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Abstract:  Economist Frank Knight drew a distinction between decisions under risk and decisions under uncertainty.  Despite the significance of this distinction for decision theory, we argue that there has been inadequate attention to the difficulties involved in classifying decision situations into these categories.  Using the risk assessment of carbon nanotubes as an example, we show that it is often unclear whether there is adequate information to classify a decision situation as being under risk as opposed to uncertainty.  We conclude by providing two (compatible) suggestions for responding to these difficulties: (1) treating decisions as real-world experiments; and (2) promoting broadly based deliberation about quantitative information.
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Introduction

In the early twentieth century, the economist Frank Knight (1921, ch. VIII) famously drew a distinction between decision-making under risk and decision-making under uncertainty.
  According to Knight, decisions under risk occur when decision makers can assign probabilities to the range of outcomes associated with the actions available to them.  In contrast, decisions under uncertainty occur when there is insufficient information to assign numerical probabilities to outcomes.  Much subsequent work in decision theory has built on this distinction.  Some figures have proposed further categories, such as the “great uncertainty” that occurs when decision makers cannot even identify the major outcomes that could result from their actions (see e.g., Hansson 1996).

It is less well known that Knight founded this distinction on a three-fold categorization of types of probability: “a priori probability,” “statistical probability,” and “estimates” (Knight 1921, ch. VII).  This categorization is itself founded on the possibility of identifying a homogeneous class of instances (trials of a probabilistic process).  “A priori” probability applies to cases where we can identify an absolutely homogeneous reference class of instances.  Typical examples are afforded by games of chance, where we are in a position more or less to define what counts as a “trial” (throw of a die, draw of a card).  Probabilities in this case can be assigned on the basis of mathematical principles alone.

“Statistical” probability applies to cases where we can identify a class of instances that are “sufficiently similar,” or “homogeneous ignoring certain unknown factors.”  Probabilities are assigned in this case via empirical study.  Knight’s example is an insurance company’s determination of the probability of a building burning down.  The determination is made by studying the rate of fire amongst the class of all “sufficiently similar” buildings.  Of course, judgments must be made about what constitutes “sufficient similarity,” and there is a lot of room for discussion about how such judgments are made, but there is not even the pretense that the reference class of “buildings similar to this” is entirely homogeneous.  It is well understood that if we were able to make a more fine-grained categorization, some buildings in our current reference class would turn out to be more susceptible to fire than others.

Finally, “estimates” apply to cases where the object of our interest is sufficiently dissimilar to all other known cases that no statistical study is possible.  Knight emphasizes, however, that even in these cases, as a matter of practice, people assign likelihoods (which he calls “estimates”), which may be represented as numbers between 0 and 1, but also in terms of ‘categories’ (such as “negligible”, “likely”, etc.).  Such estimates may originate from a diversity of sources, ranging from gut feeling to careful scientific study.  Moreover, Knight points out, we even sometimes assign likelihoods that these estimates are accurate (“estimates of estimates”), and finally, we can also sometimes assign “statistics” to an estimate, for example, by studying the number of times that a given individual’s estimates have been accurate.

Knight identifies decision-making under risk with those situations where we have statistical probabilities, and decision-making under uncertainty with those situations where we have estimates (whether represented numerically or not).  A good deal of work in decision theory since has focused on identifying promising strategies for making decisions under risk and under uncertainty.  For decisions under risk, decision makers are typically advised to assign utilities to all possible outcomes, to weight those utilities based on the probabilities that those outcomes will occur, and to choose the act that will maximize expected utility (Resnik 1987).  Decisions under uncertainty are more complex, and decision theorists have proposed a wide variety of rules for guiding these decisions (see e.g., Hansson 1996; Resnik 1987).
  Some rules focus on avoiding worst-case scenarios.  Others attempt to minimize the regret that decision makers will feel over lost opportunities.  Still others, based on the “principle of insufficient reason,” assign equal probabilities to all outcomes and advise decision makers to maximize expected utility based on that assumption, effectively “converting” them to decisions under risk.

The central argument of this paper is that, while decision theorists have put a great deal of effort into thinking about how to make decisions under risk and under uncertainty, more work is needed on deciding how to classify decisions into these categories.  The next section highlights some of the difficulties involved in formulating the distinction between risk and uncertainty, especially when dealing with emerging technologies.  The following section illustrates these difficulties using the risk assessment of carbon nanotubes as an example.  In response to these challenges, the final section argues for pursuing decision-making strategies that incorporate quantitative estimates of risk (when they are available) but that treat them with appropriate skepticism.  Along these lines, two promising approaches are to treat policy choices as real-world experiments and to engage in broadly based deliberation about quantitative risk assessments and policy options.

