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What Lakatos Could Teach the Mathematical Physicist(
Michael Stöltzner

Since the outset of modern physical science, its close relationship to mathematics has distinguished it from other natural sciences. Once a science has reached a certain stage of formalisation, it always applies mathematics, but no science finds itself more frequently in the vanguard of genuinely mathematical developments than physics. The cases of general relativity and quantum mechanics are paradigmatic for what Eugene P. Wigner once called “the unreasonable effectiveness of mathematics in the natural sciences”
. In both cases, the basic equations of the theory made major use of mathematical structures discovered shortly before: Non-Euclidean geometry and matrix-valued differential equations. Since the early 1980s, however, the rapidly growing and extremely fertile interaction between string theory and differential geometry has inverted the direction of inspiration. Theoretical physicists constantly reveal genuinely mathematical results and propound beautiful mathematical structures undreamed of before. In this sense, Arthur Jaffe, a renowned mathematical physicist and editor of the discipline’s leading journal, has recently proposed to modify Wigner’s famous dictum into the “unreasonable effectiveness of theoretical physics in mathematics”
. 


In 1990, Edward Witten was awarded the Fields Medal for his contributions to geometry, which were largely stimulated by string theory. This immediately prompted many private debates among mathematicians and mathematical physicists as to how Witten’s mostly conjectural and intuitive results ought to be appraised. No mathematician doubted that Witten’s representation of the Jones invariants of knots using Chern-Simons field theory was a major breakthrough that connected two whole hitherto unrelated subjects. Moreover, considerable parts of the results were quickly proven by leading pure geometers. At this point, two closely related questions arose: Should mathematical claims from string theory be accepted, without further ado, as genuine mathematics? Who is to be credited for the mathematical result, if it is eventually proven? 


In their 1993 article “‘Theoretical Mathematics’: Toward a Cultural Synthesis of Mathematics and Theoretical Physics” published in the Bulletin of the American Mathematical Society, Arthur Jaffe and Frank Quinn proposed a set of prescriptions for the interaction between mathematicians and theoretical physicists that should foster mathematicians’ receptivity of ideas from physics by safeguarding mathematical rigour against uncontrolled speculation. “[M]athematical authors [including theoretical physicists writing mathematical papers] should make a choice: either they provide complete proofs, or they should agree that their work is incomplete [conjectural] and the essential credit will be shared. Referees and editors should enforce this distinction, and it should be included in the education of students.” 
 Evidently, the Jaffe-Quinn prescriptions presuppose that, even in a rapidly growing field, it can be decided, in each case, whether a proof is rigorous or merely conjectural, heuristic. But, as I will argue, this decidability thesis does not hold without qualifications. If my claim holds true, then prescriptions for a fruitful ‘cultural synthesis’ between mathematics and theoretical physics are less obvious, as well.


The Jaffe-Quinn theses provoked a rather broad controversy that is documented in no less than 16 responses by leading mathematicians and the authors’ summary rejoinder in the next volume of the Bulletin.
 The matter was taken up in the May 1997 issue of Synthese. I will discuss the positions taken on both occasions together, because they share three main tenets of the debate: First, descriptive and normative, internalist and externalist (societal) perspectives are neatly interwoven. Second, the debate is almost exclusively led by mathematicians who implicitly or explicitly (in the Synthese papers) employ philosophical arguments. Third, throughout the papers no foundational problem is profoundly at stake – except for Hintikka’s which, on the other hand, does not mention the Jaffe-Quinn debate at all. 


Among all contributors, only Gian-Carlo Rota approaches the debate from a genuinely philosophical viewpoint. Most contributors, however, begin with mathematical, historical and sociological considerations that also include the prospective effects of new ways of communication and publishing, which might threaten mathematical rigour.
 Yet a philosophical analysis of the debate and a classification of the various opinions is still lacking. 


For this purpose, I will rely upon Imre Lakatos’s philosophy of mathematics, inasmuch as his intention of devising a rational methodology of mathematical progress is precisely the issue of the Jaffe-Quinn debate.
 To render Lakatos’s methodology – which was shaped mainly by 17th and 18th century mathematics – applicable to “one of the most refreshing events in the mathematics of the 20th century”
, modifications are called for that are quite in accordance with the recent literature on Lakatos’s philosophy of mathematics. First, one has to reconstruct the application of the methodology of scientific research programmes (MSRP) – an application which  Lakatos had in mind at the time of his untimely death. (At any rate, one issue, which is essential to mathematical physics, is missing in Lakatos’s account: how to appraise the contact between two different research programmes – a mathematical and a physical one – that do not mutually compete on an identical factual basis?) Second, it should be recognised “that the appropriate use of rigorous definition and axiomatization has not acted as a hobble on the creativity of mathematicians, but rather an invaluable tool in the forging of new mathematical theories and the extension of old ones.”
 Despite his repeated criticisms of Euclideanism and his insistence on the principal fallibility of all mathematics, Lakatos, later in his life, expressed more sympathy toward logic than he had before. Third, although he already criticised “Popper’s overkill of inductivism”
, Lakatos’s apology of induction is limited to the very general level and cannot be used to justify the effectiveness of theoretical physics in mathematics. But to my mind, conceding a certain dose of inductive reasoning from physical models to mathematical concepts fits very well to the quasi-empirical character of mathematics Lakatos has argued for. 


This paper is organised in three parts: After portraying the various stances taken in the Jaffe-Quinn debate, I outline the lessons to be drawn for it from Lakatos’s published works. Sections 1.1-1.4 and 2.1-2.4 respectively are thematically connected. The third section examines which modifications of Lakatos’s account are in place to enable a fruitful assessment of present mathematical physics.

1. The Jaffe-Quinn Thesis: Appraising ‘Theoretical Mathematics’

Jaffe and Quinn inquire as to whether speculative mathematics, as it occurs in current interactions between physics and mathematics, is at all dangerous, and as to how those unpleasant side effects known from the history of informal mathematics may be avoided. Hence, their analysis contains a descriptive and a normative part. The latter consists in the quoted prescription to always openly distinguish between speculative mathematics (conjectures) and rigorously proven theorems. Can this norm always be complied to? The answer depends on whether there exists an unambiguous and universal criterion to neatly separate rigorous proof from informal and conjectural arguments. 

1.1 The ontology of ‘theoretical mathematics’ and the role of proof

Here the Jaffe-Quinn thesis starts: “Modern mathematics is nearly characterized by the use of rigorous proofs. This practice, the result of literally thousands of years of refinement, has brought to mathematics a clarity and reliability unmatched by any other science.“
 The authors distinguish two stages of the mathematical research process: “First, intuitive insights are developed, conjectures are made, and speculative outlines of justifications are suggested. Then the conjectures and speculations are corrected; they are made reliable by proving them. We use the term theoretical mathematics for the speculative and intuitive work; we refer to the proof-oriented phase as rigorous mathematics.”
 This terminology expresses a functional analogy between rigorous proof and experimental physics. Both correct, refine and validate the claims of their theoretical counterparts. 


Proofs serve two main purposes. First, they “provide a way to ensure the reliability of mathematical claims”
 – justification, in Lakatosian terms. “Second, the act of finding a proof often yields, as a byproduct, new insights and unexpected new data.”
 Hence, what Lakatos calls heuristics is, in Jaffe and Quinn’s view, only subordinated to the justificatory role of proof. ‘Theoretical Mathematics’ is built on an asymmetry of proof and conjecture. Posing the latter does not necessarily involve proof.


Despite this asymmetry, ‘Theoretical Mathematics’ tacitly requires a ‘quasi-empirical’ ontology – quite in accordance with Lakatos’s views. “For if we don’t assume that mathematical speculations are about ‘reality’ then the analogy with physics is greatly weakened – and there is no reason to suggest that a speculative mathematical argument is a theory of anything, any more than a poem or novel is ‘theoretical’”
 writes Morris W. Hirsch in his Response. Saunders Mac Lane calls for a structuralist austerity doctrine: “If a result has not yet been given valid proof, it isn’t yet mathematics: we should strive to make it such.”
 To his mind, all other assertions root in the misconception of “set theory as THE foundation of mathematics, and so sometimes [philosophers of mathematics] eagerly spread the gospel that mathematics is the study of an ideal realm of sets – set theoretic platonism.”
 


