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On Decoding Irregular Tanner Codes

Guy Even∗ Nissim Halabi†

Abstract

We present a new combinatorial characterization for local-optimality of a codeword
in irregular Tanner codes. This characterization is a generalization of [Arora, Daskalakis,
Steurer; 2009] and [Vontobel; 2010]. The main novelty in this characterization is that it
is based on a conical combination of subtrees in the computation trees. These subtrees
may have any degree in the local-code nodes and may have any height (even greater than
the girth). We prove that local-optimality in this new characterization implies Maximum-
Likelihood (ML) optimality and LP-optimality. We also showthat it is possible to compute
efficiently a certificate for the local-optimality of a codeword given the channel output.

We apply this characterization to regular Tanner codes. We prove a lower bound on the
noise threshold in channels such as BSC and AWGNC. When the noise is below this lower
bound, the probability that LP decoding fails diminishes doubly exponentially in the girth
of the Tanner graph.

We use local optimality also to design an iterative message-passing algorithm for de-
coding irregular LDPC codes. This new algorithm is guaranteed to find the locally op-
timal codeword if such a codeword exists. Moreover, an ML-certificate as well as an
LP-certificate are proved if a locally optimal codeword exists.
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1 Introduction

Modern coding theory deals with finding good error correcting codes that have efficient en-
coders and decoders ([RU08]). Many of the decoders for modern codes are suboptimal in the
sense that they may fail to correct errors that are correctedby a maximum-likelihood (ML) de-
coder, but they are practical thanks to their simplicity andefficiency. Message-passing iterative
decoding algorithms based on belief-propagation (see e.g., [Gal63, BGT93, Mac99, LMSS01,
RU01]) and linear-programming (LP) decoding [Fel03, FWK05] are examples of such subop-
timal decoders.

Many works deal with low-density parity-check (LDPC) codesand generalizations of LDPC
codes. LDPC codes were first defined by Gallager [Gal63] who suggested several message-
passing iterative decoding algorithms (e.g., “sum-product”). Tanner [Tan81] introduced graph
representations of linear codes based on bipartite graphs over variable nodes and constraint
nodes, and viewed iterative decoding as message-passing algorithms over the edges of the
Tanner graph. In the standard setting, constraint nodes compute the parity function. In the gen-
eralized setting, constraint nodes use a local error-correcting code. One may view a constraint
node with a linear local-code as a coalescing of multiple parity-check nodes. Therefore, a code
may have a sparser and smaller representation when represented as a Tanner code in the gen-
eralized setting. Sipser and Spielman [SS96] studied Tanner codes based on expanders graphs
and analyzed a simple bit-flipping decoding algorithm.

Wiberg et al. [WLK95, Wib96] developed the use of graphical models for systematically
describing instances of known decoding algorithms. For example, the “sum-product” algorithm
and the “min-sum” algorithm are generic iterative message-passing decoding algorithms that
apply to any graph realization of a Tanner code. Wiberget al. proved that the min-sum algo-
rithm can be viewed as a dynamic programming algorithm that computes the ML-codeword if
the Tanner graph is a tree. Although Tanner graphs are usually not trees, the min-sum algorithm
proceeds as if the graph is a tree. For LDPC codes, Wiberget al. characterized a necessary con-
dition for decoding failures of the min-sum algorithm by “negative” cost trees, calledminimal
deviations.

Linear programming (LP) decoding was introduced by Feldman, Wainwright and Karger
[Fel03, FWK05] for binary linear codes. LP-decoding is based on solving a fractional relax-
ation of an integer program that models the problem of ML-decoding. LP decoding has been
applied to several codes, among them: RA codes, turbo-like codes, LDPC codes, and expander
codes. Our work is motivated by the problem of finite-length and average-case analysis of suc-
cessful LP-decoding of Tanner codes. There are very few works on this problem, and they deal
only with specific cases. For example, Feldman and Stein [FS05] analyzed special expander
codes, and Goldenberg and Burshtein [GB10] deal with repeat-accumulate codes.

Previous results. Combinatorial characterizations of sufficient conditionsfor successful de-
coding are based on so called “certificates”. That is, given areceived wordy and a codewordx,
we are interested in a one-sided error test that answers the questions: isx optimal with respect
to y? is it unique? Note that the test may answer “no” for a positive instance. We call these
testscertificatesfor the optimality of a codeword. Upper bounds on the word error probability
are obtained by lower bounds on the probability that a certificate exists.

Koetter and Vontobel [KV06] analyzed LP decoding of regularLDPC codes. Their analy-
sis is based on decomposing each codeword (and pseudocodeword) to a finite set of minimal
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structured trees (i.e., skinny trees) with uniform vertex weights. Aroraet al.[ADS09] extended
the work in [KV06] by introducing nonuniform weights to the vertices in the skinny trees,
and definedlocal-optimality. For a BSC, Aroraet al. proved that local optimality implies
both ML-optimality and LP-optimality. They presented an analysis technique that performs
a finite-length density evolution of a min-sum process to prove bounds on the probability of
a decoding error. Aroraet al. also pointed out that it is possible to design a re-weighted
version of the min-sum decoder that finds the locally-optimal codeword if such exists. This
work was further extended in [HE11] to memoryless channels.The analyses presented in these
works [KV06, ADS09, HE11] are limited to skinny trees, the height of which is bounded by a
quarter of the girth of the Tanner graph.

Vontobel [Von10] extended the decomposition of a codeword (and pseudocodeword) to
skinny trees in graph covers (that originate in algebraic topology). This enabled Vontobel to
mitigate the limitation on the height by the girth. The decomposition is obtained by a random
walk, and applies also to irregular Tanner graphs.

Jian and Pfister [JP10] analyzed a special case of the attenuated max-product decoder [FK00],
for regular LDPC codes. They considered skinny trees in the computation tree, the height of
which is greater than the girth of the Tanner graph. Using contraction properties and consis-
tency conditions, they proved sufficient conditions under which the message-passing decoder
converges to a locally optimal codeword. This convergence also implies convergence to the
LP-optimum and therefore to the ML-codeword.

Contributions. Our contribution is threefold. (i) We present a new combinatorial charac-
terization of local-optimality for Tanner codes with respect to any memoryless binary-input
output symmetric (MBIOS) channel. This characterization provides an ML-certificate and an
LP-certificate for a given codeword. Based on this new characterization, we present two appli-
cations of local-optimality. (ii) In the case of regular Tanner codes, we present an analysis of
LP-decoding failure. (iii) In the case of irregular LDPC codes, we present a new message pass-
ing decoding algorithm, calledNWMS. TheNWMS algorithm is guaranteed to find the locally
optimal codeword if such exists. More details of our contributions are provided below.

A new combinatorial characterization of local-optimalityfor irregular Tanner codes with
respect to any memoryless binary-input output-symmetric (MBIOS) channel is presented. This
characterization uses subtrees in the computation tree in which the degree of local-code nodes
is not limited to2 (as opposed to skinny trees in previous analyses). We prove that local-
optimality in this characterization implies ML-optimality (Theorem 5). We utilize the equiv-
alence of graph cover decoding and LP-decoding for Tanner codes, implied by Vontobel and
Koetter [VK05], to prove that local-optimality suffices also for LP-optimality (Theorem 7), as
one would expect. We present an efficient dynamic programming algorithm that computes a
local-optimality certificate for a codeword with respect toa given channel output.

Because trees in our new characterization may have degrees bigger than two, they contain
more vertices. Hence this characterization leads to improved bounds for successful decoding
of regular Tanner codes (Theorems 11 and 22). These bounds extend the probabilistic analysis
of the min-sum process by Aroraet al. [ADS09] to a sum-min-sum process on regular trees.
For regular Tanner codes, we prove bounds on the word error probability of LP-decoding under
MBIOS channels that are inverse doubly-exponential in the girth of the Tanner graph. We also
prove bounds on the threshold of regular Tanner codes whose Tanner graphs have logarithmic
girth. This means that if the noise in the channel is below that threshold, then the decoding
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error diminishes as a function of the block length. Note thatTanner graphs with logarithmic
girth can be constructed explicitly (see e.g., [Gal63]).

Specifically, we consider as an example(2, 16)-regular Tanner codes with (i)[16, 11, 4]-
extended Hamming codes as local-codes, and (ii) logarithmic girth Tanner graphs. The rate
of such codes is at least0.375. For the case of a binary symmetric channel (BSC) with bit
flipping probabilityp, we prove a lower bound ofp∗ = 0.044 on the noise threshold. How does
this result compare with results on expander Tanner codes? The error correction capability of
expander codes depends on the expansion, thus a fairly largedegree and huge block-lengths
are required to achieve good error correction. Our example relies only on a16-regular graph
with logarithmic girth. Feldman and Stein [FS05] proved that LP decoding can asymptotically
achieve capacity with a special family of expander Tanner codes. They also presented a worst-
case analysis, which in the case of a code rate of0.375, proves that LP decoding can recover
any pattern of at most0.0008N bit flips. This implies a lower bound ofp∗ = 0.0008 on the
threshold. The best results for iterative decoding of such expander codes, reported by Skachek
and Roth [SR03], imply a lower bound ofp∗ = 0.0016 on the threshold of a certain iterative
decoder.

Finally, motivated by the weights and degree normalizationin the characterization of local-
optimality, we present a new message-passing iterative decoding algorithm for irregular LDPC
codes, called thenormalized weighted min-sum(NWMS) algorithm. The characterization of
local-optimality for irregular LDPC codes has two parameters: (i) a certificate depthh, and (ii) a
vector of layer weightsw ∈ R

h
+. We prove that theNWMS decoder computes the ML codeword

if a locally-optimal codeword exists (Theorem 23). The timeand message complexity ofNWMS

isO(|E| · h) where|E| is the number of edges in the Tanner graph.
Various weighting methods of message-passing algorithms based on belief-propagation

were explored by several researchers (see e.g., [FK00, CF02, CDE+05, JP10]). The analy-
ses and results of which are asymptotic (e.g., based on density evolution [RU01]) and limited
to regular LDPC codes. Moreover, no bounds on the time and message complexity are proved.
TheNWMS algorithm comes with a guarantee for computing the ML codeword within h itera-
tions if a local-optimality certificate of depthh exists for some codeword. Moreover, the output
of NWMS can be efficiently certified. For the case of regular LDPC codes, the previous bounds
on the probability that a local-optimality certificate exists [ADS09, HE11] also apply to the
probability ofNWMS decoding success.

