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We find a statistical mechanism that can adjust orientations of intracellular filaments to cell
geometry in absence of organizing centers. The effect is based on random and isotropic filament
(de-)polymerization dynamics and is independent of filament interactions and explicit regulation. It
can be understood by an analogy to electrostatics and appears to be induced by the confining bound-
aries; for periodic boundary conditions no orientational bias emerges. Including active transport
of particles, the model reproduces experimental observations of vesicle accumulations in transected
axons.

In living cells, cargo like nutrients, proteins or or-
ganelles, has to be carried to distinct locations in the
cell. Many of these objects are transported by motor
proteins (kinesin, dynein and myosin) that bind cargo
and move along polarized intracellular filaments (micro-
tubules, actin filaments) in a directed manner [1]. The
direction of movement is determined by the polarity of
the filament (plus- and a minus-end) and the motor pro-
tein species.

For particular cell functions, accumulations of cargo
and concentration gradients are needed at distinct lo-
cations of the cell. For that purpose the arrangement
of filaments, which determines the distribution of cargo,
has to be organized properly. In some cases filaments are
organized by auxiliary components to form globally po-
larized structures (e.g. the microtubule organizing center
[2]). Next to these highly regulated mechanisms, mo-
tor driven transport processes take place also on less
organized networks. In this article we consider a sce-
nario where the initially ordered network of microtubules
(MT s) in a neuronal axon is destroyed after transection
of the axon. Experimental observations show that after
transection, vesicles agglomerate adjusting to the geom-
etry of the cut axon [3, 4]. This vesicle agglomeration
is important for the formation of a growth cone that is
needed to recover neuronal connections. It was supposed
that a re-organization of the microtubule network creates
effective kinetic traps for the vesicles.

Mechanisms for self-organization of intracellular fila-
ments were proposed in previous works, relying on extrin-
sic chemical gradients induced by external signals [5, 6],
or spontaneous structure formation driven by the effec-
tive interactions of filaments mediated by molecular mo-
tors [7–11].

Here, we use a complementary approach: We ask the
question how structures self-organize without relying on
explicit regulation mechanisms (e.g. by pre-established
chemical gradients) or interactions, and discuss if they
are necessary to explain the alignment of filament ori-
entations and subsequent vesicle agglomerations in finite
volumes. We consider explicitly a simple homogeneous
and isotropic stochastic model for filament growth dy-

namics that neglects filament-filament interactions [12].
The model considers basic filament nucleation and (de-)
polymerization dynamics as considered in previous mod-
els (e.g. [13]), without an a priori preferred direction or
position of filaments nor any gradients. However, the net-
work and particle dynamics are assumed to be confined
to a given geometry corresponding to the finite cell vol-
ume. We show that the confining boundary conditions
in fact induce an orientation of the filament ensemble.
We also present a linear theory for filament network evo-
lution which is analogous to electrostatics and able to
explain the observed orientation of filaments.

Our model is defined analogue to [12]. We apply
stochastic dynamics in continuous space for filament and
particle dynamics. The model rules capture the basics
of filament nucleation and (de-)polymerization dynamics
[1]: Filaments are nucleated with spatially homogeneous
rate ωnρmonρnuc and isotropic random orientation. Here
the values ρmon and ρnuc denote the (conserved) quantity
of monomers and nucleation seeds in the cytosol. Fila-
ments can grow by including segments of length ds at
their plus-end with rate ωgρmon and shrink by dissoci-
ating a segment at the minus- end with rate ωs. After
nucleation, the minus-end remains capped for some time
such that depolymerization at the minus-end is not pos-
sible. This restriction is removed with uncapping rate ωu

(which is non-zero only for actin filaments).

Particles are implemented as hard-core spheres with
radius rp exhibiting mutual steric exclusion. Detached
particles perform a continuous random walk in space. If
they are within the binding range of a filament db, they
can attach to the filament (rate ωa) and perform directed
motion until they detach with rate ωd. We consider two
species of particles: plus-particles move towards the plus-
end of the filament with rate p per segment, while minus-
particles move to the minus ends. The model dynamics
are illustrated in Fig. 1. For a more detailed definition
we refer to the supplementary material and [12].

We want to apply the model to the experimental setup
studied in [3]: Healthy axons usually contain bundles of
axially orientated microtubules with plus ends pointing
towards the synapse. In the experiments, axons were
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(a) (b)

FIG. 1. Illustration of model dynamics. (a) Filaments are
implemented as sequences of linear segments. These are polar-
ized, with a plus-end where segments are created to elongate,
and a minus-end where segments dissociate causing shrink-
ing. (b) Dark gray discs are detached particles, black discs
represent particles attached to filaments.