Notwithstanding his Incompleteness Theorems, Kurt Gödel openly subscribed to the latter view and preserved Hilbert’s optimism that any well-defined mathematical problem is decidable by finding an appropriate axiom system. Hence, William Thurston cannot rely on Gödel when he claims that “Gödel’s incompleteness theorem implies that there can be no formal system that is consistent, yet powerful enough to serve as a basis for all of the mathematics that we do.”
 Mac Lane is right to stress that “what we do” concerns suitably restricted systems. Hence, Gödel’s theorems do not entail, as René Thom erroneously claims, “that rigor can be no more than a local and sociological criterion.”


Jaffe and Quinn are aware of the point where the analogy terminologically breaks down: “we are not suggesting that proofs should be called ‘experimental’ mathematics. There is already a well-established and appropriate use of that term, namely to refer to numerical simulations as tests of mathematical concepts.”
 Still, many working mathematicians dispute the reliability of computer proofs although, as Thurston remarks, much more correctness and completeness is needed to make a computer programme run a proof than to have a corresponding theorem accepted by experts. Armand Borel criticises where the functional distinction is situated. 

[Mathematics,] in analogy with physics, has an experimental and a theoretical side, but operates in an intellectual world of objects, concepts and tools. Roughly, the experimental side is the investigation of special cases…and the theoretical side is the search of general theorems. In both, I expect proofs of course, and I categorically reject a division into two parts, one with proof, the other without.
 

This Bourbakian position is rather suitable for unificatory programmes where relatively stable axiomatisations and standards exist for the subdisciplines, but it seems too austere for the developing field which Jaffe and Quinn had in mind. 


Morris W. Hirsch, on the other hand, emphasises that “the nonrigorous use of mathematics by scientists, engineers, applied mathematicians and others, out of which rigorous mathematics sometimes develops, is in fact more complex than simple speculation”
 and involves the use of mathematical language for ‘narrative purposes’. Ultimately, validation comes from experiment – possibly on a computer. Karen Uhlenbeck criticises that the broad role of applied mathematics in physics is narrowed down. “‘[T]heoretical mathematics’ already exists. It is called ‘applied mathematics’, a much bigger field than pure mathematics…Only the combined elitism of very pure mathematics and high-energy fundamental physics would claim that its own brand of speculative and applicable mathematics should have a special name.”
 What about non-linear dynamics or mathematical biology?
 A representative of this alleged elite, the string theorist Albert Schwarz, also considers the terminology inappropriate as a common name for heuristic mathematics and theoretical physics. But he does stress the peculiarity of string theory within applied mathematics: Today, theorists “are not able to extract reliable predictions from string theory because this is connected with enormous mathematical difficulties. The physicists have chosen the only possible way: to analyze carefully the mathematical structure of string theory.“
 This is exactly Jaffe and Quinn’s point: Theoretical physicists “have found a new ‘experimental community’: mathematicians…who provide them with reliable new information about the structure they study.”


But Witten cherishes higher aspirations: “when a mathematical result is really relevant to a physics problem it often happens that, turning things around, the result can be deduced from the behavior of the physics problem.”
 From such claims, to the effect that the putative truth of string theory be more than heuristics, ontological problems arise. First of all, any quasi-empirical ontology that renders these conjectures meaningful rests on toy-models and highly idealised cases, because string theory “concern[s to a large extent] experimentally inaccessible events: particles of incredible energy, movement on the scale of the universe, or creation of new universes.”
 This empirical inaccessibility marks a great difference to applied mathematics. If the applied mathematician has good reasons to believe that a precisely measured physical system is described by a complicated equation, he or she might take the existence of a solution for granted, although the existence proof does not obtain, and start studying other properties of the equation and its solutions. 


It is important to note, already at this stage, that the quasi-empirical ontology of mathematics needed to make ‘Theoretical Mathematics’ meaningful is neither tied to Platonism, nor does it render mathematics an empirical science. As Lakatos stressed, merely the flow of truth is at stake: “a theory which is quasi-empirical in my sense may be either empirical or non-empirical in the usual sense.”
 While Euclidean theories are built on indubitable axioms from which truth flows down through valid inferences, in quasi-empirical theories truth is injected at the bottom by virtue of a set of accepted basic statements. In the latter case, truth does not flow downward from the axioms, but falsity is retransmitted upward. “[I]n a quasi-empirical theory the (true) basic statements are explained by the rest of the system.“
 Theoretical physics is, of course, quasi-empirical in this sense; it is also empirical in the usual sense. Among the possible axioms of a theory which ‘explain’ physical facts, genuinely mathematical ones can be found nevertheless, especially in mature theories. Thus, these axioms will figure in physicists’ non-rigorous reasoning.


But ‘Theoretical Mathematics’ marks out a domain for conjectural results within mathematics. To the Euclideanist, and even to the non-Euclidean structuralist, such as Mac Lane, there is no such territory except in an ephemeral sense: “Mathematics rests on proof – and proof is eternal.”


To Jaffe and Quinn, only ‘Theoretical Mathematics’, as opposed to rigorous mathematics, is quasi-empirical in Lakatos’s sense, and hence speculative and fallible. They do not address foundational questions, but their thesis presupposes that, if no errors are present, rigorous proofs are final in an appropriate sense. But, the boundary between both fields marked by the method of verification is not absolute. “Scientific verification and mathematical proof differ as much as ice and water can coexist although they are qualitatively different states of matter.”
 Still, phase transitions are hard to pin down. Opinions of experts diverge – as is documented, for instance, in the debate over Thurston’s geometrisation programme. Jaffe and Quinn provide two arguments as to why a tight border should nonetheless be maintained. First, rigour is, historically, the core of mathematics. Second, finality of proof are a norm for mathematicians’ success, rather than logical necessity. Rigour guarantees the reliability of the scientific literature, which is a precondition for mathematical progress. Otherwise, further work is confused and students are misled. 


Also, in Lakatos’s view, the borderline, if any, is drawn by the mode of verification: “If mathematics and science are both quasi-empirical, the crucial difference between them, if any, must be in the nature of their ‘basic statements’ or ‘potential falsifiers’.“
 Singular spatio-temporal statements, of course, do not falsify a mathematical theory. Contradictions are possible logical falsifiers. 
But if we insist that a formal theory should be the formalization of some informal theory, then a formal theory may be said to be ‘refuted’ if one of its theorems is negated by the corresponding theorem of the informal theory. One could call such an informal theorem a heuristic falsifier of the formal theory. Not all formal theories are in equal danger of heuristic refutation in a given period. For instance, elementary group theory is scarcely in any danger: in this case the original informal theories have been so radically replaced by the axiomatic theory that heuristic refutations seem to be inconceivable.

On the other hand, after the destruction of naive set theory by logical falsifiers, one cannot speak any more of set theoretical facts. Nevertheless, one might still continue to consider it to be the unifying basis of mathematics. Hence, the question of mathematical facts rests upon a subtle interaction between the informal and the formal level. For the Jaffe-Quinn debate, this entails that those objects of informal ‘Theoretical Mathematics’, which are blatantly inconsistent, can hardly count as quasi-empirical mathematical facts in Lakatos’s sense.