The remainder of this paper is organized as follows. Section2 provides background on
ML-decoding and LP-decoding of Tanner codes over MBIOS channels. Section 3 presents
combinatorial certificate, that applies both to ML-decoding and LP-decoding, for codewords of
Tanner codes. In Section 4, we prove a structural decomposition for codewords of Tanner codes
used as a key element in the proof of the main theorem of the previous section. In Section 5 we
use the combinatorial characterization of local-optimality to bound the error probability of LP
decoding for regular Tanner codes. Section 6 presents theNWMS iterative decoding algorithm
for irregular LDPC codes, followed by a proof in Section 7 that NWMS finds the locally-optimal
codeword if such exists. We conclude in Section 8.
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2 Preliminaries

Graph Terminology. LetNG(v) denote the set of neighbors of nodev in graphG, and for a
setS ⊆ V letNG(S) ,

⋃

v∈S NG(v). LetPvu(G) denote a shortest path between nodesv and
u in G. Let dG(r, v) denote the distance (i.e., length of a shortest path) between nodesr andv
in G, and letgirth(G) denote the length of the shortest cycle inG.

An induced subgraphis a subgraph obtained by deleting a set of vertices. Thesubgraph
of G = (V,E) induced byS ⊆ V , denoted byGS, consists ofS and all edges inE, both
endpoints of which are contained inS.

Tanner-codes and Tanner graph representation. Let G = (V ∪ J , E) denote an edge-
labeled bipartite-graph, whereV = {v1, . . . , vN} is a set ofN vertices calledvariable nodes,
andJ = {C1, . . . , CJ} is a set ofJ vertices calledlocal-code nodes. We denote the degree of
Cj by nj.

Let C
J

,
{

C
j
: C

j
is an [nj , kj, dj] code, j ∈ [J ]

}

denote a set ofJ local-codes. The

local codeC
j

corresponds to the local-code nodeCj ∈ J . We say thatvi participatesin C
j

if
(vi, Cj) is an edge inE. The edges incident to each local-code nodeCj are labeled{1, . . . , nj}.
This labeling indicates the index of a variable nodes in the corresponding local-code.

Let a wordx = (x1, . . . , xN) ∈ {0, 1}N denote an assignment to variable nodes inV. Let
Vj denote the ordered set of variable nodes inNG(Cj) according to labels of edges incident
to Cj. Denote byxVj

∈ {0, 1}nj the projection of the wordx = (x1, . . . , xN ) onto entries
associated withVj .

TheTanner codeC(G, C
J
) based on the labeledTanner graphG is the set of vectorsx ∈

{0, 1}N such thatxVj
is a codeword inC

j
for everyj ∈ [J ].

Let dj denote the minimum distance of the local codeC
j
. Theminimum local distanced∗

of a Tanner codeC(G, C
J
) is the minimum distance of the local codes, i.e.,d∗ = minj dj.

If the bipartite graph is(dL, dR)-regular, i.e., the vertices inV have degreedL and the
vertices inJ have degreedR, then the graph defines a(dL, dR)-regular Tanner code.

If the Tanner graph is sparse, i.e.,|E| = O(N), then it defines alow-density Tanner code.
A parity codeis the code that contains all binary words with even Hamming weight. Tanner
codes with parity local codes that are based on sparse Tannergraphs are calledlow-density
parity-check (LDPC) codes.

Consider a Tanner codeC(G, C
J
), whereC

J
= {C

j
}j∈[J ]. We say that a wordx =

(x1, ..., xN) satisfieslocal-codeC
j

if xVj
∈ C

j
. The set of wordsx thatsatisfythe local-codeC

j

is denoted byCj , i.e.,Cj = {x ∈ {0, 1}N : xVj
∈ C

j
}. The resulting codeCj is theextension

of the local-codeC
j

from lengthnj to lengthN . We denote the set of extended local-codes in

C
J

by CJ . Clearly,C(G, C
J
) ⊆ Cj . It holds that

C(G, C
J
) =

⋂

j∈[J ]

Cj. (1)

LP decoding of Tanner codes over memoryless channels.Let ci ∈ {0, 1} and yi ∈ R

denote theith transmitted binary symbol (channel input) and theith received symbol (chan-
nel output), respectively. Amemoryless binary-input output-symmetric(MBIOS) channel is
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defined by a conditional probability density functionf(yi|ci = a) for a ∈ {0, 1}, that satis-
fiesf(yi|0) = f(−yi|1). The binary erasure channel (BEC), binary symmetric channel (BSC)
and binary-input additive white Gaussian noise (BI-AWGN) channel are examples for MBIOS
channels. In MBIOS channels, thelog-likelihood ratio(LLR) vectorλ ∈ R

N is defined by
λi(yi) , ln

(

f(yi|ci=0)
f(yi|ci=1)

)

for every input biti. For a linear codeC, Maximum-Likelihood (ML)
decodingis equivalent to

x̂ML(y) = argmin
x∈conv(C)

〈λ(y), x〉, (2)

whereconv(C) denotes the convex hull of the setC.
In general, solving the optimization problem in (2) for linear codes is intractable [BMvT78].

Feldmanet al. [Fel03, FWK05] introduced a linear programming relaxationfor the problem of
ML decoding of Tanner codes whose local codes are parity codes. This definition is based on
a fundamental polytope that corresponds to the Tanner graphG. We consider an extension of
this definition to the case in which the local codes are arbitrary as follows. Thegeneralized

fundamental polytopeP , P(G, C
J
) of a Tanner codeC = C(G, C

J
) is defined by

P ,
⋂

Cj∈CJ

conv(Cj). (3)

Note that a Tanner code may have multiple representations bya Tanner graph and local codes.
Moreover, different representations(G, C

J
) of the same Tanner codeC may yield different gen-

eralized fundamental polytopesP(G, C
J
). If the degree of each local-code node is constant,

then the generalized fundamental polytope can be represented byO(|J |) variables andO(|J |)
constraints. If, in addition, the Tanner graph is sparse, then |J | = O(N), and the general-
ized fundamental polytope has an efficient representation.Such Tanner codes are often called
generalized low-density parity-check codes.

Given an LLR vectorλ for a received wordy, LP-decoding is defined by the following
linear program:

x̂LP (y) , argmin
x∈P(G,C

J
)

〈λ(y), x〉. (4)

The difference between ML-decoding and LP-decoding is thatthe fundamental polytope
P(G, C

J
) may strictly contain the convex hull ofC. Vertices ofP(G, C

J
) that are not code-

words ofC must have fractional components and are calledpseudocodewords.

3 A Combinatorial Certificate for an ML Codeword

In this section we present combinatorial certificates for codewords of Tanner codes that apply
both to ML-decoding and LP-decoding. A certificate is a proofthat a given codeword is the
unique solution of maximum-likelihood decoding and linear-programming decoding. The cer-
tificate is based on combinatorial weighted structures in the Tanner graph, referred to aslocal
configurations. These local configurations generalize the minimal configurations (skinny trees)
presented by Vontobel [Von10] as extension to Aroraet al. [ADS09]. We note that for Tanner
codes, the support of each weighted local configuration is not necessarily a local valid configu-
ration. For a given codeword, the certificate is computed by adynamic-programming algorithm
on the Tanner graph of the code.
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Notation:Let y ∈ R
n denote the word received from the channel. Letλ = λ(y) denote the

LLR vector fory. Let G = (V ∪ J , E) denote a Tanner graph, and letC(G) denote a Tanner
code based onG with minimum local distanced∗. Let x ∈ C(G) be a candidate for̂xML(y)
andx̂LP (y).

Definition 1 (Path-Prefix Tree). Consider a graphG = (V,E) and a noder ∈ V . LetV̂ denote
the set of all backtrackless paths inG with length at mosth that start at noder, and let

Ê ,
{

(p1, p2) ∈ V̂ × V̂ | p1 is a prefix of p2, |p1|+ 1 = |p2|
}

.

We identify the empty path in̂V with r. Denote byT h
r (G) , (V̂ , Ê) thepath-prefix treeof G

rooted at noder with heighth. We denote the fact that a patĥp ∈ V̂ ends atv ∈ V , by p̂ ∼ v.

When dealing with the analysis of belief propagation algorithms on graphical models, the
path-prefix tree of a Tanner graphG rooted at a variable node is usually referred to as the
computation tree. We make the distinction between the computation tree and the path-prefix
tree since we consider also path-prefix trees of subgraphs ofa Tanner graphG and are not
necessarily rooted at a variable node. We denote vertices inthe path-prefix tree bŷv,û, etc.
Vertices inG are denoted byv, u, etc.

The following definitions expand the combinatorial notion of minimal valid deviations [Wib96]
and weighted minimal local-deviations (skinny trees) [ADS09, Von10] to the case of Tanner
codes.

Definition 2 (d-tree). Consider a Tanner graphG = (V ∪ J , E). A d-tree, T [r, h, d](G), of
heighth rooted at noder is a subtree ofT h

r (G) such that every variable node has full degree
and every local-code node has degreed.

Definition 3 (w-weighted subtree). Consider a Tanner graphG = (V ∪ J , E). Let Tr̂ =
(V̂ ∪ Ĵ , Ê) denote a subtree ofT h

r (G), and letw = (w1, . . . , wh) ∈ R
h
+ denote a non-negative

weight vector. LetT (w)
r̂ : V̂\{r̂} → R denote a weight function for variable nodes inTr̂ as

follows.

T (w)
r̂ (v̂) ,

wt

degG(v)
·

∏

û∈Pr̂v̂\{r̂,v̂}

1

degTr̂(û)− 1
, (5)

wheret = ⌈d(r̂,v̂)
2
⌉ and v̂ ∼ v. LetT (w)

r̂ denote the subtreeTr̂ with the weights defined in (5).

We refer toT (w)
r̂ as aw-weighted subtree.

For anyw-weighted subtreeT (w)
r̂ of T h

r (G), let πG[T
(w)
r̂ ] ∈ R

|V| denote the projection of
T (w)
r̂ to the Tanner graphG. That is, for every variable nodev in G,

πG[T
(w)
r̂ ](v) =

{

∑

v̂:v̂∼v T
(w)
r̂ (v̂) if {v̂ : v̂ ∼ v} 6= ∅,

0 otherwise.
(6)

For two vectorsx ∈ {0, 1}N and f ∈ [0, 1]N , let x ⊕ f ∈ [0, 1]N denote therelative
point defined by(x ⊕ f)i = |xi − fi| [Fel03]. The following definition is an extension of
local-optimality [ADS09, Von10] to Tanner codes on memoryless channels.