(a)

(b)

FIG. 2. Comparison between experimental results of Erez
et al. [3] (a) and model results (b). The same color-coding
is used: anterograde (plus-) particles are green, retrograde
(minus-) particles are red. The shape of the model axon is
based on the experiment (bar=15 µm). The deviations from
the cylindrical shape have only little influence on the par-
ticle distribution, hence the accumulation is not result of a
(diffusive) bottleneck (see supplementary material).

transected leading to dissolution of microtubules near the
location of the cut, due to calcium influx (right part of
Fig. 2(a)). In that region, microtubules subsequently
reassemble randomly in absence of an organizing center.
Non-destroyed MTs remain and can grow again. One
observes an accumulation of plus- (anterograde) vesicles
at the tip and at some distance from the tip as well as
minus- (retrograde) vesicles between these locations.

In the model we implement this scenario by introduc-
ing a confining volume that is based on the cylindrical
shape of an axon. We use an idealized cylindrical shape
as well as a shape similar to the contour of the axon used
in the experiment of Erez et al. [3]. The finite volume
leads to a straightforward modification of the filament
dynamics: Filaments are not allowed to grow or nucleate
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FIG. 3. Comparison between experimental [3](top) and sim-
ulated particle distribution (bottom). z = cylinder axis coor-
dinate.

outside the volume (see Fig. 2(b)). Starting from paral-
lel bundles of microtubules, they get dissolved (transec-
tion) within some distance from the tip (right half of the
figure) and new filaments reassemble randomly without
preferred direction, according to the rules defined above.
Moreover, we assume that filament growth is inhibited by
the steric hard-core particles such that filaments are not
allowed to grow through a particle. In addition, we imple-
ment microtubule catastrophe-rescue dynamics following
the model in [13]. At the left boundary, plus particles
enter the system with rate α1 where also minus particles
exit the system with rate β2. At the other boundaries
(representing the membrane), plus particles exit (exocy-
tosis) with rate β1 and minus particles enter the system
(endocytosis) with rate α2.

In Fig. 2(b) a particle configuration 24000 time steps
after transection (corresponding to about 4 min in real
time) is displayed. We used the biologically motivated
parameters as discussed in the supplementary material.
Starting with parallel filaments, they are dissolved in the
right part of the system after 7000 time steps, whereupon
random nucleation and growth of filaments, according to
the dynamics discussed above, takes place in this region.

The comparison between experimental and model re-
sults shows that the model is able to reproduce the struc-
ture of the plus particle traps as well in the middle of the
system and at the tip, but it underestimates its strength
(Fig. 3(b)).

In order to understand the emergence of particle ac-
cumulations, we develop a linear theory for the network
structure. The orientations of filament segments will be
denoted by a unit vector d describing the direction of the
plus-end. We quantify the structure of the network by a
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vector field

F(x) :=

〈
lim
v→0

1

v

∑

fil. in v

d(x)

〉
= ρs〈d(x)〉 (1)

which we call filament field. Here, v is a volume con-
taining the point x. The sum includes all filament seg-
ments in v, ρs denotes the density of filament segments
at the point x and 〈· · · 〉 denotes the ensemble average.
The direction of F represents the average orientation of
filaments, whereas its amplitude is determined by the
density of filaments. F(x) results from a linear superpo-
sition of filament orientations at the point x which allows
to express it by a Green’s function as

F(x) =

∫

V

G(x− x′)ρn(x′) dx′
3

(2)

where G(x − x′) is the field if nucleation of filaments
would only be possible in a single point x′, and ρn(x)
denotes the relative nucleation rate. We consider the
dynamics to be spatially homogeneous within the volume
V where filaments can nucleate, hence ρn(x) = 1 within
V and ρn(x) = 0 outside [14]. However, (2) can also be
applied, when nucleation dynamics vary spatially.