If one considers informal mathematics as a developmental stage in its own right, there arises the question of when to axiomatise an informal theory. Axiomatised theories, if consistent, are exempted from logical falsification, because they no longer have any counterexamples formalisable within the system. “[B]ut we have no guarantee that our formal system contains the full empirical or quasi-empirical stuff in which we are really interested and with which we dealt in the informal theory. There is no formal criterion as to the correctness of formalization.”
 Premature formalisation has its dangers. Probability theory without the Lebesque integral, or algebra without complex numbers would be much poorer theories and lack key theorems. But, the mitigated Euclideanist might respond to Lakatos’s claim that axiomatisation could have made clear the need for these concepts quite early on (See Section 3 below). Formalisation is, on the other hand, not the ultimate end of mathematics. Post-formal mathematics studies the consistency of the axiomatic system and provides a suitable metatheory. The main problem is the classification of possible representations. “[A]xioms in the most important mathematical theories implicitly not just define one, but quite a family of structures.”
 The Peano axioms, for instance, are not fulfilled only by the familiar natural numbers, but also by the so-called Skølem functions. Gödel’s Incompleteness Theorems show that the problem of unintended structures is quite generic in mathematics. It is almost omnipresent in mathematical physics, where many representations might be mathematically reasonable, but unphysical – a condition which is not always easily formalisable. Note that post-formal metamathematical arguments are usually informal and fallible, but can nevertheless propel a revision of axiomatisation.
1.2 The linear model of mathematical progress, or: what we learn from history

Jaffe and Quinn, instead, adhere to a linear growth model, as far as rigour is concerned. A considerable part of their paper and some responses deal with the controversial lessons certain historical examples teach. Aside from undisputed success stories, there are also some ‘cautionary tales’ that demonstrate that relaxing standards and relying on intuitions occasionally was a hindrance – or even disastrous – for a budding research programme.


The ideal attitude in the contact between mathematics and physics was assumed by mathematical physicists, such as “D. Hilbert, F. Klein, H. Poincaré, M. Born, and later H. Weyl, J. von Neumann, E.P. Wigner, M. Kac, A.S. Wightman, R. Jost, and R. Haag…These people often worked on questions motivated by physics, but they retained the traditions and values of mathematics”
, to wit: rigour, scholarship, and knowledge of the literature. Their speculations, on the other hand, were addressed to physicists. The main rule of conduct in such contacts is to treat the counterpart in the same manner as theoretical and experimental physicists respect each other.
 As Jaffe sketches in his Synthese paper, it is mainly physicists’ attitudes
 that have changed during this century. When the successful rules of quantum field theory became hopelessly difficult for mathematicians to tackle, a general antipathy towards allegedly unnecessary rigour emerged, one that lasted until the 1960s. Many mathematicians, on the other hand, preferred the ‘better-safe-than-sorry’ strategy.


Jaffe and Quinn discuss essentially three types of success stories. (i) Brilliant conjectures have inspired the development of whole fields. “The Hilbert problem list, of amazing breadth and depth, has been very influential in the development of mathematics in this century.”
 The Wightman axioms pioneered research in axiomatic quantum field theory. Now they have been supplanted by Haag’s nets of local algebras. (ii) Conjectures that were accompanied by technical details or even an outline of a proof, such as the Weil conjectures, have initiated entire research programmes. (iii) Famous conjectures can be highly motivating if they turn out to be the corollary of a general theorem. In the case of the programme to prove Fermat’s ‘Last Theorem’, this conjecture was reduced to another one, that was eventually proven in 1994.


“Most of the experiences with theoretical mathematics have been less positive… Straightforward mistakes are less harmful…Weak standards of proof cause more difficulty. [(i)] In the eighteenth century, casual reasoning led to a plague of problems in analysis concerning issues like convergence of series and uniform convergence of functions.”
 (ii) At the beginning of this century, the ‘Italian school’ of algebraic geometry “collapsed after a generation of brilliant speculation…In 1946 the subject was still regarded with such suspicion that Weil felt he had to defend his interest in it.”
 (iii) In the Analysis Situs, “Poincaré claimed too much, proved too little, and his ‘reckless’ methods could not be imitated. The result was a dead area which had to be sorted out before it could take off.”
 I will discuss the first example, one of Lakatos’s case studies, below. It roughly boils down to what Jeremy J. Gray, a historian of mathematics, emphasises for the Italian school: “[B]y modern standards it seems to lack rigour – but this perception is modern, and due to Zariski, who also brought new questions to bear (such as arbitrary fields). What it seemed to contain at the time was a rich mixture of results and problems.”
 Hirsch responds that Poincaré…proved quite a lot by the standards of the day – but there was little use for it because the mathematics which could use it was not sufficiently developed.”


In some cases, issues of publication and society are involved. René Thom proposed catastrophe theory to explain forms of physical phenomena. “The application was mathematically theoretical, and its popularisation, particularly by E.C. Zeeman, turned out to be physically controversial.”
 In his Response, Zeeman classifies catastrophe theory as rigorous mathematics, and sustains that the controversy was mainly provoked by “a few journalists and mathematicians who were ignorant of the science and did not fully understand the mathematics.”
 It is noteworthy, indeed, that Fermat’s Last Theorem, which represented probably the best publicly known open problem of mathematics, was proven in the old-fashioned style “featur[ing] one or two lone persons sharing their partial results only with the closest circle of friends over an eight year period and publishing the complete, final work but not intermediate ideas.”
 Thurston’s ‘geometrisation theorem’ was a “grand insight delivered with beautiful but insufficient hints, the proof was never fully published.”
 Hence, the literature did not contain a reliable basis, upon which to build. Theoretical mathematicians, on the other hand, collaborate world-wide by email and constantly race for priority in unrefereed electronic bulletin boards.


The way how Jaffe and Quinn classify successes and deficiencies in mathematics suggests characterising their picture of history as follows: (i) They prefer a linear growth that is initiated by a conjecture or a theoretical research programme which, though slowly and piecemeal, immediately takes off and yields rigorous results. (ii) Ruptures should best be avoided, because they hamper progress in the long run, although momentary growth might be considerable. (iii) Lasting historical progress requires establishing scholarship and a reliable literature. Moreover, Jaffe and Quinn expect scientific journals to provide the same reliability as textbooks. To sum up: although the authors do not write a piece of Whig historiography, they seem to wish that the growth of mathematics be guided to conform to a Whiggish account.


In his Response, Michael Atiyah lodges a protest against the linear growth model: 

[Jaffe and Quinn] present a sanitized view of mathematics which condemns the subject to an arthritic old age. They see an inexorable increase in standards and are embarrassed by earlier periods of sloppy reasoning. But if mathematics is to rejuvenate itself and break new ground it will have to allow for the exploration of new ideas and techniques which, in their creative phase, are likely to be dubious as in some of the great eras of the past. Perhaps we now have high standards of proof to aim at but, in the early stages of new developments, we must be prepared to act in more buccaneering style.
 

“However, a buccaneer is a pirate, and a pirate is often engaged in stealing,” writes Mac Lane in answer to Atiyah’s thunder, and furthermore, “[b]uccaneers have no place in mathematics.”
 Mac Lane’s argument quoted in Section 1.1 suggests that these pirates steel single cases and claim possession of genuine mathematical truth, although such truth is only attributable to general structures that are independent of the cases picked. To a buccaneer, Euclideanism seems to have a smack of maritime law. In Section 2.2, I will argue with Lakatos that mathematical buccaneers, as well, obey certain progressive rules of conduct.

1.3 Conjectures and research programmes

The historical part of the Jaffe-Quinn debate does not concern single theorems, but typical mathematical research programmes, initiated with a conjecture or a problem, and often supplemented with a proof proposal. These are a substantial, yet non-exhaustive (See 2.3) part of the hard core. The various proof techniques and concepts used, which often come from other branches of mathematics, represent the positive heuristics. According to Barry Mazur, conjectures “provide the skeletal architecture of a Theory.”
 Such architectural conjectures allow the formation of a unified research programme that is conditional on their truth. Hence, a research programme “is an attempt of the present to lay down architectural plans for the construction of future theories…The program for the classification of simple groups is a perfect example.”
 Jaffe and Quinn hold similar views and stress the organisational aspect: “The importance of large-scale, goal-formulating work (necessarily theoretical) is growing. We are in the age of big science, and mathematics is not an exception. The classification of finite simple groups, for instance, is estimated to occupy 15,000 journal pages!”
 But, asks Hirsch, “[h]as the classification been rigorously proved?…Is there an expert who claims to have read it all and verified it?”
 Still worse, “some of the parts that were farmed out by the organizers of the project have never in fact been completed.”