1. Distinguishing Risk and Uncertainty
At first glance, the distinction between decision-making under risk and under uncertainty might seem to be fairly straightforward.  When decision makers have quantitative information that enables them to assign probabilities to the outcomes associated with their actions, they face a decision under risk.  In contrast, they face a decision under uncertainty when they have insufficient information to assign “statistical” probabilities, but only estimates.  On closer inspection, however, this distinction turns out to be very complex, especially in cases of emerging technologies where there is limited information available.

In the abstract, it is not difficult to see what the problems are.  First, as we noted above, judgments of relevant similarity of cases are not cut and dried, and hence whether there exist cases sufficiently similar to those of interest (so that statistical studies can be made) is not always a purely factual matter.  Second, again as noted above, estimates are themselves sometimes expressed numerically, and it is, in such cases, tempting to treat them as probabilities.  Indeed, those who produce estimates may even conceive of them as probabilities, when in fact their epistemic pedigree is that of an estimate, in which case they should be treated as such (for example, not used to determine expected values).  We now consider these points in somewhat more concrete form.

One major difficulty is that experts are often asked to fill in missing data about the frequency of various outcomes with their own subjective judgments of likelihood (see e.g., Cooke 1991; Shrader-Frechette 1991).  Decision makers are then faced with the difficult task of deciding whether these subjective judgments are sufficiently reliable to classify decisions that rely on these judgments as being under risk rather than under uncertainty.  If these sorts of judgments were always dismissed, so that the resulting decisions were classified as being under uncertainty, it would cause significant complications for policy making.  Nevertheless, there appear to be dangers associated with placing too much trust in subjective probability judgments supplied by experts.  Studies show that those judgments often differ significantly from empirical frequency data, and experts consistently overestimate the accuracy of their judgments (Cooke 1991; Elliott 2009, pp. 23-24).  (In other words, the probability, in the statistical sense, that the estimate is correct may be low.)  Thus, even when experts think that they can formulate a decision under risk based on their subjective judgments of probabilities, there is often room for skepticism.

One might think that these difficulties of navigating the distinction between decision-making under risk and under uncertainty disappear when there is empirical data concerning the frequency of adverse events.  It might seem obvious that these frequencies (“statistical probabilities”) can provide the basis for probability judgments that allow for decision-making under risk.  Unfortunately, categorizing decision situations is often not so straightforward.  There may be empirical data for some of the probabilities that need to be estimated but not for all of them.  Or, the empirical data may need to be combined with additional subjective estimates in order to arrive at the needed probabilities.  There may also be questions about how well the empirical data collected in one setting can be applied in a somewhat different decision setting (i.e., cases that might appear to be relevantly similar might in fact not be).  Finally, numerous background assumptions associated with the interpretation, statistical analysis, and modeling of the data may prove to be controversial.  For these and other reasons, Sven Ove Hansson (2009) argues that most decisions should be classified as being under uncertainty rather than under risk, even though there may seem to be empirical data available for estimating probabilities.

These problems associated with experts’ subjective probability judgments and empirical frequency data are aggravated by at least two additional factors.  First, evaluating whether the available probability estimates are sufficiently reliable to underwrite a decision under risk depends not only on the quality of those estimates but also on the standards of evidence that one demands in a particular situation.  For example, one might be willing to trust experts’ probability judgments and make a decision under risk (maximizing expected utility) in cases where the consequences of being wrong are reversible and relatively insignificant.  In contrast, one might decide not to trust the probability judgments and instead use rules for decision-making under uncertainty (such as maximin) in cases where there are grave and irreversible consequences.  A second aggravating factor is that the feasibility of assigning probabilities to outcomes depends on how the possible outcomes are described.  If we describe them in a very specific way (i.e., using a narrowly described reference class, such as “carbon nanotubes can be carried deep into the lungs”), then assigning statistical probabilities may be feasible, but their relevance may be in question, and moreover we run the risk of missing important outcomes (e.g., other pathways to bad consequences).  If we describe the possible outcomes in a clearly relevant way (“carbon nanotubes can cause health problems”), then assigning reliable probabilities may be effectively impossible.