Since the orientation of filaments always points away
from the nucleation point, the Green’s function G(x),
which considers only nucleation in the origin, must have
a radial structure G(x) = G(x)er. In fact, G(x) is
the probability that a filament is within a volume unit
dx3 around x. Since filaments are not correlated, this
can be expressed by the probability P (x) that the fil-
ament is directed towards x and, assuming ergodicity,
the average time τ(x) the filament is present in dx3:
G(x) = P (x)τ(r). Because a filament grows isotropically
in arbitrary direction, the probability that it passes the
volume dx3 located at distance r = |x| from the origin is
given by P (x) = P (r) ∝ 1/r2. In the stationary state,
the net polymerization rate ωgρmon must equal the de-
polymerization rate ωs due to conservation of monomers.
If we neglect shrinking at the plus end, a filament can
only disappear at a given point by minus-end depolymer-
ization. The average filament length l is independent of
the distance r and hence the time the filament is present
at x is τ = l/ωs which is also independent of r.

After all, the overall value of the filament field is

G(r) ∝ er
r2

. (3)

This form corresponds to the Green’s function of elec-
trostatics (Coulomb law). As a result, the filament field
inside a volume V with homogeneous nucleation rate cor-
responds to a electrostatic field of a homogeneous charge
distribution within V .

In order to test these results quantitatively, we con-
sider more simple boundary conditions than in the pre-
vious example. Specifically we apply spherical boundary
conditions (sbc), where the dynamic filaments are con-
fined to a sphere of radius R. For comparison we also
consider periodic boundary conditions (pbc).
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FIG. 4. Radial component of the filament field F (r) for
default parameters in 3D. For pbc there is no bias in the
network structure as expected due to translational symme-
try. For confining sbc, one observes approximately a linear
behavior as predicted by the analytical theory.
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FIG. 5. Distributions of plus- (black) and minus-particles
(orange) for spherical boundary conditions.(a) Snapshot of
particle configurations (Slice plane). (b) Radial density dis-
tribution of vesicles.

Due to translational symmetry for pbc and non-biased
dynamics there is supposed to be no overall bias and the
field F vanishes. This is reproduced by simulations as can
be seen in Fig. 4. However, if the filaments are confined
to a sphere, the theory predicts that F has the same form
as an electrostatic field inside a homogeneously charged
sphere. For that geometry, Gauss’ divergence theorem
yields

F(x) ∼ rer for r < R . (4)

This linear behavior of F, with average radial orienta-
tion of filament plus ends towards boundaries, is indeed
reproduced by simulations of filament ensembles (Fig. 4).

Particles follow the emerging radial bias of the fila-
ments leading to a separation of particle species (Fig. 5).
Therefore, in the case of spherical boundary conditions,
plus-particles accumulate at the boundaries while minus-
particles are depleted at the boundaries and have a slight
tendency towards the center. Analogue to electrostatics
we conclude that, for an arbitrary geometry, random nu-
cleation dynamics leads, in general, to an average bias of
plus ends towards the boundaries.

However, for MT dynamics the Green’s function needs
some modifications. Since there is a chance for plus-end
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FIG. 6. Illustration of the re-organization of the microtubule
network after transection. After dissolution of filaments, they
re-assemble randomly in the right part (yellow region). Ac-
cording to our theory, plus ends of MTs (black arrows) are
pointed towards the boundaries of this region. Adapted from
[3]

.

depolymerization, while minus ends are fixed, the Green’s
function has a finite range scale, given by the mean fila-
ment length. For larger distances, the effect of a nucleat-
ing filament is ’screened’. This means that the bias effect
is only strong within a distance from the boundary that
corresponds to the average filament length. Nonethe-
less, the direction of the bias remains unaffected by the
screening. For our model geometry, the mean filament
length (80 rp) is larger than the cylinder radius (40 rp),
such that screening effects can be neglected.

Within this theory, we can also explain the observed
distribution of particles in case of a transected axon: Af-
ter dissolution of MTs, random nucleation and growth
induces a bias of plus ends outwards of the nucleating
region, arranging (schematically) as in Fig. 6 (only right
part (yellow) is nucleating region). Together with the
surviving microtubules at the left end, pointing to the
right, this yields a trap for plus particles. In addition, a
trap at the right tip emerges due to MTs pointing to the
right. Our model, however, underestimates the strength
of the particle traps compared to the experiments (Figs.
2 and 3). This discrepancy supports the interpretation
given in [3] that interactions between filaments (which
we have neglected) indeed increase orientational correla-
tions to enhance structural inhomogeneities in the fila-

ment networks [15] that stabilize and amplify the par-
ticle trapping. The bias predicted by our model thus
can trigger an interaction-driven self-organization of the
filaments towards the observed patterns.