Mac Lane takes this case as an indication that the sequence for the understanding of mathematics is: intuition, trial, error, speculation, conjecture, proof. “The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians.”
 Recalling Mac Lane’s ontology cited above, it is doubtful whether he can really appraise the not yet completed classification programme as a genuine part of mathematics, just because of unifying inspiration and organisation. That the importance of informal methods depends on the branch of mathematics, is quite in accordance with Lakatos’s remarks about heuristic refutation (See 1.1).


Jaffe and Quinn hold – as most participants do – that any mathematical methodology must be universal for the whole discipline. In this respect, mathematics is more unified that physics. But, “mathematics is much more finely subdivided into subdiciplines than physics.”
 Moreover, some mathematicians change subject frequently or work simultaneously in more than one field. Indeed mathematics is acquitted of one important element of physical theory, to wit, the approximation of physical facts by a mathematical model. This concentrates a substantial number of theoretical physicists around some important problems or theoretical obstructions, such as the unification of forces, the solar neutrino problem, or string theory.
Can ‘Theoretical Mathematics’ itself be understood as a research programme? Taken in the narrow sense of the intersection of string theory and geometry, the answer seems to be affirmative. Its hard core would contain the implicit conviction that the basic concepts of the physical world, the strings, are also fundamental in a purely mathematical sense. If, on the other hand, ‘Theoretical Mathematics’ should be a separate domain within mathematics, it can hardly be considered a research programme because speculation alone (and across the finer subdisciplines) does not make up a hard core.


How broad are mathematical research programmes in general? Lakatos and Mazur agree that they evolve around an initial conjecture which, in the course of the programme, becomes modified by the hidden lemmas that are unearthed when attempting a proof. But how to weigh the respective import of conjecture and proof? When Jaffe and Quinn remark: “Conjectures range from brilliant to boring, from impossible to obvious,”
 the same holds for proofs. Proving deep conjectures, such as the Weil conjecture, is of great value because they entail many other theorems. Fermat’s Last Theorem represents the opposite extreme. As Rota notes, “Wiles’s proof appeals to an astonishing variety of distinct pieces of mathematics…. But the magnitude of this triumph brings out in stark contrast the insignificance of the conjecture that was proved.”

1.4. Prescriptions, Conventions and Crediting

Jaffe and Quinn issue three sets of prescriptions:
1. “Theoretical work should be explicitly acknowledged as theoretical and incomplete; in particular a major share of credit for the final results must be reserved for the rigorous work that validates it.”
 There might even be Theoretical Mathematics journals or electronic bulletin boards.

2. The reliability of the literature should be secured by a standard nomenclature that unambiguously flags ‘theoretical’ results as ‘conjectures’ (instead of ‘theorems’) that ‘predict’ (instead of ‘show’), etc.

3. “Research announcements should not be published, except as summaries of full versions that have been accepted for publications.”
 The quick communication facilities on the Internet invite research announcements’ being exaggerated in order to secure priority. After a proposal by Seiberg and Witten, “[b]asically ten years of Donaldson theory were re-established, revised, and extended during the last three weeks of October 1994.”
 This break-neck speed was mainly due to rapid communication on the Web.


As heuristic proofs, unlike their rigorous counterparts, are a matter of degree, Albert Schwarz suggests introducing coloured flags and a much more refined terminology that embraces the words pretheorem (if supported by details), fact (if reliable), statement (if heuristic proof), conjecture (if mere analogy), etc. His elaborate proposal on flagging
 is so complicated, that it would require an immense bureaucracy to classify work or approve classification of the authors. René Thom waxes satirical at the thought: 

1) a crib…denoting ‘live mathematics’, allowing change, clarification, completing of proofs, objection, refutation. 2) the tombstone cross. Authors pretending to full rigor, claiming eternal validity, may use this symbol as freely as they wish. This kind of work would constitute ‘graveyard mathematics’. 3) the Temple. This would be a label delivered by an external authority, the ‘body of high priests’..


Any such flagging requires an arbiter and a metatheory of rigour. Even if this could be carried through, and flags unanimously set, who is allowed to conjecture? Historically, conjectures were a privilege of those working in the field over a long time, not a matter for freshmen or students. If the conjecture is set, only a few experts will be likely to prove the conjecture. Hence ‘Theoretical Mathematics’ cannot be a real branch to specialise in or lecture about, nor is the promise of a corresponding journal very great.


Jaffe and Quinn reserve a major part of the credit for the person who finally proves the conjecture. But some conjectures are very detailed, and the decisive concepts and techniques were already present in them. Benoit Mandelbrot regards this crediting rule as being appallingly one-sided. 

Anyone who will give rigorous solutions to this enormously difficult problem [of percolation] will deservedly be hailed in mathematics, even if the work only confirms the physicists’ intuition. I hope that proper credit will be given for the individual physicists for their insights, but fear it will not. Will this mathematics be also noticed by physicists? Only if they prove more than was already known, or if the rigorous proofs are shorter and/or more perspicuous than the heuristics.
 

If we assume that the analogy between rigorous mathematics and experimental physics is true, then Mandelbrot is making a very Lakatosian point: in research programmes, theory is quite autonomous with respect to experimental testing. 

1.5. Demarcationism versus Elitism – the Role of the Individual 

Jaffe and Quinn’s prescriptions also raised some general protests: Atiyah “rebel[s] against their general tone and attitude which appears too authoritarian.”
 Armand Borel disagrees with their general thrust: “what mathematics needs least are pundits who issue prescriptions or guidelines for presumably less enlightened mortals.”
 In Lakatosian terminology, Jaffe and Quinn are outspoken demarcationists, who enact norms for mathematics’ being regarded as scientific, in order to guarantee – among other things – a democratic progress of science by securing the reliability of the literature, such that people outside great research centres or privileged discussion groups can also participate. 


Lakatos juxtaposes demarcationism and elitism. According to this latter view, “science can only be judged by case law, and the only judges are the scientists themselves.”
 A large part of scientific knowledge is inarticulable – at least outside the élite –, such that the producer, not the product, is assessed in first place. The standards of a scientific elite are only descriptively accessible to psychology and sociology. But, according to Lakatos, “[e]veryone, whether élitist or not, is bound to use normative third-world criteria, whether explicit or hidden, in establishing criteria for a scientific community.”
 For, what if experts disagree? – as, for instance about many examples raised in the Jaffe-Quinn debate. Lakatos does not accept Kuhn’s thesis that consensus is always quickly reached, even after scientific revolutions. Instead, the elitist has to resort to a Darwinian struggle of ideas, or to Hegel’s ‘cunning of reason’. “It is only this thin, ad hoc authoritarian/historicist doctrine which separates élitists of this [Kuhnian] kind from the sceptic”
 – Feyerabend, for instance.


Some disputants in the Jaffe-Quinn debate are elitists to various degrees. Mandelbrot writes that his “reading of history is that mankind continually produces some individuals with the highest mathematical gifts who will not (or cannot) bend to pressures like those proposed by JQ.”
 Or, yet to a lower degree, Thurston, who outlines a rather different conception of the mathematical enterprise and the individuals advancing it. Rota holds similar views. Both papers contain views strikingly similar to those of Lakatos, although at first glance their focusing on understanding or enlightenment contrasts with Lakatos’s orientation on statements. 


Thurston’s picture of mathematics is based on individual understanding - a doctrine closely related to elitism, on Lakatos’s account.
 “We are not trying to meet some abstract production quota of definitions, theorems and proofs. The measure of our success is whether what we do enables people to understand…mathematics.”
 Accordingly, the communication of ideas is an essential part of mathematics that is by no means exhausted by written sources and formal proofs, which Jaffe and Quinn regard as primary.
 “By informal contact, people learn to understand and copy each other’s way of thinking, so that ideas can be explained clearly and easily.”
 Mathematicians (students foremost) continually learn new formal languages and build mental models of mathematical facts. “When the idea is clear, the formal setup is usually unnecessary and redundant.”
 Thus, “the flow of ideas and the social standard is much more reliable than formal documents. People are not very good in checking formal correctness of proofs, but they are quite good at detecting potential weaknesses or flaws in proofs.”
 


