize: VC € 7, Vv € N(C),Va € {0,1} : u5 V) (a) 0
:forl=0toh—1do
forall v eV, C € N(v),a € {0, 1} do {“PING"}

1

2

3

4 MS)ZLC(G’) = degh (lv ( ) degg (v)—1 ZC’EN N\{C} M(Cl"—%l)v(a)
5. end for
6

7

8

9

forall C € J,v e N(C),a € {0,1} do {“PONG"}

l . l
Mg)_w(a) A MIN ¢y e 0,1}dee(C):|z| is even andc,=a} { ZU/EN(C)\{U} ME}’)HC (l‘v/)}

end for
: end for
10: for all v € V do {Decision}
11 (@) + wodo(a@) + X en ey (a)
0 if (e (h=1) (1) —,uq()hfl)(O)) > 0,

1 otherwise.

A~

12. T, <

13: end for

Following Wiberg [Wib96, Appendix A.3], we claim that Algithms2 and B are equivalent.

Claim 25. Let A\, A(0), and \(1) in R denote the LLR vector and the two log-likelihood
vectors for a channel output € R". Then, for everyr € N, andw € R”, the following
equalities hold:

l l l l l . . .
Lo = n0(1) = n,0(0) andpl,, = pé, (1) = u,,(0) in every iteration.

2. 1y = (1) — py(0). HenceNwMS(A, b, w) and NWMS2(A(0), A(1), h, w) output the
same vectof.

7.2 NwMS2 as a Dynamic Programming Algorithm

In Lemmal[26 we prove that Algorithmwms2 is a dynamic programming algorithm that
computes, for every variable nodetwo min-weight valid configurations. We now elaborate
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on the definition of valid configurations and their weight.

Fix a variable node € V. We refer tor as theroot. Trace the messages that lead to the
decisionz, in NwWMs2. Namely, consider the path-prefix tree rooted abnsisting of all the
paths of lengti2h ending atr. (Note that these paths may not zigzag, hence an édgeg
and its reversalv, u) may not appear consecutively.) Denote this path- -prefixdyeg>". The
variable nodes and check nodesﬁ?ﬁ are denoted by and.7, respectively.

Every binary vector: € {0, 1}“’| defines an assignment to variable nodeg.iiwe say that
x is avalid configurationif it satisfies all parity-checks it7. Namely, for every check node
C € J, the assignment to its neighbors has an even number of ones.

The weight of a valid configuration is defined using the following functions. (1) Extend
the log-likelihood functions to the variable nodeslirby \; £ \,, wherei ~ v. (2) Assign

weights to levels of variable nodes by a veato= (wy, ..., w;,) € R". (3) Define the weight
of a noded in 72" with respect tav by
. Wy 1
W, (0) & . -
0w U s

@e(PryNV)\{r,0}

wheret = 222 4 ~ u, andd ~ v.

The weight of a valid configuration is defined by

£ " Nilws) - Wi(d)

eV
The following lemma characterizesvms2 as a computation of min-weight configurations.

Lemma 26. Let & denote the output oRwMS2(A(0), A(1), h,w). Let z(v) denote a valid
configuration in7.2* with minimumWV, weight. Theng, = (z(v))

Proof sketch.The proof of Lemma 26 is obtained by induction on the numbeitevations.

The key idea is that a messagﬁic ) [Line 4] at iteration/ equals to the minimum weight

of a valid subconfiguration on the subtree of highhanging fromw, that assigns the value

a. The computation of messag% ) in Line 7 plays the main rule in the proof of the
inductive step. Under the assumptlon tlaas assigned the value for every local valid as-
signment to its neighbors, check no@eaccumulates the messages received from its children
that correspond to the local valid assignment. By the indadtypothesis, the values of the
messages received from the childrerCoéqual the min-weight valid subconfiguration hanging
from them. By choosing the minimum valid summati@ﬁLU(a) equals the minimum weight

of a valid subconfiguration hanging froéthat assigns the valueu. O

Define the/V* cost of a configuration in 7,2" by
23N W (0)
Y
Note thatV*(x) uses the LLR vectok (i.e.,\; = \;(1) — A;(0)).
Corollary 27. Letz denote the output ofwMS(\, h, w). Letz*(v) denote a valid configura-

tion in 7" with minimum* cost. Theng, = (2*(v)), .
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Proof. Letz = NWMS(\, h,w) andz = NWMS2(A(0), A(1), h, w). By Claim[25,z, = 2, for
everyv € V. Therefore,

T, =%, = argmin W,(z)
valid z€7 2

= argmin {W,(z) —WU(OM)}

valid z€T 2"

= argmin{ S o) W@ - Y )\ﬁ(O)-WU(ﬂ)}
valid ze72h | L
ueV:ixg=1 ueVixg=1

= argmin Z Ai - Wy() - x5 = argmin W, (z).

valid zeT 2" acy valid z€T 2"
The second line relies on the fact that, (01!) is a constant. The elements(i;) - W,(a) in
W, (z) wherez; = 0 are reduced by the substraction of the same elememig {0"'), leaving

in the third line only elements that correspond to bits= 1. The fourth line is obtained by the
LLR definition Az = Aa(1) — A4 (0). O

7.3 Connections to Local Optimality

For two vectorsr, y € R, let “x” denote coordinatewise multiplication, i.e.x y = (z1 - y1, ..., Tk - Yr)-
The following lemma implies thatwms algorithm outputs the all-zero codeword)if is
locally optimal.