7



Definition 4 (local-optimality). LetC(G) ⊂ {0, 1}N denote a Tanner code with minimum local
distanced∗, and letw ∈ [0, 1]h\{0N} denote a non-negative weight vector of lengthh. For
any integer2 6 d 6 d∗, let B(w)

d denote the set of all vectors corresponding to projections by

w-weightedd-trees toG, i.e.,B(w)
d =

{

πG[T (w)[r, 2h, d](G)]
∣

∣ r is a variable node in G
}

. A

codewordx ∈ {0, 1}N is (h, w, d)-locally optimal forλ ∈ R
N if for all vectorsβ ∈ B(w)

d ,

〈λ, x⊕ β〉 > 〈λ, x〉. (7)

Note thatB(w)
d ⊆ [0, 1]N for every weight vectorw ∈ [0, 1]h. Based on random walks

on the Tanner graph, Vontobel showed that(h, w, 2)-local optimality is sufficient both for ML-
optimality and LP-optimality. The random walks are defined in terms derived from the general-
ized fundamental polytope. We extend the results of Vontobel [Von10] to “thicker” skinny-trees
by using probabilistic combinatorial arguments on graphs and the properties of graph cover de-
coding [VK05]. Specifically, we prove that(h, w, d)-local optimality, for any2 6 d 6 d∗,
implies LP optimality (Theorem 7). Given the decompositionof Lemma 8 proved in Section 4,
the following theorem is obtained by modification of the proof of [ADS09, Theorem 2] or
[HE11, Theorem 6].

Theorem 5 (local-optimality is sufficient for ML). Let C(G) denote a Tanner code with mini-
mum local distanced∗. Leth be some positive integer andw = (w1, . . . , wh) ∈ [0, 1]h denote a
non-negative weight vector. Letλ ∈ R

N denote the LLR vector received from the channel, and
suppose thatx is an(h, w, d)-locally optimal codeword forλ and some2 6 d 6 d∗. Thenx is
also the unique maximum-likelihood codeword forλ.

Proof. We use the decomposition proved in Section 4 to show that for every codewordx′ 6= x,
〈λ, x′〉 > 〈λ, x〉. Sincez , x ⊕ x′ is a codeword, by Lemma 8 there exists a distribution over
the setB(w)

d , such thatE
β∈B

(w)
d

β = αz. Letf : [0, 1]N → R be the affine linear function defined

by f(u) , 〈λ, x⊕ u〉 = 〈λ, x〉+
∑N

i=1(−1)
xiλiui. Then,

〈λ, x〉 < E
β∈B

(w)
d

〈λ, x⊕ β〉 (by local-optimality ofx)

= 〈λ, x⊕ Eβ〉 (by linearity off and linearity of expectation)

= 〈λ, x⊕ αz〉 (by Lemma 8)

= 〈λ, (1− α)x+ α(x⊕ z)〉

= 〈λ, (1− α)x+ αx′〉

= (1− α)〈λ, x〉+ α〈λ, x′〉.

which implies that〈λ, x′〉 > 〈λ, x〉 as desired.

In order to prove a sufficient condition for LP optimality, weconsider graph cover decoding
introduced by Vontobel and Koetter [VK05]. We note that the characterization of graph cover
decoding and its connection to LP decoding can be extended tothe case of Tanner codes in
the generalized setting. We use the terms and notation of Vontobel and Koetter [VK05] in the
statement of Lemma 6. The following lemma shows that local-optimality based ond-trees is
preserved after lifting to anM-cover. Note that the weight vector must be scaled by the cover
degreeM .
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Lemma 6. Let C(G) denote a Tanner code with minimum local distanced∗, and letG̃ denote
anyM-cover ofG. Letw ∈ [0, 1

M
]h\{0h} for some positive integerh. Suppose thatx ∈ C(G) is

an (h, w, d)-locally optimal codeword forλ ∈ R
N for some2 6 d 6 d∗. Let x̃ = x↑M ∈ C(G̃)

and λ̃ = λ↑M ∈ R
N ·M denote theM-lifts of x andλ, respectively. Theñx is an(h,M · w, d)-

locally optimal codeword for̃λ.

Proof. Assume that̃x = x↑M is not a(h,M · w, d)-locally optimal codeword for̃λ = λ↑M .
Then, there exists ad-treeT = T [r̃, h, d](G̃) rooted at some variable noder̃ ∈ Ṽ, such that the
projectionβ̃ = πG̃[T

(M ·w)] ∈ [0, 1]N ·M of the(M ·w)-weightedd-treeT (M ·w) ontoG̃ satisfies

〈λ̃, x̃⊕ β̃〉 6 〈λ̃, x̃〉. (8)

Note that forx̃ ∈ {0, 1}N ·M and its projectionx = p(x̃) ∈ R
N , it holds that

1

M
〈λ̃, x̃〉 = 〈λ, x〉, and (9)

1

M
〈λ̃, x̃⊕ β̃〉 = 〈λ, x⊕ β〉, (10)

whereβ = πG[T (w)] ∈ [0, 1]N is the projection of thew-weightedd-treeT onto the base graph
G. From (8), (9), and (10) we get that〈λ, x〉 > 〈λ, x⊕β〉, contradicting our assumption on the
(h, w, d)-local optimality ofx. Therefore,̃x is a(h,M · w, d)-locally optimal codeword for̃λ
in C(G̃).

The following theorem is obtained as a corollary of Theorem 5and Lemma 6. The proof
is based on arguments utilizing properties of graph cover decoding. Those arguments are used
for a reduction from ML-optimality to LP-optimality similar to the reduction presented in the
proof of [HE11, Theorem 8].

Theorem 7(local optimality is sufficient for LP optimality). For every Tanner codeC(G) with
minimum local distanced∗, there exists a constantM such that, if

1. w ∈ [0, 1
M
]h\{0h}, and

2. x is an(h, w, d)-locally optimal codeword forλ ∈ R
N and some2 6 d 6 d∗,

thenx is also the unique optimal LP solution givenλ.

3.1 Verifying local optimality

LetG = (V ∪J , E) denote a Tanner graph, and letC(G) denote a Tanner code with minimum
local distanced∗. Let h denote a positive integer andw ∈ [0, 1]h. Consider a codeword
x ∈ C(G) and any integer2 6 d 6 d∗.

Let “∗” denote a coordinate-wise vector multiplication. Lemma 29implies that the mapping
(x, λ) 7→ (0N , b ∗ λ), wherebi = (−1)xi , preserves local optimality. That is, verifying whether
x is (h, w, d)-locally optimal forλ is equivalent to verifying that0N is (h, w, d)-locally optimal
for λ′ , b ∗ λ. However,0N is locally optimal forλ′ iff min

β∈B
(w)
d

〈λ′, β〉 > 0.

Given an LLR vectorλ′, one can find by a simple dynamic programming algorithm the
w-weightedd-treeT ∗ rooted at variable noder, such that its projectionβ∗ minimizes〈λ′, β〉
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for all vectorsβ corresponding to projections ofw-weightedd-trees rooted atr. Values are
propagated from the leaves ofT (w)

r (G) to the rootr. In every step, a node propagates to
its parent the minimum cost of the subd-tree that hangs from it inT (w)

r (G), based on the
minimum values received from its children. In fact, message-passing algorithms run dynamic
programming algorithms on computation trees for every rootin G simultaneously.

For a setS of real values, letmin[i]{S} denote theith smallest member inS. Algorithm
VERIFY-LO(x, λ, h, w, d), listed as Algorithm 1, is a message-passing algorithm thatoutputs
true if a given codewordx is (h, w, d)-locally optimal forλ, otherwise returnsfalse. For each
edge(v, C), each iterationl ∈ {1, . . . , h} (“for” loop in Line 3) consists of one messageµ(l)

v→C

from the variable nodev to the check nodeC, and one messageµ(l)
C→v from C to v. Hence, the

time and message complexity of Algorithm 1 isO(|E| · h).

Algorithm 1 VERIFY-LO(x, λ, h, w, d) - An iterative verification algorithm. Given an LLR
vectorλ ∈ R

|V|, a codewordx ∈ {0, 1}|V|, level weightsw ∈ R
h
+, and parameterd ∈ N+,

outputs “true” if x is (h, w, d)-locally optimal forλ, otherwise outputs “false”.
1: Initialize: ∀v ∈ V : λ′

v ← λv · (−1)
xv

2: ∀C ∈ J , ∀v ∈ N (C): µ(−1)
C→v ← 0

3: for l = 0 to h− 1 do
4: for all v ∈ V, C ∈ N (v) do
5: µ

(l)
v→C ←

wh−l

degG(v)
λ′
v +

1
degG(v)−1

∑

C′∈N (v)\{C} µ
(l−1)
C′→v

6: end for
7: for all C ∈ J , v ∈ N (C) do
8: µ

(l)
C→v ←

1
d−1
·
∑d−1

i=1 min[i]
{

µ
(l)
v′→C : v′ ∈ N (C) \ {v}

}

9: end for
10: end for
11: for all v ∈ V do
12: µv ←

∑

C∈N (v) µ
(h−1)
C→v

13: if µv 6 0 then {min-costw-weightedd-tree rooted atv has non-positive value}
14: return false;
15: end if
16: end for
17: return true ;

4 Constructing Codewords from Weighted Trees Projections

This section features Lemma 8, which is the key structural lemma in the proof of Theorem 5.
This Lemma shows that every codeword of a Tanner code can be constructed by a summation
over a finite set of projections of weighted trees in the computation trees ofG.

Lemma 8. Let C(G) denote a Tanner code with minimum local distanced∗, and leth denote
some positive integer. For every codewordx 6= 0N , and for every2 6 d 6 d∗, there exists a
distribution overd-treesT ofG of heighth and a positive integerH such that, for every weight
vectorw ∈ [0, 1

H
]h\{0h}, there exists anα ∈ (0, 1], such that

E
T ∈B

(w)
d

[

πG[T ]
]

= αx.

10



Proof sketch.Every codewordx ∈ C(G) can be decomposed into‖x‖1 weighted path-prefix
trees (see Lemma 9). Every weighted path-prefix tree is a convex combination of weighted
d-trees (see Lemma 10). Putting these two results together yields Lemma 8.

For a codewordx ∈ C(G) ⊂ {0, 1}N , let Gx denote the subgraph of the Tanner graphG

induced byVx ∪N (Vx) whereVx = {vi | xi = 1}.

Lemma 9. Let C(G) denote a Tanner code and leth denote some positive integer. For every
codewordx 6= 0N , and for every weight vectorw ∈ R

h
+,

(

h
∑

t=1

wt

)

· x =
∑

r:xr=1

πG[T
(w)
r (Gx)].

Proof. Let us consider two variable nodesu, v ∈ Gx. Notice that|{v̂ ∈ T h
u (Gx) : v̂ ∼

v}| = |{û ∈ T h
v (Gx) : û ∼ u}|. Indeed, for every path from the root ofT h

u (Gx) to a node
v̂ ∈ {v̂ : v̂ ∼ v}, there exists a unique reversed path inT h

v (Gx) from the root to a nodêu
such that̂u ∼ u. Let−→p = (v, . . . , r̂) denote a path in the path-prefix treeT h

v rooted atv, then
←−p = (r, . . . , v̂) denotes the corresponding reversed path in the path-prefix treeT h

r .
Consider an all-one weight vectorη = 1h. In (11)-(12), letT (η)

r , T (η)
r (Gx), deg(·) ,

degGx
(·), d(·, ·) , dT 2h

v (Gx)(·, ·), r̂ ∼ r, andû ∼ u. Let q ◦ p denote the concatenation of path
q with pathp. Equation (11) holds for every1 6 i 6 2h.