One might respond to these worries by arguing that, in real-life decision-making, the distinction between uncertainty and risk is less important than it might initially appear.  For example, many regulatory decisions by agencies such as the US Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Occupational Safety and Health Administration (OSHA) are not explicitly designed to maximize expected utility.  Either because of legislative mandates or other considerations, agencies frequently develop regulatory guidelines that ensure a particular level of safety or that require making use of the best available technology.  Nevertheless, quantitative risk estimates still often play a role in these decisions, even when the goal is not directly to maximize expected utility.  For example, determining the threshold below which a toxic substance is not predicted to cause any harm requires precise quantitative, including statistical, information about its dose-response relationship.  Thus, even if policy makers’ aims do not always fit the classic decision theoretic model of maximizing expected utility, they still often fit the risk-based goal of obtaining precise quantitative information about probabilities of harm.  As a result, it is important to understand when quantitative information about probabilities of harm can be treated as statistical probabilities, and when they should instead be treated as estimates, which is precisely what we suggest has not been analyzed well by decision theorists.  In the next section, we illustrate this problem by examining current efforts to predict the toxicity of carbon nanotubes.

2. A Case Study: Multi-Walled Carbon Nanotubes
Nanoparticles are typically defined as substances that have one or more dimensions on the order of 100 nanometers or less.  At these dimensions, particles may have properties that are different from those of larger particles of the same substances, partly because of quantum effects and partly because of the relatively large surface to volume ratio in small particles.  Carbon nanotubes are a prominent example of technologically significant nanoparticles.  They have an extremely high strength-to-weight ratio as well as technologically promising electromagnetic, optical, and thermal properties.  Unfortunately, as with most other nanoparticles, relatively little information is available about their toxicity, although some preliminary evidence is worrisome (see e.g., Lam et al. 2006; Poland et al. 2008).  Recent efforts to obtain further information about their toxicity illustrate the difficulties of trying to classify regulatory decisions about nanomaterials as decisions under risk or under uncertainty.

Organizations such as The Royal Society and The Royal Academy of Engineering (2004), and the Friends of the Earth (2006) have already argued that nanoparticles, including carbon nanotubes, should generally not be used in consumer products until enough information about their toxicity is known.  Their position appears to represent a cautious or precautionary approach to decision-making under uncertainty—namely, severely limiting the use of the materials until further information is available.  The question, however, is what sort of information is needed in order to classify regulatory decisions about nanomaterials as being under risk, such that decision makers can estimate dose levels that are safe or that represent tolerable probabilities of harm.  At present, decision makers face what Alfred Nordmann (2010) has called “the discrepancy between what we want and what we get.”  Nordmann points out that policy makers would like to have dose-response data for nanomaterials.  Unfortunately, he notes that they typically have much more limited information – for example, knowledge about a biological pathway that constitutes a potential hazard, or knowledge that particular nanoparticles can accumulate in specific tissues.

Some of this indirect information may gradually accumulate to a level at which experts can formulate speculative estimates of the harm associated with particular nanomaterials, such as carbon nanotubes.  Moreover, there are ongoing efforts to collect more precise quantitative toxicity data.  For example, one recent study has already estimated, for a particular sort of multi-walled carbon nanotube (MWCNT), an occupational exposure limit (OEL) that would be “reasonably protective” to prevent lung injury in workers (Pauluhn 2010).  However, for the near future, there will still be numerous reasons for questioning these estimates and continuing to treat decisions about carbon nanotubes as if they were made under uncertainty.  Studies of nanotube toxicity are currently plagued by inconsistent results, and toxicologists have proposed a wide variety of explanations for this confusion: impure samples (e.g., heavy metal contamination), interference between nanotubes and the dyes used to measure toxicity, and varying dispersions of nanoparticles in solution (see e.g., Hurt et. al. 2006; Kroll et al. 2009).  These sorts of problems will make it difficult to decide whether quantitative data about nanotube toxicity should be treated as statistical probabilities or as estimates.