On this basis, Thurston criticises “our strong communal emphasis on theorem-credits [which, contrary to Jaffe and Quinn’s rules] has a negative effect on mathematical progress. If what we are accomplishing is advancing human understanding of mathematics, then we would be much better off recognizing a far broader range of activity…Soccer can serve as a metaphor“
 for the various roles single mathematicians play in a successful group. Some ‘point people’ in this ‘network of ideas’ will be more likely to score than others. But, “there are theorems in the path of these advances that will almost inevitably be proven by one person or another.”
 This rather Duhemian account of scientific progress makes clear that the soccer metaphor also refers to a third world of ideas. The ‘points’ are the steps in an advancing research programme.


Thurston’s personal experiences illustrate two different models of mathematical progress. He rapidly proved some dramatic theorems about foliations and “documented [them] in a conventional, formidable mathematician’s style,”
 without providing the background which permitted people to follow his thoughts and gain their own credits by proving new results. This eventually led to an evacuation of the field. When posing the geometrisation conjecture, Thurston, instead, focused on providing the intellectual infrastructure and the context for this result.

What mathematicians most wanted and needed from me was to learn my ways of thinking, and not in fact to learn my proof of the geometrization conjecture for Haken manifolds. It is unlikely that the proof of the general geometrization conjecture will consist of pushing the same proof further.…Not all proofs have an identical role in the logical scaffolding we are building for mathematics. This particular proof has only temporary logical value, although it has a high motivational value in helping support a certain vision for the structure of 3-manifolds.
 

When the general proof of the geometrisation conjecture is found, “proofs of special cases are likely to become obsolete.”
 At this point, Thurston’s conception of proof appears rather Lakatosian. Proofs generally make theorems reliable, but their heuristic value may become even more important. Even if they always remain formally true, theorems and proofs have a limited lifetime within the mathematical research programme. Thus, progress cannot be measured by the number of theorems deduced, but by their – usually informal – contextual significance within a research programme.


Rota demands that “[a]ll normative assumptions shall be weeded out.”
 Even more typical for an elitist position – in Lakatosian terms – is his explicit adherence to the phenomenological Verstehen-doctrine. “[M]athematicians are not satisfied with proving conjectures. They want the reason”
 which corresponds to the definiteness of proof. Mathematicians were, for instance, not satisfied with the Cartan classification of simple Lie groups until they discovered the reason for the existence of five exceptional groups in a very unusual property of the group SO8. Such proofs convey enlightenment which, accordingly, becomes an objective property of mathematical statements that keeps the discipline alive. Mathematicians, so Rota, typically eschew talk about enlightenment because it admits degrees. Instead, they resort to degreeless beauty and commit the ‘light-bulb mistake’; to wit, they disguise extensive conceptual buildups and long-winded arguments afterwards as instantaneous realisations. “Mathematical beauty and mathematical truth share in the fundamental property of all objectivity, that of being inescapably context-dependent.”
 In order to prevent arbitrariness, elitist Rota has to assume substantial agreement among mathematicians of a given historical period and context as to which theorems are beautiful or rigorously proven, thus presupposing what Lakatos called the ‘authoritarian/historicist doctrine’. 


Husserl’s phenomenology emphasises mathematical progress – as Lakatos’s research programmes do. Rota mentions two aspects. Ugliness is typically a major motivation to refine theories and arguments. Possibility is yet more central. “[T]he reasons for a theorem are found only after digging deep and focusing upon the possibilities of the theorem. Once such reasons are found, the choice of particular formal statements that express them is secondary.”
 Rota even proposes “that a rigorous version of the notion of [objective] possibility be added to the formal baggage of metamathematics.”
 The main import of Wiles’s proof of Fermat’s Last Theorem were the possibilities it opened up. Although Rota does not mention the Jaffe-Quinn debate, the possibilities revealed by Witten’s ‘theoretical’ results enjoy the same property. Rota’s notion of possibility seems rather close to Lakatos’s excess content and excess corroboration that make a research programme progress. Rota’s view of the relation between proof and conjecture is again Lakatosian, though with a somewhat different justification. “The error [of the standard ‘Euclidean’ conception] lies in assuming that a mathematical proof has been devised for the explicit purpose of proving what it purports to prove.”
 Instead, lemmas may be more important than the conjecture, and the proof may be reorganised to make this manifest. The initial conjecture then becomes a simple corollary. In contrast to Lakatos, Rota holds that the dialectics between conjectures and proofs is supported by formalisation because “exchangeability of theorem and proof”
 is a main virtue of the axiomatic method. 

2. What Lakatos Can Contribute to the Debate

In my discussion of the various positions taken in the Jaffe-Quinn debate, I have repeatedly alluded to Lakatos’s philosophy. It is high time now for a concise and coherent account of the method of proofs and refutations and the MSRP. In this, I will focus on issues important for mathematical physics which – in line with Uhlenbeck and others – is understood in a wider sense than one which embraces only string theory and geometry.

2.1 The various stages of the interrelation between conjectures and proofs

Jaffe-Quinn and Lakatos share a common starting point: ‘Proof’ stands “for a thought-experiment – or ‘quasi-experiment’ – which suggests a decomposition of the original conjecture into subconjectures or lemmas, thus embedding it in a possibly quite distant body of knowledge.”
 Thought-experiments follow an initial naive trial and error phase. In the famous example of the Euler-Poincaré conjecture, around which Proofs and Refutations is built, they correspond to a stretching and a triangulation of the polyhedron. The lemmas, or subconjectures, ensure that the ‘thought-experimental’ steps of the proof are permissible, such that the proof can validate the conjecture. But, quite similar to the development of experimental techniques in science, the decomposition is informative even if validation is not obtained. 


Lakatos modifies Popper’s critical fallibilism with regard to two core aspects. First, fallibilism extends to mathematics because the latter is quasi-empirical. Second, refutation does not entail immediate rejection – as it was the case in Popper’s Darwinist account. Just as most scientific theories are born refuted, mathematical theorems are heuristically defective because they typically constrain the informal stuff admitted by the conditions. Refutations are suggested by counterexamples that either concern the conjecture (global counterexamples) or the lemmas (local counterexamples). Hence, there are three possible types. (i) Global, but not local counterexamples logically refute the conjecture. They are what most mathematicians would call a counterexample. (ii) If a global counterexample is also local, it does not refute the theorem, but confirms it. (iii) Local, but not global counterexamples show a weakness of the theorem, such that one has to search for modified lemmas. Cases (ii) and (iii) are not genuinely logical, but heuristic counterexamples.


The imaginary class of Proofs and Refutations discusses various strategies if counterexamples emerge. The first strategy, monster-barring, rejects the global counterexample as “a monster, a pathological case”
 of a polyhedron by modifying the latter’s definition in a suitable way. It decreases the domain of validity of the conjecture – only. But counterexamples abound despite such linguistic ad hoc remedies. Theoretical physicists often apply this strategy by providing physical reasons for a ‘natural definition’ of the mathematical concept in question or, more operationally, by rejecting ‘pathologies’ as beyond the scope of the studied model. This method conveys a justification that cannot be obtained in mathematics proper, because there is no factual basis for specifying some property as a concept’s essence. The history of theoretical physics teaches us that excluding pathologies is never final, because almost all mathematical structures eventually turn out to be of use to physicists.


The next strategy, exception-barring, restricts the domains of both the conjecture and of the guilty lemma. But the withdrawal could have been too radical, and the method still does not exploit the proof. Monster-adjustment, the third strategy, also concerns the domain of validity of the basic concepts. “Monsters don’t exist, only monstrous interpretations,”
 says pupil Rho. This therapeutic method strives to see an example in the alleged counterexample by finding a suitable interpretation. In a footnote, Lakatos rejects monster-adjustment: “Nothing is more characteristic of dogmatist epistemology than its theory of error.”
 Later, however, he noted that monster-adjustment could be empirically progressive in science.
 Indeed, empirical science might ease the main problem of the monster-barrer. If a variety of interpretations of a mathematical structure are more or less on a par, physical facts might single out the proper one for mathematical physics. In quantum field theory, for instance, the choice of a representation of the symmetry group is literally unavoidable, because there are infinitely many inequivalent representations. Still, one might consider this (quasi-)empirical aspect to be an unwanted bias for mathematics. Mac Lane holds “that a mathematical structure is a scientific structure but one which has many different empirical realizations…a careful formulation must rest on ideas independent of any chosen examples.”
 Nonetheless, the recent developments in geometry have shown that physics, at least, provides heuristic motivation.