∑

{−→p =(v,...,r̂):d(v,r̂)=i}

T (η)
r (←−p ) =

∑

{−→q =(v,...,û):d(v,û)=i−1}

∑

{r̂∈N (û):d(v,r̂)=i}

T (η)
r

(←−−−−−→q ◦ (r)
)

=
∑

{−→q =(v,...,û):d(v,û)=i−1}

∑

{r̂∈N (û):d(v,r̂)=i}

1

deg(u)− 1
T (η)
u (←−q )

=
∑

{−→q =(v,...,û):d(v,û)=i−1}

T (η)
u (←−q ) ·

∑

{r̂∈N (û):d(v,r̂)=i}

1

deg(u)− 1

=
∑

{−→q =(v,...,û):d(v,û)=i−1}

T (η)
u (←−q ). (11)

Note that the reversed paths←−p and←−q in the summations of (11) end at a nodev̂ such that
v̂ ∼ v. Equation (11) implies that the sum of allη-weighted assignments to nodesv̂ ∼ v in
{T (η)

r (Gx) : xr = 1} that correspond to paths of lengthi does not depend oni.
In particular, fori = 1,

∑

{−→p =(v,r̂)} T
(η)
r (←−p ) = 1. It follows that for every1 6 i 6 2h,

∑

{−→p =(v,...,r̂):d(v,r̂)=i}

T (η)
r (←−p ) = 1. (12)

Note that for every two variable nodesv, r, it holds thatT (w)
r (v̂) = wd(r,v̂)/2 · T

(η)
r (v̂).

Hence,
∑

{−→p =(v,...,r̂):d(v,r̂)=2i} T
(w)
r (←−p ) = wi. We conclude that for every variable nodev in Gx

∑

r:xr=1

π[T (w)
r (Gx)](v) =

(

h
∑

i=1

wi

)

, (13)

and the claim follows.
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Lemma 10. For every connected subgraphGS of a Tanner graphG, letd∗ denote the minimal
degree of a local-code node inGS. Then for every variable noder ∈ GS, a positive integerh,
2 6 d 6 d∗, and every weight vectorw ∈ R

h
+, it holds that

T (w)
r (GS) = E

[

T (w)[r, 2h, d](GS)
]

with respect to a uniform distribution overd-treesT of GS rooted atr with height2h.

Proof. Consider a subgraphGS of a Tanner graphG, and a positive integerd 6 d∗. Let
T (w)
r (GS) denote anw-weighted path-prefix tree rooted at noder with height2h. We want to

show that the uniform distribution overw-weightedd-trees has the property that the expectation
of trees over the distribution equalsT (w)

r (GS).
We grow ad-tree rooted atr randomly in the path-prefix treeT 2h

r (GS). That is, start from
the rootr. For each variable node take all it’s children, and for each local-code node choose
d distinct children uniformly at random. LetT [r, 2h, d] denote such a randomd-tree, and
consider a variable nodêv ∈ T 2h

r (GS). Note thatT (w)[r, 2h, d](v̂) is constant and does not
depend on the random process. Equation (14) develops the equality

E
[

T (w)[r, 2h, d](v̂)
]

= T (w)
r (v̂).

E
[

T (w)[r, 2h, d](v̂)
]

=
∑

{T [r,2h,d]∈T 2h
r (GS)}

Pr(T [r, 2h, d]) · T (w)[r, 2h, d](v̂)

=
∑

{T [r,2h,d]∈T 2h
r (GS):v̂∈T [r,2h,d]}

Pr(T [r, 2h, d]) · T (w)[r, 2h, d](v̂)

= T (w)[r, 2h, d](v̂) ·
∑

{T [r,2h,d]∈T 2h
r (GS):v̂∈T [r,2h,d]}

Pr(T [r, 2h, d])

= T (w)[r, 2h, d](v̂) · Pr(v̂ ∈ T [r, 2h, d])

= T (w)[r, 2h, d](v̂) ·
∏

û∈Prv̂\{r,v̂}∩Ĵ

d− 1

deg(û)− 1

=
wd(r,v̂)/2

deg(v̂) · (d− 1)d(r̂,v̂)/2
·

∏

û∈Prv̂\{r,v̂}∩V̂

1

deg(û)− 1

·
∏

û∈Prv̂\{r,v̂}∩Ĵ

d− 1

deg(û)− 1

=
wd(r,v̂)/2

deg(v̂)
·

∏

û∈Prv̂\{r}

1

deg(û)− 1

= T (w)
r (v̂) (14)

as required.

5 Bounds on Error Probability Using Local-Optimality

In this section we analyze the probability that a local optimality certificate for regular Tanner
codes exists, and therefore LP decoding succeeds. The analysis is based on the study of a “sum-
min-sum” process that characterizesd-trees of a regular Tanner graph. We prove upper bounds
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on the error probability of LP decoding of regular Tanner codes in memoryless channels. The
upper bounds on the error probability imply lower bounds on the threshold of LP decoding. We
apply the analysis to binary symmetric channels, and compare our results with previous results
on expander codes. The analysis presented in this section generalizes the probabilistic analysis
of Aroraet al. [ADS09] from2-trees (skinny trees) tod-trees for anyd > 2.

In the remainder of this section, we restrict our discussionto (dL, dR)-regular Tanner codes
with minimum local distanced∗ among the local codes. Letd denote a parameter such that
2 6 d 6 d∗.

Theorem 11 summarizes the main results presented in this section for binary symmetric
channels, and generalizes to any MBIOS channel as describedin Section 5.3. Concrete bounds
are given for a(2, 16)-regular Tanner code with code rate at least0.375 when using[16, 11, 4]-
extended Hamming codes as local codes.

Theorem 11.LetG denote a(dL, dR)-regular bipartite graph with girthg, and letC(G) denote
a Tanner code based onG with minimum local distanced∗ of the local codes. Letx ∈ C(G) be
a codeword. Suppose thaty ∈ {0, 1}N is obtained fromx by flipping every bit independently
with probabilityp. Then,

1. [finite length bound] Letd = d0, p 6 p0, (dL, dR) = (2, 16), andd∗ = 4. For the values
of d0 andp0 in Table 1a it holds thatx is the unique optimal solution to the LP decoder
with probability at least

Pr
(

LP (y) = x
)

> 1−N · c(d−1)⌊
1
4
g⌋

for some constantc < 1.

2. [asymptotic bound] Letd = d0, (dL, dR) = (2, 16), d∗ = 4, andg = Ω(logN) suffi-
ciently large. For the values ofd0 andp0 in Table 1b it holds thatx is the unique optimal
solution to the LP decoder with probability at least1 − exp(−Nγ) for some constant
0 < γ < 1, provided thatp 6 p0(d0).

3. For any(dL, dR) and2 6 d 6 d∗ s.t. (dL − 1)(d− 1) > 2, the codewordx is the unique

optimal solution to the LP decoder with probability at least1−N · c((dL−1)(d−1))⌊
1
4
g⌋

for
some constantc < 1, provided that

min
t>0

{

(

c1(p, d, dL, dR, t)
)

·
(

c2(p, d, dL, dR, t)
)1/(d′

L
·d′−1)

}

< 1,

where

c1(p, d, dL, dR, t) =
d′−1
∑

k=0

(

d′R
k

)

pk(1− p)(d
′
R
−k)e−t(d′−2k) +

( d′
R

∑

k=d′

(

d′R
k

)

pk(1− p)d
′
R
−k

)

etd
′

,

c2(p, d, dL, dR, t) =

(

d′R
d′

)

(

(1− p)e−t + pet
)d′

.
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d0 p0

“finite”
3 0.0086
4 0.0218

“asymptotic”
3 0.019
4 0.044

Table 1: Computed values ofp0 for finite d0 < d∗ in Theorem 11. Values are presented for
(2, 16)-Tanner code with rate at least0.375 when using[16, 11, 4]-extended Hamming codes
as local codes. (a) finite-length bound:∀p 6 p0 bound on the word error probability that
is inverse doubly-exponential in the girth of the Tanner graph. (b) asymptotic-bound: For
g = Ω(logN) sufficiently large, LP decoder succeeds w.p. at least1 − exp(−Nγ) for some
constant0 < γ < 1, provided thatp 6 p0(d0).

Proof Outline. Theorem 11 follows from Lemma 14, Lemma 17, Corollary 20, andCorol-
lary 21 as follows. The first part, that states a finite-lengthresult, follows from Lemma 14
and Corollaries 20 and 21 by takings = 0 < h < 1

4
girth(G) which holds for any Tanner

graphG. The second part, that deals with an asymptotic result, follows from Lemma 14 and
Corollaries 20 and 21 by fixings = 10 and takingg = Ω(logN) sufficiently large such that
s < h = Θ(logN) < 1

4
girth(G). It therefore provides a lower bound on the threshold of

LP-decoding. The third part, that states a finite-length result for any (dL, dR)-regular LDPC
code, follows from Lemma 14 and Lemma 17.

How does this result compare with results on expander Tannercodes? The error correction
capability of expander codes depends on the expansion, thusa fairly large degree and huge
block-lengths are required to achieve good error correction. Our example for which results
are stated in Theorem 11.1 and 11.2 relies only on a16-regular graph with logarithmic girth.
Sipser and Spielman [SS96] studied Tanner codes based on expanders graphs and analyzed
a simple bit-flipping iterative decoding algorithm. Their novel scheme was further improved
over the years to follow, and it was shown that expander Tanner codes canasymptotically
achieve capacity in the BSC with iterative decoding bit-flipping scheme [Ź01, BZ02, BZ04].
In these works, a worst-case analysis was performed as well.The best result for iterative
decoding of such expander codes, reported by Skachek and Roth [SR03], implies a lower bound
of p∗ = 0.0016 on the threshold of a certain iterative decoder for rate0.375 codes. Feldman
and Stein [FS05] proved that LP-decoding canasymptoticallyachieve capacity with a special
family of expander Tanner codes. They also presented a worst-case analysis, which in the case
of a code rate of0.375, proves that LP decoding can recover any pattern of at most0.0008N
bit flips. This implies a lower bound ofp∗ = 0.0008 on the threshold. Those analyses yield
overly pessimistic predictions for the average-case. Theorem 11.2 implies that LP-decoding
can correct up to0.044N bit flips with high probability.

We now provide more details and prove the lemmas and corollaries used in the proof of
Theorem 11.