Even when these severe problems are resolved, there will continue to be other, more subtle reasons for questioning risk estimates.  Some of these problems involve the extrapolation of results from one scenario to another.  For example, one must decide whether toxicity results obtained with one sort of nanotube are likely to hold for slightly different nanotubes, whether results obtained via one route of administration will be different for other routes, and whether different manufacturing or storage practices are likely to alter toxicity (Pauluhn 2010).  Again, this is a specific example of the issue of finding (or defining) a relevant class of instances, i.e., of judging types of cases to be relevantly similar so that a sample of one type can be taken as a sample of both, and statistical inferences drawn.  These difficulties may be partially resolved as toxicologists gain increased understanding of the variables that affect nanoparticle toxicity, but there are additional extrapolation problems that plague almost all risk assessments.  Researchers debate how to extrapolate toxicity data from other animals to humans, how to extrapolate toxic effects at relatively high dose levels down to lower doses, and how to estimate the combined effects of multiple toxic substances (NRC 1983; Montague 2004).  Moreover, there will continue to be questionable methodological judgments associated with specific efforts at estimating nanotube toxicity.  For example, the recent derivation of an OEL for multi-walled carbon nanotubes depended on the assumption that “the critical toxicity of this type of MWCNT arises from the collective behavior of the inhaled microstructures (assemblages) of nanotubes rather than the individual tube structure per se” (Pauluhn 2010, p. 79).  Depending on the level of empirical support for these sorts of assumptions, they provide another reason for questioning toxicity data.
Given this combination of limited data, inconsistent results, and questions about how to interpret and extrapolate experimental findings, researchers will have ample reasons to question estimates of nanotube toxicity for a long time to come.  Thus, it will be unclear whether to dismiss quantitative estimates of toxicity (and employ strategies for decision making under uncertainty) or whether to use those estimates for developing risk assessments.  Each approach has significant disadvantages.  On one hand, dismissing quantitative information about toxicity potentially deprives policy makers of crucial information that could assist them in making decisions.  On the other hand, employing quantitative information that is seriously flawed or improperly interpreted as statistical probabilities can give decision makers and members of the public a false sense of security that can lead to serious consequences.  The next section considers some strategies for responding to the difficulty of deciding whether to classify decisions (including those about carbon nanotubes considered in this section) as being under uncertainty or under risk.

3. Responses

3.1. Classifying Decisions under Uncertainty

One solution to the difficulties discussed in the preceding sections is to frame most ambiguous decisions as being under uncertainty.  Fern Wickson (2007) argues that public policy making about emerging technologies has traditionally been dominated by risk-based, quantitative approaches.  However, she suggests that new theories of risk are encouraging policy makers to adopt more qualitative, uncertainty-based approaches to decision making.  In particular, both the psychometric and cultural theories of risk highlight the fact that people’s conceptions of risk incorporate much more than merely probabilities of harm.  Thus, uncertainty-based decision-making strategies that focus on due process and citizen engagement may address many of the public’s legitimate concerns about risk better than quantitative risk-assessment strategies.

One might challenge Wickson’s argument by criticizing the theories of risk that she discusses, but Sven Ove Hansson (2009) shows how one could arrive at similar conclusions without abandoning a traditional conception of risk according to which risks involve objective probabilities of harms such as death or injury rather than socially or culturally conditioned perceptions.  Hansson emphasizes that the available scientific information about risks is typically woefully inadequate to draw reliable conclusions about the likelihood of harm under the complexities of real-world conditions.  Therefore, he suggests that decision makers are better off acknowledging that they are making decisions under uncertainty rather than falsely pretending to have more detailed knowledge about the probability of outcomes than they really do.  He offers an example inspired by the Titanic disaster:
Suppose that tomorrow a ship-builder comes up with a convincing plan for an unsinkable ship.  A probabilistic risk analysis shows that the probability of the ship sinking is incredibly low.  [A risk-benefit analysis] shows that the cost of life-boats would be indefensible.  The expected cost per life saved by the life-boats is above 100 million dollars.  (Hansson 2009, p. 431)

Hansson argues that one should simply ignore the probabilistic risk analysis, because it is based on too many questionable background assumptions and inferences.  He claims that policy makers should treat the situation as a decision under uncertainty.

Thus, one approach to resolving the problems discussed in this paper is to err on the side of classifying ambiguous decisions as being under uncertainty.  Unfortunately, this strategy has drawbacks.  There are many decision-making scenarios in which no single action stands out as having obviously more acceptable or unacceptable outcomes than others.  In these sorts of scenarios, it is very difficult to make decisions without considering both the harmful and the beneficial potential outcomes of our actions, and this is challenging to do without at least a vague or implicit sense of the probabilities of those outcomes.
  And even in cases where some acts clearly have more serious consequences than others, it would be problematic to ignore probabilistic risk assessments entirely and to avoid all actions that could result in significant hazards.  Without the assistance of quantitative information to help prioritize which hazards to address, decision makers could easily find themselves paralyzed by conflicting obligations or faced with inadequate resources to address all the significant hazards that they face.  Therefore, it seems unwise to jump too quickly toward abandoning quantitative information and classifying all ambiguous decisions as being under uncertainty.