In Cauchy’s time, mathematics matured through an appropriate estimation of proof-analysis. The method of lemma-incorporation “upholds the proof but reduces the domain of the main conjecture to the very domain of the guilty lemma.”
 In this way, the lemma refuted by the counterexample is built into the conjecture. Hence, proofs improve a conjecture, even if they do not prove it. This “displays the fundamental dialectical unity of proof and refutations,”
 that is ultimately rechristened as the method of proof and refutations. But on principle, one has to incorporate expectable, but not yet known, counterexamples. This reveals that lemma incorporation proceeds through constant overstatements, by attempting to keep as much as possible from the initial thought-experiment and its heuristics. While this method emphasises the heuristic role of proof, exception-barring focuses on validity and advances through a series of understatements. Accordingly, it corresponds to the ‘better-safe-than-sorry’ strategy prescribed by Jaffe and Quinn. Lakatos stresses that a careful proof-analysis, which constantly suspends unnecessary restrictions, makes the method of proof and refutations “a limiting case of the exception-barring method”
. It is important to note that exception-barring and lemma-incorporation already take place on the level of research programmes – a term coined only after Proofs and Refutations. In fact, hidden lemmas made explicit by incorporation often enter a programme’s hard core. 


As a good demarcationist, Lakatos turns the historical lessons into five methodological rules:

1. If you have a conjecture, set out to prove it and to refute it. Inspect the proof carefully to prepare a list of non-trivial lemmas (proof-analysis); find counterexamples both to the conjecture (global counterexamples) and to the suspect lemmas (local counterexamples).

2. If you have a global counterexample discard your conjecture, add to your proof-analysis a suitable lemma that will be refuted by the counterexample, and replace the discarded conjecture by an improved one that incorporates that lemma as a condition. Do not allow a refutation to be dismissed as a monster. Try to make all ‘hidden lemmas’ explicit.

3. If you have a local counterexample, check to see whether it is not also a global counterexample. If it is, you can easily apply Rule 2.

4. If you have a counterexample which is local but not global, try to improve your proof analysis by replacing the refuted lemma by an unfalsified one.

5. If you have a counterexample of any type, try to find, by deductive guessing, a deeper theorem to which they are counterexample no longer.

In a later footnote, Lakatos recalls his “deliberate mixed usage of the justificationist term ‘proof’ and of the heuristic term ‘proof’.”
 More than being a mere by-product (as Jaffe-Quinn hold), heuristics stands on a par with rigorous justification. Rigour decreases the heuristically gained content, such that rule 4 becomes a necessary counterweight. As with the various levels of heuristic insight gained during the development of modern mathematics, there also occured different levels of rigour.  These “differ only about where they draw the line between the rigour of proof-analysis and the rigour of proof, i.e. about where criticism should stop and justification should start.“
 At this point, the editors have added a footnote stating that Lakatos underplayed the achievements of rigorous proofs. By accepting a rather modest logical metatheory, all the doubt is cast on the justification of the axioms.
 To my mind, this important qualification cannot easily be turned into a clear distinction between both levels because, according to Lakatos’s anti-inductivist and anti-intuitionist methodology, it is mainly proofs that contribute to concept-formation, on which the axioms are based. 


Exploiting the heuristic possibilities of the proof might overthrow the initial conjecture and supplant it by newly formulated theorems. “Descartes’s and Euler’s ‘naive conjecture’…was irrelevant and superfluous for the later development”
. Although of considerable motivational value, it ceased, in rational reconstruction, to belong to the core of the research programme that led to algebraic topology. Moreover, “different proofs [better: ‘improofs’] of the same naive conjecture lead to quite different theorems.”
 Understanding rule 4 in this way leads to the method of proofs and refutations. The important point for the Jaffe-Quinn debate is that Lakatos’s methodology of mathematical growth does not play down the role of proofs. Emphasising their heuristic role, on the contrary, puts proof thought-experiments into the core of historical development. The ‘speculations’ that make up ‘theoretical mathematics’ only concern single conjectures – be they supplemented with a proof-technique or not.


According to Lakatos, not even naive conjectures start from facts – be it inductively or intuitively. “[T]he proof is already there!”
, pupil Zeta remarks. “The naive logic of conjectures and refutations has no starting point – but the logic of proofs and refutations has: it starts with the first naive conjecture to be followed by a thought-experiment.”
 By keeping the latter despite already existing refutations by counterexamples, deductive guessing replaces naive guessing. Later, Lakatos considered it to be a leitmotiv of Proofs and Refutations that “one may bravely – and profitably – go on to ‘explain’ a hypothesis known to be false.”
 One may not even need a conjecture to start proving or testing by means of thought-experiments. Being ready to give up the naive conjecture, a more general theorem might be easier to prove. An extended version of the method of analysis-synthesis driven by heuristic and validating thought-experiments contains possible occult hypotheses. For the fundamental theorem of algebra, or for the evaluation of certain real integrals, the introduction of complex numbers is a necessary prerequisite. For geometry, string theory has recently provided brilliant occult hypotheses and new concepts that were generated by Witten’s heuristic proofs. Hence, from a Lakatosian perspective, ‘Theoretical Mathematics’ is not an intermediate step in the sequence from conjecture to proof, but rather an indispensable element of the extended analysis-synthesis circuit.


Over the course of history, concepts grow – sometimes even by rather wild extensions, such as the Peano curve. Lakatos argues that the monster barrers did not contract concepts, but that the refutationists did expand them to cover objects unintended by the naive conjecture. “Often, as soon as concept-stretching refutes a proposition, the refuted proposition seems such an elementary mistake that one cannot imagine that great mathematicians could have made it.”
 But such an accusation, which also characterises Jaffe and Quinn’s ‘cautionary tales’, neglects precisely that sort of concept growth that reaches beyond a mere change in rigour. In this respect, most negative Responses to ‘Theoretical Mathematics’ still have too narrow a focus.

2.2 How to historically appraise inconsistent mathematics

Lakatos severely criticises the widespread view that an ‘informal’ proof is a formal proof with gaps. Proofs containing logical gaps – or, more precisely: if experts agree that the argument will fail if logically formalised – are better called ‘quasi-formal’. “[T]o suggest that an informal proof is just an incomplete formal proof seems to me to be to make the same mistake as early educationalists did, when, assuming that a child was merely a miniature grown-up, they neglected the direct study of child-behaviour.”
 History of mathematics can be appraised only by a philosophy that sufficiently acknowledges informal growth. Justificationists unduly maximise historical continuity by separating the hard formal kernel that holds true still today from the erroneous ‘metaphysical’ interpretation. In the same manner, Jaffe and Quinn separated the two groups of informal reasoning as to whether the conjecture in question could subsequently be proven, and whether it fostered continuous growth. This leads to the problem “of how to appraise inconsistent theories like…Dirac’s delta function. Are invalid theories beneath contempt?…Can they be appraised only if a posthumous reconstruction has saved them and proved them to be, if not respectable, at least excusable ancestors of respectable theories which look consistent and rigorous by the standards of the day?”
 So Lakatos’s criticism of an exclusive focus on rigour extends to the past. Hence, Poincaré’s results are still not fully assessed if one insists (against Jaffe-Quinn) that they matched the standards of the day – as some respondents did. Historical appraisal cannot be guided by the justificationism of logical positivists.
 Instead, heuristic power – or possibilities, in Rota’s sense – decides the faith of a research programme that was ventured from an initial conjecture. Formal arguments alone, however, cannot make up the core of a research programme without taking into account ‘metaphysical’ heuristics. The latter might even be linked to the heuristic support derived from physics – as could have been the case with Dirac’s delta function, which had become part and parcel of field theory long before it was made mathematically rigorous by contriving the notion of generalised functions. 