In order to simplify the probabilistic analysis of algorithms for decoding linear codes over
symmetric channels, we apply the assumption that the all-zero codeword was transmitted, i.e.,
c = 0N . Note that the correctness of the all-zero assumption depends on the employed decod-
ing algorithm. Although this assumption is trivial for ML decoding because of the symmetry
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of a linear codeC(G), it is not immediately clear in the context of LP-decoding. Feldmanet
al. [Fel03, FWK05] noticed that the fundamental polytopeP(G) of Tanner codes with parity-
check local codes is highly symmetric, and proved that for binary-input output-symmetric chan-
nels, the probability that the LP decoder fails is independent of the transmitted codeword. The
symmetry property of the polytope remains also for the generalized fundamental polytope of
Tanner codes based on non-trivial linear local codes. Therefore, one can assume thatc = 0N

when analyzing LP-decoding failure for linear Tanner codes. The following lemma gives a
structural characterization for the event of LP-decoding failure if c = 0N .

Lemma 12. Assume that the all-zero codeword was transmitted, and letλ ∈ R
N denote the

log-likelihood ratio for the received word. If the LP decoder fails to decode to the all-zero
codeword, then for everyw ∈ R

h
+\{0

h} and2 6 d 6 d∗ there exists a vectorβ ∈ B(w)
d such

that 〈λ, β〉 6 0.

Proof. Consider the event where the LP decoder fails to decode the all-zero codeword, i.e.,0N

is not a unique optimal LP solution. Theorem 7 implies that there exists a constantM such
that, for everyw′ ∈ [0, 1

M
]h\{0h}, the all-zero codeword is not(h, w′, d)-locally optimal forλ.

That is, there exists a vectorβ ′ = πG[T (w′)[r, 2h, d](G)] ∈ B(w′)
d such that〈λ, β ′〉 6 0. The

lemma follows by assigningw′ = 1
M ·||w||∞

· w, and scalingβ ′ by M · ||w||∞ to obtainβ, as
required.

We therefore have for a fixedh andw ∈ R
h
+\{0

h} that

Pr{LP decoding fails} 6 Pr
{

∃β ∈ B(w)
d such that 〈λ, β〉 6 0

∣

∣c = 0N
}

. (15)

5.1 Bounding Processes on Trees

LetG be a(dL, dR)-regular Tanner graph, and fixh < 1
4
girth(G). LetT 2h

v0 (G) denote the path-
prefix tree rooted at a variable nodev0 with height2h. Sinceh < 1

4
girth(G), it follows that

the projection ofT 2h
v0 (G) to G is a tree. We direct the edges ofTv0 so that it is an in-branching

directed toward the rootv0 (i.e., a rooted spanning tree with directed paths to the rootv0 from
all the nodes). Forl ∈ {0, . . . , 2h}, denote byVl the set of vertices ofT 2h

v0
at heightl (the leaves

have height0 and the root has height2h). Let τ ⊆ V (T 2h
v0 ) denote the vertex set of ad-tree

rooted atv0.

Definition 13 ((h, ω, d)-Process on a(dL, dR)-Tree). Letω ∈ R
h
+ denote a weight vector. Let

λ denote an assignment of real values to the variable nodes ofTv0 , we define theω-weighted
value of ad-treeτ by

valω(τ ;λ) ,

h−1
∑

l=0

∑

v∈τ∩V2l

ωl · λv.

Namely, the sum of the values of variable nodes inτ weighted according to their height.
Given a probability distribution over assignmentsλ, we are interested in the probability

Πλ,d,dL,dR(h, ω) , Prλ

{

min
τ⊂T 2h

v0
: τ d−tree

valω(τ ;λ) 6 0

}

. (16)
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In other words,Πλ,d,dL,dR(h, ω) is the probability that the minimum value over alld-trees of
height2h rooted in some variable nodev0 in a (dL, dR)-bipartite graphG is non-positive. For
every two rootsv0 andv1 the treesT 2h

v0
andT 2h

v1
are isomorphic, henceΠλ,d,dL,dR(h, ω) does

not depend on the rootv0.
With this notation, the following lemma connects between the(h, ω, d)-process on(dL, dR)-

trees and the event where the all-zero codeword is(h, w, d)-locally optimal. We apply a union
bound utilizing Lemma 12, as follows.

Lemma 14. Let G be a (dL, dR)-regular bipartite graph andw ∈ R
T
+ be a weight vector

with h < 1
4
girth(G). Suppose thatλ ∈ R

N is the log-likelihood ratio of the word received
from the channel. Then, the transmitted codewordc = 0N is (h, α · w, d)-locally optimal for
α , (M · ||w||∞)−1 with probability at least

1−N · Πλ,d,dL,dR(h, ω), where ωl = wh−l · d
−1
L · (dL − 1)l−h+1 · (d− 1)h−l,

and with at least the same probability,c = 0N is also the unique optimal LP solution givenλ.

Note the two different weight notations that we use for consistency with [ADS09]: (i)w
denotes weight vector in the context of(h, w, d)-local optimality certificate, and (ii)ω denotes
weight vector in the context ofd-trees in the(h, ω, d)-process. A one-to-one correspondence
between these two vectors is given byωl = wh−l ·d

−1
L · (dL−1)l−h+1 · (d−1)h−l for 0 6 l < T .

From this point on, we will use onlyω in this section.
Following Lemma 14, it is sufficient to estimate the probability Πλ,d,dL,dR(h, ω) for a given

weight vectorω, a distribution of a random vectorλ, constant2 6 d 6 d∗ ,and degrees(dL, dR).
Aroraet al. [ADS09] introduced a recursion for estimating and boundingthe probability of the
existence of a2-tree (skinny tree) with non-positive value in a(h, ω, 2)-process. We generalize
the recursion and its analysis tod-trees with2 6 d 6 d∗.

For a setS of real values, letmin[i]{S} denote theith smallest member inS. Let {γ}
denote an ensemble of i.i.d. random variables. Define randomvariablesX0, . . . , Xh−1 and
Y0, . . . , Yh−1 with the following recursion:

Y0 = ω0γ (17)

Xl =

d−1
∑

i=1

min[i]
{

Y
(1)
l , . . . , Y

(dR−1)
l

}

(0 6 l < h) (18)

Yl = ωlγ +X
(1)
l−1 + . . .+X

(dL−1)
l−1 (0 < l < h) (19)

The notationX(1), . . . , X(k) andY (1), . . . , Y (k) denotesk mutually independent copies of the
random variablesX andY , respectively. Each instance ofYl, 0 6 l < h, uses an independent
instance of a random variableγ. Note that for every0 6 l < h, thed−1 order statistic random
variables

{

min[i]{Y (1)
l , . . . , Y

(dR−1)
l } : 1 6 i 6 d− 1

}

in Equation (18) are dependent.
Consider a directed treeT = Tv0 of height2h, rooted at nodev0. Associate variable nodes

of T at height2l with copies ofYl, and check nodes at height2l + 1 with copies ofXl, for
0 6 l < h. Note that any realization of the random variables{γ} to variable nodes inT can be
viewed as an assignmentλ. Thus, the minimum value of ad-tree ofT equals

∑dL
i=1X

(i)
h−1. This

implies that the recursion in (17)-(19) defines a dynamic programming algorithm for computing
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minτ⊂T : τ d−tree valω(τ ;λ). Now, let the components of the LLR vectorλ be i.i.d. random
variables distributed identically to{γ}, then

Πλ,d,dL,dR(h, ω) = Pr

{ dL
∑

i=1

X
(i)
h−1 6 0

}

. (20)

Given a distribution of{γ} and a finite “height”h, it is possible to compute the distribution
of Xl andYl according to the recursion in (17)-(19). The following two lemmas play a major
role in proving bounds onΠλ,d,dL,dR(h, ω).

Lemma 15([ADS09]). For everyt > 0,

Πλ,d,dL,dR(h, ω) 6
(

Ee−tXh−1
)dL

.

Let d′ , d− 1, d′L , dL − 1 andd′R , dR − 1.

Lemma 16(following [ADS09]). For 0 6 s < l < h, we have

Ee−tXl 6

(

Ee−tXs

)(d′L·d
′)l−s

·
l−s−1
∏

k=0

((

d′R
d′

)

(

Ee−tωl−kγ
)d′

)(d′L·d
′)k

.

Proof. We prove the claim by induction on the differencel − s. We first derive an equality for
Ee−tYl and a bound forEe−tXl . SinceYl is the sum of mutually independent variables,

Ee−tYl =
(

Ee−tωlγ
)(

Ee−tXl−1
)d′L. (21)

By definition ofXl we have the following bound,

e−tXl = e−t
∑d′

j=1 min[j]{Y
(i)
l

:16i6d′
R
}

=
d′
∏

j=1

e−tmin[j]{Y
(i)
l

:16i6d′
R
}

6
∑

S⊆[d′
R
]:|S|=d′

∏

i∈S

e−tY
(i)
l .

Therefore, from linearity of expectation and since{Y (i)
l }

d′R
i=1 are mutually independent vari-

ables, we have

Ee−tXl 6

(

d′R
d′

)(

Ee−tYl

)d′

. (22)

By substituting (21) in (22), we get

Ee−tXl 6

(

Ee−tXl−1

)(d′
L
·d′)(

d′R
d′

)(

Ee−tωlγ

)d′

, (23)

which proves the induction basis wheres = l−1. Suppose, therefore, that the lemma holds for
l − s = i, we now prove it forl − (s− 1) = i + 1. Then by substituting (23) in the induction
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hypothesis, we have

Ee−tXl 6

(

Ee−tXs

)(d′
L
·d′)l−s

·
l−s−1
∏

k=0

((

d′R
d′

)

(

Ee−tωl−kγ
)d′

)(d′
L
·d′)k

6

[(

Ee−tXs−1

)(d′
L
·d′)(

d′R
d′

)(

Ee−tωsγ

)d′](d
′
L
·d′)l−s

·
l−s−1
∏

k=0

((

d′R
d′

)

(

Ee−tωl−kγ
)d′

)(d′
L
·d′)k

=

(

Ee−tXs−1

)(d′L·d
′)l−s+1

·
l−s
∏

k=0

((

d′R
d′

)

(

Ee−tωl−kγ
)d′

)(d′L·d
′)k

,

which concludes the correctness of the induction step for a difference ofl − s+ 1.

Based on these bounds, in the following subsection we present concrete bounds onΠλ,d,dL,dR(h, ω)
for the BSC. This technique may be applied to other memoryless binary-input output-symmetric
channels as well, e.g., an analysis for BI-AWGN channel as a generalization of the analysis pre-
sented in [HE11].