To summarize, we studied a model for active trans-
port on filament networks that evolve by isotropic and
spatially homogeneous stochastic filament dynamics. We
showed that if filament dynamics is confined within a fi-
nite volume, the filaments become oriented following the
geometry of the system, despite the absence of filament-
filament interactions and chemical gradients. Applied to
the geometry of a transected axon, this random dynam-
ics is sufficient to explain the structure of experimentally
observed vesicle traps, which is essential for axonal re-
generation.

We developed a linear theory which is analogous to
electrostatics and describes correctly the alignment of fil-
ament orientations. This theory is assumed to be generic
for arbitrary geometries and predicts a preferred orien-
tation of filament plus-ends towards boundaries. Hence
we have shown that in confined geometries, concentra-
tion gradients can generally be induced by randomly
generated networks of polarized filaments, even without
interaction-driven self-organization or external gradients.

Our results indicate that the geometry of the cell may
have strong influence on the development of the struc-
ture of the filament network: Although our model re-
sults do not reproduce the strength of vesicle traps,
their structure is well described. Therefore we conclude
that the mechanism presented in this work may select
the emerging structures of interacting filament systems
[7, 9, 10, 16]. This assumption is also supported by ex-
periments providing evidence that the cell shape may also
control the organization of the cytoskeleton [17].

We want to thank M.E. Spira, Davide Marenduzzo and
Marc Neef for fruitful discussions and Maren Westkott for
image analysis. We also thank DFG Grants GK1276/1
and GZ SA864/3-1 for financial support. P.G. is post-
doctoral fellow of DAAD.
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Supplementary Material

I. FILAMENT AND PARTICLE DYNAMICS

Tables I and II are summarizing the elementary steps
of the particle and filament dynamics. Note that we dis-
tinguish between microtubule (MT) and actin dynamics
in our model in the following way [1]: In contrast to MTs,
actin filaments can uncap and depolymerize at the minus
end to perform treadmilling. MTs do not treadmill but,
on the other hand, can perform dynamic instability at
the plus end. They can turn to a plus-end depolymeriz-
ing state, which can be rescued to turn to a polymerizing
state.

For all simulations we used a stochastic random se-
quential update scheme and continuous space coordi-
nates.

II. CHOICE OF DEFAULT PARAMETERS

The default parameters of our model were chosen in
accordance with available experimental results or, if not
directly accessible, according to established models. In
Table III the parameters for microtubule and vesicle dy-
namics are given. For dynamics of actin dynamics, we
refer to the work [2], Table 4.

The measured quantities in Table III (column 4) are
displayed according to their sources referenced in column
3. These measured quantities are transferred to the
time and length scales used in the simulations (column 5).

Comments:

(i) The maximal tubulin density is reached, if all mi-
crotubules are dissolved. Assuming 26 tubulin
dimers per ds = 16nm microtubule segments [1]
(16nm are two twists of the microtubule structure),
20 microtubules per µm2 [3] and free tubulin con-
centration of 5µM in healthy axons [4], one obtains
59µM .

(ii) All the minus ends of microtubules are bound to
γ−tubulin which also serves as nucleation seed.
Assuming an average microtubule length of 4µm
[5] and 20 microtubules/µm2 [3] one obtains 5
γ−tubulin nucleation seeds per µm3.

(iii) All nucleation seeds are already present in the be-
ginning. Each microtubule is hence initiated by a
growth process of a bare γ−tubulin.

(iv) In reference [6] the binding rate for kinesin in de-
pendence of the distance x of the binding filament
is given by 3κ exp(−x2/2σ2) with κ = 175s−1 and
σ = 6nm. The average binding rate within a dis-
tance db = 80nm from a filament of length L hence

is ωa = 1/(πd2bL)
∫ L

0

∫ db
0

2πre−
r2

2σ2 dr dz = 5.9s−1.

The integration space is due to the cylindrical form
of the binding region.

(v) We adjusted the entry and exit rates of particles
such that the observed density in the healthy axon
was approximately as in the referenced work.

(vi) The length of the microtubule depletion zone in
the experiments [7] was about 100µm. Due to
computational constraints we were able to simulate
a system of length L = 200 lu=̂20µm, giving the
length of the depletion zone L/2 = 100 lu. Adjust-
ing to the proportions of the experimental picture,
we chose a cylinder radius 20 lu. However, we also
tested other system sizes which did not affect the
generic structure of the particle traps.

III. TIME EVOLUTION OF THE
SIMULATIONS: TRANSECTED AXON

Here we show some intermediate time configurations of
particles and filaments both in the case of a plain cylin-
drical geometry (with a round tip) and a cylinder with a
tapered region, mimicking the geometry of the axon more
faithfully. One observes that in both cases accumulations
of plus particles occur left of the depletion area and at
the tip, similar to the experiments. However for the plain
cylindrical geometry it takes longer to achieve this state.