2.3 On the methodology of scientific research programmes

It is well-known that, at the time of his death, Lakatos had planned to apply MSRP to the history of mathematics. A footnote in the seminal paper “Falsification and the methodology of scientific research programmes” reads as follows: “Unfortunately in 1963-4 I had not yet made a clear terminological distinction between theories and research programmes, and this impaired my exposition of a research programme in informal, quasi-empirical mathematics.”
 Recent investigations
 show that qualifications of MSRP are called for. Before dwelling upon this point, I shall give a brief outline of the original MSRP in empirical science because the present paper, after all, deals with the interactions between theoretical physics and mathematics.


A research programme is defined by its hard core, which is tenaciously protected by negative heuristics. It is surrounded by a protective belt of quite flexible positive heuristics, which constantly put forward auxiliary hypotheses against anomalies. The programme supplies a conceptual framework and contains a powerful problem solving machinery. As MSRP accepts the conventionalist position that there is no sharp distinction between theory and experiment, these do not encounter each other one-by-one; rather, sequences of theories within a research programme compete with rivals in the face of a larger body of empirical evidence. This makes it possible to establish internal criteria of progress. A programme is progressive if each theory has excess empirical content over its predecessors, and if some of the predicted novel facts are corroborated. A programme is degenerating if its theories are only fabricated to accommodate known facts by way of a (content-decreasing) linguistic reinterpretation. 


So far, all this fits quite neatly to Lakatos’s philosophy of mathematics, which emphasised the inseparability of conjecture and proof. Mathematical progress was fostered by content-increasing heuristics, not by linguistic monster-barring. Lakatos’s concept of growth elucidates why string theory has to seek the union of mathematics to get its excess content corroborated – at least as a mathematical quasi-fact. MSRP seems to be a reasonable approach, if theories abound. If, in contrast, theories grow more slowly than empirical facts are provided, Lakatos could call hardly any programme progressive. Being aware of this difficulty does not cure it: “if exactly the same theories and the same evidence is rationally reconstructed in different time orders, they may constitute either a progressive or a degenerative shift.”
 To Lakatos, unifications or classifications that are usually held in high regard by mathematicians cannot count as progressive problemshifts, unless they lead to concepts of results unknown so far, such as the five exceptional Lie groups.


The ambiguity of the notion of progress is mitigated by Lakatos’s patience in letting a theory develop. “One must treat budding programmes leniently: programmes may take decades before they get off the ground and become empirically progressive. Criticism is not a Popperian quick kill, by refutation. Criticism is always constructive: there is no refutation without a better theory.”
 Content-decreasing stratagems can be temporarily employed, if anomalies abound and technical difficulties slow down possible predictions. Then one does not accept anomalies as genuine counterexamples, and one allows for a certain autonomy of theory. “Mature science consists of research programmes in which not only novel facts but, in an important sense, also novel auxiliary theories, are anticipated; mature science – unlike pedestrian trial-and-error – has ‘heuristic power’…[which] generates the autonomy of theoretical science.”
 Hence, MSRP justifies the autonomy of ‘theoretical mathematics’ – even if it is not empirically progressive due to failed proofs – but rejects its neat separability from rigorous mathematics. 


By virtue of this autonomy, no instant rationality of science obtains, and there exists only a regulative principle. “This requirement of continuous growth is my rational reconstruction of the widely acknowledged requirement of ‘unity’ or ‘beauty’ of science.”
 Here, Lakatos’s and Jaffe-Quinn’s intentions converge. Although the former allows vastly more ruptures in the life and competition of theories than the latter, on a very large scale, he too enacts a norm to avoid evolutionary decay. To my mind however, it is not clear whether this regulative principle is strong enough to guarantee the balance between theory and experiment, or between conjecture and proof, as MSRP tacitly presumes.


After all, it seems that the rationality scheme of progress versus degeneration can be quite easily translated from science to mathematics. A programme is theoretically progressive if it proposes fruitful concepts and techniques; it progresses empirically if it solves interesting problems (particularly ones that were posed in another field). Increasing the stock of theorems by number is a bad measure, because something follows from any consistent concept. This would correspond to switching on a measurement apparatus and waiting for anything whatsoever to be recorded. 


The issue of what stuff, exactly, a methodology of mathematical research programmes could be all about, seems less clear. Here, Lakatos’s quasi-empirical ontology needs further specification. In a recent paper, David Corfield argued that “rivalry between research programmes concerns high level issues.”
 These levels come about because, in comparison to physical science, “[m]athematics appears to have an extra degree of freedom at this [basic] level [where battles are usually fought out] which makes it improbable that programmes will be in direct competition for precisely the same territory.”
 Hard cores do not simply boil down to axioms, and there are no universally agreed-upon facts – as it was the case in the paradigmatic competition between ondulatory and emission theory in 17th and 18th century optics. High level questions, beliefs or general aims, might enter the hard core, shifting emphasis away from conjectures as the sole driving force of research programmes. In fact, conjectures might “be decided one way or the other by an uninformative proof or an uninstructive counterexample.”
 


Corfield’s proposal goes beyond Lakatos’s above-quoted observation that proofs and refutations might even start without a conjecture, and it brings understanding and enlightenment into the game. This “would bring the hard core and positive heuristic closer, thereby threatening to collapse the whole construction”
. But this move seems necessary, if one wants to assess the phenomenon – quite common in mathematics – of two theories’ emerging from a single common problem, or converging to form one, although they do not dispute the same area of quasi-empirical facts. One might, from this point of view, answer Jaffe-Quinn’s remark that “mathematics is much more finely subdivided into subdiciplines than physics, because the methods have permitted a deeper penetration into the subject matter,”
 by saying that the subject matter is more finely subdivided, as well. One might adopt Koetsier’s (1991) terminology here, distinguishing global research traditions, research programmes and particular research projects. On all three levels, nonetheless, mathematics is tied together by several links, be they the foundation of most disciplines on set theory, rather common standards of rigour, or many theorems that link entire fields. Thus, David Sherry (1997) goes a bit far in stressing that the plurality of theories in mathematics, which is due to the larger degree of freedom in creating new concepts, supersedes any brand of fallibilism. 

2.4 The role of time scales and the social effects of research programmes

As discussed in Section 1.5, Lakatos favoured demarcationism without, however, designating any authority that enacts and controls the norms – a role Jaffe-Quinn attributed to the discipline’s leading journals. The main rule in MSRP is that all research programmes openly admit their current scores and that their representatives precisely specify the conditions under which they are willing to consider a claim refuted. This closely corresponds to Jaffe’s “plea for ‘Truth in Advertising’”
 


There is no absolute and final truth, because “the hallmark of scientific behaviour is a certain scepticism even toward one’s most cherished theories”
. Thus, it is even advisable to 

issue only temporary certificates of acceptance: if a theory is accepted1 [because of its excess empirical content] but does not become accepted2 [corroborated] within n years, it is eliminated; if a theory is accepted2 but has had no lethal duels for a period of m years, it is also eliminated.
 

Similarly, Morris W. Hirsch proposes to date proofs: 

If after ten years no errors have been found, the theorem will be generally accepted…If any thirty year period elapses without publication of an independent proof, belief in the theorem’s correctness will be accordingly diminished. This would allow for the reality that concepts of proof and rigor change.
 


Datedness of acceptance should be viewed as a corrective to autonomy of theory. This is particularly pressing in mathematics, where the larger degree of freedom allows the proof of many quite idiosyncratic and uninteresting theorems. But the time scale depends on the subdicipline; in string theory, even one month is quite long. Lakatos emphasises that priority disputes are perfectly functional if two research programmes compete. But one might wonder if this extends down to the level of research projects, research groups or individuals, because elitism could re-enter through the back door by allowing only some research centres to compete. On the other hand, overly bold claims of key scientists might lead astray a whole industry. For this reason, Jaffe and Quinn rightly insist on maintaining independent control in the age of the Web.