5.2 Analysis for Binary Symmetric Channel

Consider the binary symmetric channel with crossover probability p denoted by BSC(p). In
the case that the all-zero codeword is transmitted, the channel input isci = 0 for every i.
Hence,Pr

(

λi = −log
(

1−p
p

))

= p, andPr
(

λi = +log
(

1−p
p

))

= 1 − p. SinceΠλ,d,dL,dR(h, ω)
is invariant under positive scaling of the vectorλ, we consider in the following analysis the
scaled vectorλ in whichλi = +1 w.p. p, and−1 w.p. (1− p).

Following the ideas in the analysis of Aroraet al. [ADS09], we apply a simple analysis
in the case of uniform weight vectorω. Then, we present improved bounds by using a non-
uniform weight vector.

5.2.1 Uniform Weights

Consider the case whereω = 1h. Let c1 , Ee−tX0 and c2 ,
(

d′
R

d′

)

(Ee−tλi)d
′

, and define

c , mint>0 c1 · c
1/(d′

L
·d′−1)

2 . Note thatc1 6 c2 (see Equation (22)).We consider the case where
c < 1. By substituting notations ofc1 andc2 in Lemma 16 fors = 0, we have

Ee−tXl 6

(

Ee−tX0

)(d′
L
·d′)l

·
l−1
∏

k=0

((

d′R
d′

)

(

Ee−tλi
)d′

)(d′
L
·d′)k

= c1
(d′L·d

′)l ·
l−1
∏

k=0

c2
(d′L·d

′)k

= c1
(d′L·d

′)l · c2
∑l−1

k=0 (d
′
L·d

′)k

= c1
(d′

L
·d′)l · c2

(d′
L
·d′)l−1

d′
L
·d′−1

=
(

c1 · c2
1

d′
L
·d′−1

)

(d′
L
·d′)l

· c2
− 1

d′
L
·d′−1

6 c(d
′
L·d

′)l−1.

18



By Lemma 15, we conclude that

Πλ,d,dL,dR(h, 1
h) 6 cdL·(d

′
L·d

′)h−1−dL.

To analyze parameters for whichΠλ,d,dL,dR(h, 1
h) → 0, we need to computec1 andc2 as

functions ofp, d, dL anddR. Note that

X0 =

{

d′ − 2k w.p.
(

d′R
k

)

pk(1− p)d
′
R−k, ∀k. 0 6 k < d′,

−d′ w.p.
∑d′

R

k=d′

(

d′
R

k

)

pk(1− p)d
′
R
−k.

(24)

Therefore,

c1(p, d, dL, dR, t) =
d′−1
∑

k=0

(

d′R
k

)

pk(1− p)(d
′
R
−k)e−t(d′−2k) (25)

+

( d′
R

∑

k=d′

(

d′R
k

)

pk(1− p)d
′
R
−k

)

etd
′

, and (26)

c2(p, d, dL, dR, t) =

(

d′R
d′

)

(

(1− p)e−t + pet
)d′

. (27)

The above calculations give the following bound onΠλ,d,dL,dR(h, 1
h).

Lemma 17. Let p ∈ (0, 1
2
) and letd, dL, dR > 2 s.t. d′L · d

′ > 2. Denote byc1 and c2 the
functions defined in (25)-(27). If the following condition is satisfied

c = min
t>0

{

(

c1(p, d, dL, dR, t)
)

·
(

c2(p, d, dL, dR, t)
)1/(d′L·d′−1)

}

< 1,

then forh ∈ N andω = 1h, we have

Πλ,d,dL,dR(h, ω) 6 cdL·d
′
L
h−1−dL.

Note thatΠλ,d,dL,dR(h, 1
h) decreases doubly-exponentially as a function ofh.

For (2, 16)-regular graphs andd ∈ {3, 4}, we obtain the following corollary.

Corollary 18. LetdL = 2, anddR = 16.

1. Letd = 3 andp 6 0.0067. Then, there exists a constantc < 1 such that for everyh ∈ N

andw = 1h,
Πλ,d,dL,dR(h, 1

h) 6 c2
h−1

.

2. Letd = 4 andp 6 0.0165. Then, there exists a constantc < 1 such that for everyh ∈ N

andw = 1h,
Πλ,d,dL,dR(h, 1

h) 6 c3
h−1

.

The bound onp for which Corollary 18 applies grows withd. This fact confirms that
analysis based on bigger trees, i.e.,d-trees withd > 2 instead of skinny trees, implies better
bounds on the error probability and higher lower bounds on the threshold. Also, ford > 2, we
may apply the analysis to(2, dR)-regular codes; a case that is not applicable by the analysisof
Aroraet al. [ADS09].
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5.2.2 Improved Bounds Using Non-Uniform Weights

The following lemma implies an improved bound forΠλ,d,dL,dR(h, ω) using a non-uniform
weight vectorω.

Lemma 19. Let p ∈ (0, 1
2
) and letd, dL, dR > 2 s.t. d′L · d

′ > 2. Suppose that for somes ∈ N

and some weight vectorω ∈ R
s
+,

min
t>0

{

Ee−tXs
}

<

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)− 1
d′
L
·d′−1

. (28)

Let ω(ρ) ∈ R
h
+ denote the concatenation of the vectorω ∈ R

s
+ and the vector(ρ, . . . , ρ) ∈

R
h−s
+ . Then, for everyh > s there exist constantsc < 1 andρ > 0 such that

Πλ,d,dL,dR(h, ω
(ρ)) 6

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)−
d′L

d′
L
·d′−1

· cdL·(d
′
L
·d′)h−s−1

.

Proof. By Lemma 16, we have

Ee−tXh−1 6

(

Ee−tXs

)(d′L·d
′)h−s−1

·

((

d′R
d′

)

(

Ee−tρη
)d′

)

(d′
L
·d′)h−s−1

−1

d′
L
·d′−1

.

Note thatEe−tρη is minimized foretρ =
√

p(1− p). Hence,

Ee−tXh−1 6

(

Ee−tXs

)(d′L·d
′)h−s−1

·

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)

(d′
L
·d′)h−s−1

−1

d′
L
·d′−1

6

[(

Ee−tXs

)((

d′R
d′

)

(

2
√

p(1− p)
)d′

)
1

d′
L
·d′−1

]

(d′L·d
′)h−s−1

·

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)− 1
d′
L
·d′−1

.

Let c , mint>0

{

Ee−tXs

(

(

d′
R

d′

)(

2
√

p(1− p)
)d′

)
1

d′
L
·d′−1

}

. By (28),c < 1. Let t∗ = argmint>0Ee
−tXs ,

then

Ee−t∗Xh−1 6 c(d
′
L
·d′−1)h−s−1

·

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)− 1
d′
L
·d′−1

.

Using Lemma 15, we conclude that

Πλ,d,dL,dR(h, ω
(ρ)) 6 cdL(d

′
L
·d′−1)h−s−1

·

((

d′R
d′

)

(

2
√

p(1− p)
)d′

)−
dL

d′
L
·d′−1

.

and the lemma follows.

Consider a weight vectorω with componentsωl = ((dL − 1)(d − 1))l. This weight vector
has the effect that ifλ assigns the same value to every variable node, then every level in a skinny
treeτ contributes equally tovalω(τ ;λ). Forh > s, consider a weight vectorω(ρ) ∈ R

h
+ defined

by

ωl =

{

ωl if 0 6 l < s,

ρ if s 6 l < h.
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s p0 s p0

0 0.0086 4 0.0164

1 0.011 5 0.0171

2 0.0139 6 0.0177

3 0.0154 10 0.0192

Table 2: Computed values ofp0 for finite s in Corollary 20. Values are presented for(dL, dR) =
(2, 16) andd = 3.

s p0 s p0

0 0.0218 4 0.039

1 0.0305 5 0.0405

2 0.0351 6 0.0415

3 0.0375 10 0.044

Table 3: Computed values ofp0 for finite s in Corollary 21. Values are presented for(dL, dR) =
(2, 16) andd = 4.

Note that the firsts components ofω(ρ) are non-uniform while the other components are uni-
form.

For a givenp, d, dL, anddR, and for a concrete values we can compute the distribution of
Xs using the recursion in (17)-(19). Moreover, we can also compute the valuemint>0Ee

−tXs .
For (2, 16)-regular graphs and we obtain the following corollaries. Corollary 20 is stated for
the case whered = 3, and Corollary 21 is stated for the case whered = 4.

Corollary 20. Let p 6 p0, d = 3, dL = 2, anddR = 16. For the following values ofp0 ands
in Table 2 it holds that there exists a constantc < 1 such that for everyh > s,

Πλ,d,dL,dR(h, ω) 6
1

420

(

p(1− p)
)−1
· c2

h−s

.

Corollary 21. Let p 6 p0, d = 4, dL = 2, anddR = 16. For the following values ofp0 ands
in Table 3 it holds that there exists a constantc < 1 such that for everyh > s,

Πλ,d,dL,dR(h, ω) 6
1

60

(

p(1− p)
)− 3

4 · c3
h−s

.

Note that for a fixeds, the probabilityΠλ,d,dL,dR(h, ω) decreases doubly-exponentially as a
function ofh. Since it’s required thats < h, Corollaries 20 and 21 apply only to codes whose
Tanner graphs have girth larger than4h.

5.3 Analysis for MBIOS channels

Theorem 11 generalizes to MBIOS channels as follows.
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Theorem 22. Let G denote a(dL, dR)-regular bipartite graph with girthΩ(logN), and let
C(G) ⊂ {0, 1}N denote a Tanner code based onG with minimum local distanced∗. Consider
an MBIOS channel, and suppose thaty ∈ R

N is the word obtained from the channel given
c = 0N . Letλ ∈ R denote the log-likelihood ratio of the received channel observations. Then,
for any (dL, dR) and 2 6 d 6 d∗ s.t. (dL − 1)(d − 1) > 2, LP-decoding succeeds with
probability at least1− exp(−Nγ) for some constant0 < γ < 1, provided that

min
t>0

{

Ee−tX0 ·

((

dR − 1

d− 1

)

(

Ee−tλ
)(d−1)

)
1

(dL−1)(d−1)−1
}

< 1.

whereX0 =
∑d−1

i=1 min[i]{λ(1), . . . , λ(dR−1)} where the random variablesλ(i) are distributed
identically and independently toλ.

6 Message-Passing Decoding with ML Guarantee for Irreg-
ular LDPC Codes

In this section we present a weighted min-sum decoder (called, NWMS) for irregular LDPC
codes over memoryless binary-input output-symmetric channels. In Section 7 we prove that
the decoder computes the maximum-likelihood (ML) codewordif a locally-optimal codeword
exists (Theorem 23). Moreover, an ML-certificate can be computed efficiently for the output
of the decoder. Note that AlgorithmNWMS is not presented as a min-sum algorithm. However,
in Section 7, an equivalent min-sum version is presented.

From this point on, we deal with Tanner codes based on Tanner graphsG = {V ∪ J , E}
with parity-check local-codes. Local-code nodesC ∈ J in this case are calledcheck nodes.
The graphG may be either regular or irregular. Theorem 23 holds for every Tanner graph,
regardless of its girth, degrees, or density.