One also observes that in the beginning, the parallel
bundles are also present in the right part of the system,
while accumulation of vesicles already begins. Hence the
accumulation is not due to a diffusive bottleneck in the
middle of the system.
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Process Particle state(s) Description Parameter name

Diffusion D Detached particles move in a random direction. Step
widths are uniformly distributed between 0 and 2lD.

lD

Step A Attached particles move to adjacent subunit in
(+)-direction.

p

Attachment D→A Particles bind to subunits if their distance is less than
db, becoming ’attached’.

ωa

Detachment A→D Particles detach from filament. ωd

TABLE I. Particle dynamics. A=’attached’; D=’detached’.

Process Description Probability

Nucleation New filament created; arbitrary direction. The process
needs nucleations seeds (e.g. γ-tubulin for microtubules)

and monomers. (−)-Cap inhibits shrinking.

ωn ρmon ρnuc
ρnuc = nucl. seeds
ρmon = density of free monomers

Growth New sub-segment added at (+)-end. ωgρmon

Shrinking Segment removed at (−)-end if not (−)-capped or at
(+)-end if in shrink state.

ω
+/−
s

Uncapping (−)-Cap is removed allowing depolymerization hence
(only actin).

ωu

Catastrophe (+)-end turns into shrink state. (only MT) ωcat

Rescue (+)-end turns into growth state again. (only MT). ωres

TABLE II. Filament dynamics.

FIG. 1. Configurations of particles and microtubules for simulations of the model at distinct times. (a) Geometry of a transected
axon. (a.1) t=200 (a.2) t=3000 (a.3) t=5000 (a.4) t=24000. (b) Cylindrical geometry. (b.1) t=200 (b.2) t=5000 (b.3) t=20000
(b.4) t=32000. The qualitative structure does not depend on the details of the geometry.
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Parameter name Reference Reference Value Model parameters

Filament dynamics:

growth rate ωg [4] 1.5µmµM−1min−1 0.015 lu3 tu−1

shrink rate ωs [4] 50µmmin−1 0.5 tu−1

microtubule density ρMT [3] 20µm−2 0.2 lu−2

max. monomer density ρmon γ-tubulin density [1, 3, 4] 59µM ( See comment (i)) 35 lu−3

γ−tubulin density ργ [3, 5] 5µm−3 (See comment (ii)) 0.005 lu−3

nucleation rate ωn See comment (iii) ωgργρtub see above
catastrophe rate ωc [8] 0.014 s−1 0.0001 tu−1

rescue rate ωr [8] 0.04 s−1 0.0004 tu−1

Particle dynamics:

particle radius rp [9] 50nm (average) 0.5 lu
binding distance db [1] 80nm (length of kinesin) 0.8 lu
subunit distance ds [1] 16nm (1 stepping period of kinesin) 0.16 lu

step rate p [10] velocity = 1.3µms−1 0.13 tu−1

attachment ωa [6] 5.9 s−1 (See comment (iv)) 0.059 tu−1

detachment ωd [10] run length ≈ 7µm 0.0018 tu−1

diffusive step length lD [11] diff. const. D = 2.5× 10−10 cm2s−1
√

2D tu =
√

0.05lu
particle density ρ0p [12] 7.6µm−3 0.0076 lu−3

entry rates α1,2 [12] See comment (v) α1 = 0.15 tu−1, α2 = 0.012 tu−1

exit rates β1,2 [12] See comment (v) β1 = 0.003 tu−1, β2 = 0.2 tu−1

System size See comment (vi) See comment (vi) length L = 200 lu, radius R = 20 lu
MT depletion zone See comment (vi) See comment (vi) L/2

TABLE III. Default parameters of the model which are biologically motivated by transport of vesicles in axons. The referenced
values are either based on experimental data or existing models for microtubule dynamics [4]. Model parameters are chosen
to be in the order of magnitude of referenced values, fitted to time and space scale of the simulations. Length scale: 1 lu =
100nm = 2rp ⇒ 1µM = 0.6 lu−3. Time scale: 1 tu = ∆t = 0.01s which is one time step in the simulations. We consider a
cylindrically shaped system length L = 200 lu and a radius of L/10. In the transected state, it has a spherically shaped tip and
a neck region right of the middle with a minimum radius 0.6L.