3. What Lakatos Could Have Contributed to the Debate 

In this final section, I will discuss three topics where modifications of Lakatos’s methodology be required in order to make it applicable to mathematical physics. 

3.1 Axiomatisation and the Benefits of Euclideanism

It has not escaped most readers’ attention that there is a rupture between the first and the second part of Proofs and Refutations. With Poincaré, a conjecture about polyhedra changed into a theorem about the dimensions of certain vector spaces by “translating non-Euclidean informal theories with vague, obscure terms and uncertain inferences…into these already Euclidean theories”
, such as arithmetic, geometry, logic, or set theory. The teacher’s attitude is a mixed one: “I do not like your philosophy, but I still may like your proof.”
 It seems highly arguable whether such an attitude is consistent. Already, the editors of Lakatos’s work noted his later appreciation of formal logic and ended the dialogue in this spirit. David Corfield collects further textual evidence “that in many respects he [Lakatos] inclined further towards the logicist pole than has been thought.”
 


Within the Popperian framework, another problem emerged: the irrefutability of ‘rubber-Euclideanism’. “[O]ne can always stick to one’s hopes of deriving them from some deeper layer of self-evident foundations.”
 Lakatos was also unaware of the impacts of the axiomatic method on natural science. So Gamma comments that the translation programme “certainly will not cover physics. You will never translate wave-mechanics into geometry.”
 As a matter of fact, mathematical physics has, to date, succeeded in achieving considerable part of this goal.


The main theme within Lakatos’s philosophy of mathematics is the relation between formal and informal theories. “Up to now no informal mathematical theory could escape being axiomatized.”
 Lakatos warns against premature formalisation, which might not exploit all the possibilities of the informal theory. Jaffe-Quinn, on the contrary, caution not to wait too long. Is, at the bottom line, all formal mathematics contingent on some quasi-empirical stuff? When Lakatos claims that “[t]here is indeed no respectable formal theory which does not have in some way or another a respectable informal ancestor”
, Corfield “challenge[s] anyone who holds this view to try to find an informal ancestor of an Eilenberg-Mac Lane space or a spectral sequence dating from the pre-axiomatic stage of algebraic topology.”
 Indeed, axiomatisation seems to be a precondition of mathematical growth in the 20th century that cannot be reduced to the structuralist austerity doctrine. Many conjectures (and their heuristics) are only expressible after an axiomatic framework has been set up. Mazur even considers both to be twins, because “[p]erhaps the growth of conjecture just mirrors the growth of modern axiomatic method”
 since Hilbert. Yet, although this parallel might hold for conjectures that “provide the skeletal architecture of a Theory”
, it does not hold for the humbler Lakatosian ones, which dialectically interact with single proofs. Another virtue of axiomatisation is that it “facilitates interaction between apparently different areas of mathematics [on the linguistic level], an essential feature of this century, and has helped to overcome the compartmentalization of earlier centuries.”
 But – one might ask – what if two research projects (or programmes) in different stages of formalisation meet? To this I shall now turn.

3.2 Coexistence of Research Programmes

Although MSRP does not consider mere unification a progressive problemshift, it is beyond doubt that the linking of two entire areas of mathematics represents major progress. This arouses suspicion that MSRP eventually cannot accommodate any relationship between theories other than that of competition – at least after a due grace period for the younger one. Not even theoretical and empirical identity prevent this, in the case that two such theories belong to different research programmes. Admittedly, if competition leads to the elimination of pointless formal results that just multiply language, then this amounts to a wholesome purge. On the other hand, independent evidence is perhaps the best support any scientific fact could obtain. The fact that the Loschmidt-Avogardro number could be measured by several methods that belonged to rather distinct fields of physics provided strong support for atomism. The coexistence of theoretical frameworks, such as Schrödinger’s and Heisenberg’s equivalent formulations of quantum theory, allows one to choose the easier method for computation, thereby increasing the heuristic power. Why halve your tool kit? 


Although mathematical theories hardly dispute an identical territory of facts, independent proofs play a major role – not only in justification, but also in simplification. First proofs are usually very clumsy. Considerable credit is still given for subsequent simplifications that unearth new quasi-facts hidden in the theorem. Even if a certain level of definiteness is reached, two or more equally simple and beautiful proofs may, in some cases, remain, connecting the theorem to different fields of mathematics. In Proofs and Refutations, Lakatos was able to play down this possibility, because all alternatives proposed were weaker in content than those deriving from the main heuristic. But already, his insistence on the quasi-empirical character of mathematics suggests that independent proofs increase verisimilitude, just as independent experiments do.


To apply the present considerations to the Jaffe-Quinn debate, one has to understand what happens if two proofs belong to research programmes that are at a different stage of axiomatisation – such as geometry and string theory. Should the stricter of the two standards prevail consistently throughout the argument? This, however, might considerably hamper overall progress by restricting the heuristic power of the budding programme to which  the less rigorous proof belongs. So it seems closer to the spirit of Lakatos’s philosophy of mathematics to equilibrate reliability and heuristic power, and set standards of rigour in accordance with the specific aims of the intersection of the two programmes, even before this field has itself become a programme. For example, where ‘Schrödinger Operators’, a functional-analytic technique in studying atomic physics, are at issue, heuristics does not have much say, because the field has a clear-cut conceptual framework, and successful proofs usually prove what they intend to prove. String theory, on the contrary, has still to discover its basic physical and mathematical concepts. What distinguishes it from other encounters between mathematics and physics, is the lack of foreseeable empirical corroboration. Lakatos’s quasi-empirical ontology would, in principle, allow for the compensation of lacking mathematical rigour by way of empirical corroboration. For this to happen, however, a core Popperian dogma has to go.

3.3 Lakatos’s rejection of induction

Proofs and Refutations contains a sequence in which induction is rejected as a way to find conjectures. After pupil Beta’s attempt to list all possible polyhedra is turned down, he claims that at some point induction has to appear: 

Beta [to Zeta]: …You only pushed back the inductive starting point further: now to the statement that V-E=1 for any edge whatsoever. Did you prove or did you observe that?

Zeta: I proved it. I knew of course that for a single vertex V=1 (Fig.1). My problem was to construct an analogous relation…

Fig.1

Beta (furious): Didn’t you observe that for a point V=1?

Zeta: Did you? (Aside, to Pi): Should I tell him that my ‘inductive starting point’ was empty space? That I began by ‘observing’ nothing?


Is this really a reductio ad absurdum of mathematical induction? The teacher believes so: “Facts do not suggest conjectures and do not support them”
 Even if one concedes to Lakatos that deductive guessing and thought-experiments reach back to the earliest stage of mathematics, and that the initial conjectures are quickly forgotten, it seems implausible – if such an inductive term is permitted here – that trial and error would be entirely blind. In his later years, Lakatos himself was more liberal: 

There is then a pattern by which one gets from naive Popperian guessing to the method of proofs and refutations (not conjectures and refutations), and then one step further, to mathematical research programmes. This patters refutes the philosophical claim that the heuristic source of research programmes is always some big metaphysical vision. A research programme may be of humbler origin: it may originate in low-level generalisations. My case-study in a sense rehabilitates inductive heuristic: it is frequently the study of facts and the practice of low-level generalisations which serve as the launching pad for programmes. Mathematics and science are importantly inspired by facts, factual generalizations and then by this imaginative deductive analysis.

He also explicitly keeps his distance from Popper in this respect: “The infallibilist heuristic of deducing theories from facts certainly failed — but to replace it by the Popperian heuristic of speculations and refutations was to pour the baby along with the bathwater”
. 


On the general level of reliability of science as a whole, Lakatos gave induction a role that was even justificatory. In “Changes in the problem of inductive logic”, he introduces the notion of acceptance3: the estimation of a theory’s future performance.
 Its reliability requires a general inductive principle, which links corroboration, and verisimilitude, which represents a bit of fallible speculative metaphysics. Applied to mathematics, this is still a far cry from Platonism.
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