Previous work. A huge number of works deal with message-passing decoding. We point out
three works that can be viewed as precursors to our decoding algorithm. Gallager [Gal63] pre-
sented the sum-product iterative decoding algorithm for LDPC codes. Tanner [Tan81] viewed
iterative decoding algorithms as message passing algorithms over the edges of the Tanner graph.
Wiberg [Wib96] characterized decoding failures of the min-sum iterative decoding algorithm
by negative cost trees. Message-passing decoding algorithms proceed by iterations of “ping-
pong” messages between the variables nodes and the local-code nodes in the Tanner graph.
These messages are sent only along the edges.

Algorithm description. Algorithm NWMS(λ, h, w), listed as Algorithm 2, is a normalized
w-weighted version of the min-sum algorithm for decoding Tanner codes with parity-check
local-codes. The input to algorithmNWMS consists of an LLR vectorλ ∈ R

N , an integer
h > 0 that determines the number of iterations, and a nonnegativeweight vectorw ∈ R

h
+.

For each edge(v, C), each iteration consists of one message from the variable nodev to the
check nodeC (that is, the “ping” message), and one message fromC to v (that is, the “pong”
message). Hence, the time and message complexity of Algorithm 2 isO(|E| · h).

Letµ(l)
v→C denote the “ping” message from a variable nodev ∈ V to an adjacent check-node

C ∈ J in iterationl of the algorithm. Similarly, letµ(l)
C→v denotes the “pong” message from
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C ∈ J to v ∈ V in iterationl. Denote byµv the final value computed by variable nodev ∈ V.
The output of the algorithm̂x ∈ {0, 1}N is computed locally by each variable node in Line 12.

Algorithm NWMS may be applied to any memoryless binary-input output-symmetric chan-
nel (e.g., BEC, BSC, AWGN, etc.) because the input is the LLR vector.

Algorithm 2 NWMS(λ, h, w) - An iterative normalized weighted min-sum decoding algorithm.
Given an LLR vectorλ ∈ R

N and level weightsw ∈ R
h
+, outputs a binary strinĝx ∈ {0, 1}N .

1: Initialize: ∀C ∈ J , ∀v ∈ N (C) : µ
(−1)
C→v ← 0

2: for l = 0 to h− 1 do
3: for all v ∈ V, C ∈ N (v) do {“PING”}
4: µ

(l)
v→C ←

wh−l

degG(v)
λv +

1
degG(v)−1

∑

C′∈N (v)\{C} µ
(l−1)
C′→v

5: end for
6: for all C ∈ J , v ∈ N (C) do {“PONG”}

7: µ
(l)
C→v ←

(

∏

v′∈N (C)\{v} sign
(

µ
(l)
v′→C

)

)

·minv′∈N (C)\{v}

{

|µ(l)
v′→C |

}

8: end for
9: end for

10: for all v ∈ V do {Decision}
11: µv ← w0λv +

∑

C∈N (v) µ
(h−1)
C→v

12: x̂v ←

{

0 if µ
(h−1)
v > 0,

1 otherwise.

13: end for

The following theorem states thatNWMS(λ, h, w) computes an(h, w, 2)−locally-optimal
codeword forλ if such a codeword exists. The theorem implies that there exists at most one
(h, w, 2)-locally optimal codeword. The proof of the theorem appearsin Section 7.

Theorem 23(NWMS guaranties local-optimality). LetG = (V ∪J , E) denote a Tanner graph
and letC(G) ⊂ {0, 1}N denote the corresponding Tanner code with parity-check local-codes.
Leth ∈ N+ and letw ∈ R

h
+ denote a non-negative weight vector. Letλ ∈ R

N denote the LLR
vector of the channel output. Ifx ∈ C(G) is an(h, w, 2)-locally optimal codeword forλ, then
the output̂x of NWMS(λ, h, w) equalsx.

The dynamic programming algorithm described in Section 3.1can be used to verify whether
NWMS(λ, h, w) outputs an(h, w, 2)-locally optimal codeword. If so, then, by Theorem 5, the
output ofNWMS(λ, h, w) is the unique ML-codeword.

Corollary 32 states that for MBIOS channels, the probability thatNWMS fails is independent
of the transmitted codeword. Hence, the following corollary is a contra-positive of Theorem 23
provided the all-zero codeword assumption.

Corollary 24. Assume that the all-zero codeword was transmitted, and letλ ∈ R
N denote

the log-likelihood ratio for the received word. If NWMS(λ, h, w) fails to decode the all-zero
codeword forw ∈ R

h
+\{0

h}, then there exists a vectorβ ∈ B(w)
2 such that〈λ, β〉 6 0.

We therefore have for a fixedh andw ∈ R
h
+\{0

h} that

Pr{NWMS(λ, h, w) fails} 6 Pr
{

∃β ∈ B(w)
2 such that 〈λ, β〉 6 0

∣

∣c = 0N
}

. (29)
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Following Equation (29), we note that for the case of regularLDPC codes, the previous
bounds on the probability that a local-optimality certificate exists [ADS09, HE11] also apply
to the probability ofNWMS decoding success. For example, consider(3, 6)-regular LDPC
codes whose Tanner graphsG have logarithmic girth, leth = 1

4
girth(G) and define a constant

weight vectorw = 1h. Then,NWMS(λ, h, w) succeeds in recovering the transmitted codeword
with probability at least1 − exp(−nγ) for some constant0 < γ < 1 in the following cases:
(1) In a BSC with crossover probabilityp < 0.05 (implied by [ADS09, Theorem 5]). (2) In a
BI-AWGN channel withEb

N0
> 2.67dB (implied by [HE11, Theorem 1]).

It remains to explore good weighting schemes (choice of vectorsw) and prove bounds on
the success probability of theNWMS decoder for specific families of irregular LDPC codes.

7 Proof of Theorem 23

Proof outline. The proof of Theorem 23 is based on two observations. (1) We present an
equivalent algorithm, calledNWMS2 (Section 7.1). It is easier to prove that AlgorithmNWMS2
outputs the all-zero codeword if0N is locally optimal (Sections 7.2-7.3). (2) In Lemma 31
we prove that algorithmNWMS is symmetric (Section 7.4). The symmetry characterization
provides a mapping from every pair(x, λ) of a codeword and an LLR vector to a pair(0N , λ0)
of the all-zero codeword and a corresponding LLR vectorλ0.

The proof of Theorem 23 is obtained as follows. We prove the contrapositive statement,
that is, if x 6= NWMS(λ, h, w), thenx is not (h, w, 2)-locally optimal forλ. Let x denote a
codeword, and defineb ∈ {±1}N by bi , (−1)xi. Let “∗” denote a coordinate-wise vector
multiplication. Defineλ0 , b ∗ λ, soλ = b ∗ λ0. The proof is obtained by the following
derivations:

x 6= NWMS(λ, h, w)

⇒x 6= NWMS(b ∗ λ0, h, w)

⇒x 6= x⊕ NWMS(λ0, h, w) [Lemma 31, symmetry]

⇒0N 6= NWMS(λ0, h, w)

⇒∃β ∈ B(w)
2 .〈λ0, β〉 6 0 [Lemma 28, local optimality (LO)]

⇒〈b ∗ λ0, x⊕ β〉 6 〈b ∗ λ0, x〉 [Lemma 29, mapping preserves LO]

⇒〈λ, x⊕ β〉 6 〈λ, x〉

⇒x is not (h, w, 2)−locally optimal for λ. QED

We now prove the three lemmas used in the foregoing proof.

7.1 NWMS2 : An Equivalent Version

The normalized weighted min-sum decoding algorithm presented in section 6 is input the log-
likelihood ratio. We refer to this algorithm as a min-sum algorithm in light of the general
description of Wiberg [Wib96]. In Wiberg’s description, every check node finds a minimum
value from a set of functions on the incoming messages, and every variable node computes the
sum of the incoming messages and its corresponding channel observation. Hence the name
“min-sum”.
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Let y ∈ R
N denote channel observations. Fora ∈ {0, 1}, define the log-likelihood ofyi by

λi(a) , − log
(

Pr(yi|ci = a)
)

. Note that the log-likelihood ratioλi for yi equalsλi(1)−λi(0).
Algorithm NWMS2(λ(0), λ(1), h, w), listed as Algorithm 3, is a normalizedw-weighted

min-sum algorithm. AlgorithmNWMS2 computes separate “reliabilities” for “0” and “1”.
Namely,µ(l)

v→C(a) andµ(l)
C→v(a) denote the messages corresponding to the assumption that node

v is assigned the valuea (for a ∈ {0, 1}).
Line 7 takes the main difference between the presentations of Algorithm 2 and Algorithm 3.

The computation in Line 7 of the messageµ(l)
C→v(a) from check nodeC to variable nodev

proceeds as follows. Consider assignmentsx ∈ {0, 1}deg(C) to variable nodes adjacent toC
with even weight, i.e., parity local codewords, such thatxv = a. For every such assignmentx,
the check nodeC computes the sum of the incoming messagesµ

(l)
u→C(xu) from the neighboring

nodesu ∈ N (C) \ {v} other thanv, according to their assignmentxu by x. Then, the message
µ
(l)
C→v(a) equals to the minimum value over the valid summations.

Algorithm 3 NWMS2(λ(0), λ(1), h, w) - An iterative normalized weighted min-sum decoding
algorithm. Given an log-likelihood vectorsλ(a) ∈ R

N for a ∈ {0, 1} and level weights
w ∈ R

h
+, outputs a binary strinĝx ∈ {0, 1}N .

1: Initialize: ∀C ∈ J , ∀v ∈ N (C), ∀a ∈ {0, 1} : µ(−1)
C→v(a)← 0

2: for l = 0 to h− 1 do
3: for all v ∈ V, C ∈ N (v), a ∈ {0, 1} do {“PING”}
4: µ

(l)
v→C(a)←

wh−l

degG(v)
λv(a) +

1
degG(v)−1

∑

C′∈N (v)\{C} µ
(l−1)
C′→v(a)

5: end for
6: for all C ∈ J , v ∈ N (C), a ∈ {0, 1} do {“PONG”}
7: µ

(l)
C→v(a)← min{x∈{0,1}deg(C):|x| is even andxv=a}

{
∑

v′∈N (C)\{v} µ
(l)
v′→C(xv′)

}

8: end for
9: end for

10: for all v ∈ V do {Decision}
11: µv(a)← w0λv(a) +

∑

C∈N (v) µ
(h−1)
C→v (a)

12: x̂v ←

{

0 if
(

µ
(h−1)
v (1)− µ

(h−1)
v (0)

)

> 0,

1 otherwise.

13: end for

Following Wiberg [Wib96, Appendix A.3], we claim that Algorithms 2 and 3 are equivalent.