Lemma 28. Let denote the output afwMS(\, h, w). If 2, = 1, then there exists a deviation
B e Bé“’) corresponding to av-weighted2-tree such that, 5) < 0.

Proof. Assume thati, = 1, and conside;** = (VU 7, E). Then, by Corollary 27, there
exists a valid configuration* € {0, 1}Vin 72" with z* = 1 that satisfies

Vvalid configuration u € T.2". W (2*) < W (u). (30)

Let 7 (=*) denote the subgraph G induced byV(z*) UN (V(z*)) whereV(z*) = {u €
V|2t = 1}. Note that7(z*) is a forest. Because® = 1 andz* is a valid configuration,
the forest7 (z*) must contain &-tree of height2h rooted at the node; denote this tree by
Tlv,2h,2]. Let7 € {0,1} denote the support of [v, 21, 2], and letz° € {0,1}/"! denote
the support of7 (2*) \ T[v,2h,2]. Then,z* = 7 + 2°, wherez? is also necessarily a valid
configuration. By linearity, we have

Wi (2") = Wi +2°) = Wi(r) + Wi(="). (31)

Because is a valid configuration, by Equation (30), we hawe (z*) < Wi (z°). By Equa-
tion (31), W} (1) < 0.

Let W,(V) x 7 € RV denote the vector whose component indexediby V equals
W, (@) - 74. The vecto, (V) * 7 represents the-weighted2-tree’7 ) [v, 2h, 2] according to
Definition[3. Hencep = [T ™) [v, 2h, 2]] € B satisfies\, 8) = Wi (r) < 0. O
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The following lemma implies that is locally optimal with respect ta iff 0V is locally
optimal with respect tox \, whereh; = (—1)%. Hence we refer to mappir(g, \) — (0V, b*\)
as a mapping that preserves local optimality.

Lemma 29. Letx € {0,1}" and definé € {+1}"¥ byb;, = (—1)*. Then,
YVAeRY. VB [0,1]V. (NB)={0x\z®p) — (bx\ ). (32)
Proof. Foru € [0,1]V, it holds that(\, z @ u) = (A, z) + S, (—1)* \u,. Then,

N

bxdz®B) = (bxdz)+ Y (~1)%bAb;

i=1

7.4 Symmetry and the All-Zero Codeword Assumption

We define symmetric decoding algorithms (see [RU08, Definitt.81] for a discussion of
symmetry in message passing algorithms).

Definition 30 (symmetry of decoding algorithm).etz € C denote a codeword and léte
{£+1}" denote a vector defined iy = (—1)*. Let X\ denote an LLR vector. A decoding
algorithm,DEC()), is symmetricwith respect to codé, if

Vo € C. x @ DEC(A\) = DEC(b* A). (33)

The following lemma states thatwms algorithm is symmetric. The proof is by induction on
the number of iterations.

Lemma 31 (symmetry ofNwMms). Fix b € N, andw € RY. Consider\ € R" and a
codewordr € C(G). Letb € {£1}" denote a vector defined by= (—1)*. Then,

T ® NWMS(A, h,w) = NWMS(b x A, h, w). (34)

The following corollary follows from Lemmga_31 and the symmnyatf an MBIOS channel
(see also [RUQO8, Lemma 4.90]).

Corollary 32 (All-zero codeword assumptionfix h» € N, andw € RY. For MBIOS chan-
nels, the probability thatwms fails is independent of the transmitted codeword. That is,

Pr{NWMSs decoding fails} = Pr {NWMS(X, h, w) # 0"]c = 0V}.
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8 Conclusions

We present a new combinatorial characterization of logaikwality for Tanner codes with
respect to any MBIOS channel. This characterization pewign ML-certificate and an LP-
certificate for a given codeword. Two applications of looptimality are presented based on
this new characterization. (i) Bounds for LP-decodinguialare proved in the case of regular
Tanner codes. (ii)) A new message passing decoding algofathmegular LDPC codes, called
NWMS, is presented. Thewwms algorithm is guaranteed to find the locally optimal codeword
if such exists.

An open problem is to prove for irregular Tanner codes thaically optimal codeword
exists with high probability provided that the noise is bded. Such a result would imply that
the efficientNwmMs decoding algorithm is a good replacement for LP-decodihgeéms that
this requires adjusting the weightsaccording to the Tanner graph.
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