Claim 25. Let λ, λ(0), and λ(1) in R
N denote the LLR vector and the two log-likelihood

vectors for a channel outputy ∈ R
N . Then, for everyh ∈ N+ andw ∈ R

h
+, the following

equalities hold:

1. µ(l)
v→C = µ

(l)
v→C(1)− µ

(l)
v→C(0) andµ(l)

C→v = µ
(l)
C→v(1)− µ

(l)
C→v(0) in every iterationl.

2. µv = µv(1) − µv(0). HenceNWMS(λ, h, w) and NWMS2(λ(0), λ(1), h, w) output the
same vector̂x.

7.2 NWMS2 as a Dynamic Programming Algorithm

In Lemma 26 we prove that AlgorithmNWMS2 is a dynamic programming algorithm that
computes, for every variable nodev, two min-weight valid configurations. We now elaborate
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on the definition of valid configurations and their weight.
Fix a variable noder ∈ V. We refer tor as theroot. Trace the messages that lead to the

decisionx̂r in NWMS2. Namely, consider the path-prefix tree rooted atr consisting of all the
paths of length2h ending atr. (Note that these paths may not zigzag, hence an edge(u, v)
and its reversal(v, u) may not appear consecutively.) Denote this path-prefix treeby T 2h

r . The
variable nodes and check nodes inT 2h

r are denoted bŷV andĴ , respectively.
Every binary vectorx ∈ {0, 1}|V̂| defines an assignment to variable nodes inV̂. We say that

x is a valid configurationif it satisfies all parity-checks in̂J . Namely, for every check node
C ∈ Ĵ , the assignment to its neighbors has an even number of ones.

The weight of a valid configurationx is defined using the following functions. (1) Extend
the log-likelihood functions to the variable nodes inV̂ by λv̂ , λv, wherev̂ ∼ v. (2) Assign
weights to levels of variable nodes by a vectorw = (w1, . . . , wh) ∈ R

h
+. (3) Define the weight

of a nodêv in T 2h
r with respect tow by

Wr(v̂) ,
wt

degG(v)
·

∏

û∈(Prv̂∩V̂ )\{r,v̂}

1

degG(u)− 1
,

wheret = d(r,v̂)
2

, û ∼ u, andv̂ ∼ v.
The weight of a valid configurationx is defined by

Wr(x) ,
∑

v̂∈V̂

λv̂(xv̂) · Wr(v̂).

The following lemma characterizesNWMS2 as a computation of min-weight configurations.

Lemma 26. Let x̂ denote the output ofNWMS2(λ(0), λ(1), h, w). Let z(v) denote a valid
configuration inT 2h

v with minimumWv weight. Then,̂xv =
(

z(v)
)

v
.

Proof sketch.The proof of Lemma 26 is obtained by induction on the number ofiterations.
The key idea is that a messageµ(l)

v→C(a) [Line 4] at iterationl equals to the minimum weight
of a valid subconfiguration on the subtree of hight2l hanging fromv, that assignsv the value
a. The computation of messageµ(l)

C→v(a) in Line 7 plays the main rule in the proof of the
inductive step. Under the assumption thatv is assigned the valuea, for every local valid as-
signment to its neighbors, check nodeC accumulates the messages received from its children
that correspond to the local valid assignment. By the induction hypothesis, the values of the
messages received from the children ofC equal the min-weight valid subconfiguration hanging
from them. By choosing the minimum valid summation,µ

(l)
C→v(a) equals the minimum weight

of a valid subconfiguration hanging fromC that assignsv the valuea.

Define theW∗ cost of a configurationx in T 2h
r by

W∗
r (x) ,

∑

v̂∈V̂

λv̂ · Wr(v̂) · xv̂.

Note thatW∗
r (x) uses the LLR vectorλ (i.e.,λv̂ = λv̂(1)− λv̂(0)).

Corollary 27. Let x̂ denote the output ofNWMS(λ, h, w). Letz∗(v) denote a valid configura-
tion in T 2h

v with minimumW∗ cost. Then,̂xv =
(

z∗(v)
)

v
.
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Proof. Let x̂ = NWMS(λ, h, w) andẑ = NWMS2(λ(0), λ(1), h, w). By Claim 25,x̂v = ẑv for
everyv ∈ V. Therefore,

x̂v = ẑv = argmin
valid x∈T 2h

v

Wv(x)

= argmin
valid x∈T 2h

v

{

Wv(x)−Wv(0
|V̂|)

}

= argmin
valid x∈T 2h

v

{

∑

û∈V̂:xû=1

λû(1) · Wv(û)−
∑

û∈V̂:xû=1

λû(0) · Wv(û)

}

= argmin
valid x∈T 2h

v

∑

û∈V̂

λû · Wv(û) · xû = argmin
valid x∈T 2h

v

W∗
v (x).

The second line relies on the fact thatWv(0
|V̂|) is a constant. The elementsλû(x̂û) · Wv(û) in

Wv(x) wherexû = 0 are reduced by the substraction of the same elements inWv(0
|V̂|), leaving

in the third line only elements that correspond to bitsxû = 1. The fourth line is obtained by the
LLR definitionλû = λû(1)− λû(0).

7.3 Connections to Local Optimality

For two vectorsx, y ∈ R
k, let “∗” denote coordinatewise multiplication, i.e.,x ∗ y , (x1 · y1, . . . , xk · yk).

The following lemma implies thatNWMS algorithm outputs the all-zero codeword if0N is
locally optimal.

Lemma 28. Let x̂ denote the output ofNWMS(λ, h, w). If x̂v = 1, then there exists a deviation
β ∈ B(w)

2 corresponding to aw-weighted2-tree such that〈λ, β〉 6 0.

Proof. Assume that̂xv = 1, and considerT 2h
v = (V̂ ∪ Ĵ , Ê). Then, by Corollary 27, there

exists a valid configurationz∗ ∈ {0, 1}|V̂| in T 2h
v with z∗v = 1 that satisfies

∀valid configuration u ∈ T 2h
v .W∗

v (z
∗) 6W∗

v (u). (30)

Let T (z∗) denote the subgraph ofT 2h
v induced byV̂(z∗)∪N

(

V̂(z∗)
)

whereV̂(z∗) = {û ∈
V̂|z∗û = 1}. Note thatT (z∗) is a forest. Becausez∗v = 1 and z∗ is a valid configuration,
the forestT (z∗) must contain a2-tree of height2h rooted at the nodev; denote this tree by
T [v, 2h, 2]. Let τ ∈ {0, 1}|V̂| denote the support ofT [v, 2h, 2], and letz0 ∈ {0, 1}|V̂| denote
the support ofT (z∗) \ T [v, 2h, 2]. Then,z∗ = τ + z0, wherez0 is also necessarily a valid
configuration. By linearity, we have

W∗
v (z

∗) =W∗
v (τ + z0) =W∗

v (τ) +W
∗
v (z

0). (31)

Becausez0 is a valid configuration, by Equation (30), we haveW∗
v (z

∗) 6 W∗
v (z

0). By Equa-
tion (31),W∗

v (τ) 6 0.
Let Wv(V̂) ∗ τ ∈ R|V̂| denote the vector whose component indexed byû ∈ V̂ equals

Wv(û) · τû. The vectorWv(V̂) ∗ τ represents thew-weighted2-treeT (w)[v, 2h, 2] according to
Definition 3. Hence,β = πG[T (w)[v, 2h, 2]] ∈ B(w)

2 satisfies〈λ, β〉 =W∗
v (τ) 6 0.
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The following lemma implies thatx is locally optimal with respect toλ iff 0N is locally
optimal with respect tob∗λ, wherebi = (−1)xi. Hence we refer to mapping(x, λ) 7→ (0N , b∗λ)
as a mapping that preserves local optimality.

Lemma 29. Letx ∈ {0, 1}N and defineb ∈ {±1}N by bi = (−1)xi. Then,

∀λ ∈ R
N . ∀β ∈ [0, 1]N . 〈λ, β〉 = 〈b ∗ λ, x⊕ β〉 − 〈b ∗ λ, x〉. (32)

Proof. Foru ∈ [0, 1]N , it holds that〈λ, x⊕ u〉 = 〈λ, x〉+
∑N

i=1(−1)
xiλiui. Then,

〈b ∗ λ, x⊕ β〉 = 〈b ∗ λ, x〉+
N
∑

i=1

(−1)xibiλiβi

= 〈b ∗ λ, x〉+
N
∑

i=1

(−1)xi(−1)xiλiβi

= 〈b ∗ λ, x〉+ 〈λ, β〉

7.4 Symmetry and the All-Zero Codeword Assumption

We define symmetric decoding algorithms (see [RU08, Definition 4.81] for a discussion of
symmetry in message passing algorithms).

Definition 30 (symmetry of decoding algorithm). Let x ∈ C denote a codeword and letb ∈
{±1}N denote a vector defined bybi = (−1)xi. Let λ denote an LLR vector. A decoding
algorithm,DEC(λ), is symmetricwith respect to codeC, if

∀x ∈ C. x⊕ DEC(λ) = DEC(b ∗ λ). (33)

The following lemma states thatNWMS algorithm is symmetric. The proof is by induction on
the number of iterations.

Lemma 31 (symmetry ofNWMS). Fix h ∈ N+ and w ∈ R
N
+ . Considerλ ∈ R

N and a
codewordx ∈ C(G). Letb ∈ {±1}N denote a vector defined bybi = (−1)xi. Then,

x⊕ NWMS(λ, h, w) = NWMS(b ∗ λ, h, w). (34)

The following corollary follows from Lemma 31 and the symmetry of an MBIOS channel
(see also [RU08, Lemma 4.90]).

Corollary 32 (All-zero codeword assumption). Fix h ∈ N+ andw ∈ R
N
+ . For MBIOS chan-

nels, the probability thatNWMS fails is independent of the transmitted codeword. That is,

Pr{NWMS decoding fails} = Pr
{

NWMS(λ, h, w) 6= 0N |c = 0N}.
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8 Conclusions

We present a new combinatorial characterization of local-optimality for Tanner codes with
respect to any MBIOS channel. This characterization provides an ML-certificate and an LP-
certificate for a given codeword. Two applications of local-optimality are presented based on
this new characterization. (i) Bounds for LP-decoding failure are proved in the case of regular
Tanner codes. (ii) A new message passing decoding algorithmfor irregular LDPC codes, called
NWMS, is presented. TheNWMS algorithm is guaranteed to find the locally optimal codeword
if such exists.

An open problem is to prove for irregular Tanner codes that a locally optimal codeword
exists with high probability provided that the noise is bounded. Such a result would imply that
the efficientNWMS decoding algorithm is a good replacement for LP-decoding. It seems that
this requires adjusting the weightsw according to the Tanner graph.
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