3.2. Real-World Experiments and Broadly Based Deliberation

What we need, then, are strategies for making decisions in ways that incorporate quantitative information while treating it with appropriate skepticism.  A number of scholars and policy makers have already been exploring decision-making approaches that can assist in this regard.  Many of these strategies are inspired by the notion that public policy decisions, especially with emerging technologies, are “real-world experiments” (Gross and Hoffmann-Reim 2005; Krohn and Weingart 1987).  Thus, even if policy makers develop an initial policy based on the best available quantitative information, they need to acknowledge that their chosen policy is probably not ideal – and it could even be highly problematic.  As a result, decision makers will often want to employ monitoring schemes in order to identify the problems with their policies as quickly as possible (Cranor 2003, pp. 307-309; Tickner 2005).  They may also engage in something like an “adaptive management” approach, in which policy makers systematically alter their initial policies in response to monitoring data (see e.g., Norton 2005, p. 92).  Furthermore, when policy choices are viewed as experiments that may have to be altered or abandoned, it becomes especially important to consider all available alternatives and to choose an initial policy that not only takes account of available risk assessments but that is also informative, reversible, and robust under multiple scenarios (Ludwig et al. 1993; Mitchell 2010).
Along with viewing policy choices as real-world experiments, another promising avenue for cautiously incorporating quantitative risk assessments in decision-making is to engage in various forms of broadly based deliberation to scrutinize data about risks.  Contemporary scientific practice already incorporates many forms of deliberation: peer review of grants and journal articles, subsequent scrutiny of research in review essays, and discussions among the members of scientific advisory boards for agencies such as the US Food and Drug Administration (FDA) or Environmental Protection Agency (EPA).  However, many scholars argue that a wider swath of the public should be involved in deliberations about the risks from emerging technologies, given that the available data are likely to be particularly spotty and that the impacts are likely to be particularly widespread (see e.g., Barben et al. 2008; Kleinman 2005; NRC 1996).  There are numerous avenues available for promoting this sort of deliberation.  Some approaches are relatively modest; for example, one strategy is to make the deliberations of scientific advisory boards more transparent and open to public input (Guston 2005).  Other approaches involve creating new venues for public engagement, such as consensus conferences or citizens’ juries (see e.g., NRC 1996; Rogers-Hayden and Pidgeon 2006).  These sorts of public-engagement exercises provide opportunities for groups of citizens to become educated about the subject under consideration and to develop a report on the issue in a structured deliberative environment.  Policy makers need to “diagnose” the most appropriate forms of deliberation for the decisions that they face (Elliott 2011; NRC 1996).

Another tool for promoting more sophisticated deliberative scrutiny of risk data is “pedigree analysis,” which Silvio Funtowicz and Jerome Ravetz developed in their book Uncertainty and Quality in Science for Policy (1990).  Pedigree analysis is one component of a five-part scheme that Funtowicz and Ravetz developed for characterizing the quality of scientific information.  Their goal was to assist in identifying the strengths and weaknesses of available data by providing a wide-ranging evaluation of its quality and of the possible errors associated with it.  The fifth component of their scheme, the pedigree of scientific information, refers to the ways in which the information is produced and evaluated.  For example, the pedigree of a risk analysis is evaluated based on four elements: (1) the process by which the risk problem is defined; (2) the means by which data are collected and analyzed; (3) the institutional culture in which the risk analysis is performed; and (4) the ways in which the risk analysis is subsequently reviewed.  Risk analyses receive high pedigree scores when risk problems are defined via a process of negotiation, when data are collected and analyzed via task forces, when the institutional culture is characterized by open dialogue, and when there is external review of the analyses.  Thus, pedigree analysis can assist in determining whether there has been appropriate, broadly based deliberation about the quantitative information that informs decisions.

Economists have developed some formal tools that are potentially useful for pursuing these strategies.  In particular, in recognition of the pervasiveness of decision making under uncertainty, decision theorists have developed several models of decision-making that drop the “completeness” assumption of standard decision theory (i.e., the assumption that all outcomes can be assigned a probability) and supplement the theory with alternative or additional principles of decision-making.  These include the alternative maximin principle in the model of Gilboa and Schmeidler (1989) and the supplementary inertia principle in the model of Bewley (2002).  These models thus provide potentially useful frameworks for analysis.  Specifically, such models may help decision-makers think more carefully about the difference between statistical probabilities and estimates and the appropriate use of each.  In addition, in the context of public deliberation, such frameworks could aid in the appropriate presentation of the epistemic status of the quantitative and qualitative information that is feeding the decision making process.

It may be instructive to illustrate how the strategies discussed in this section would apply to regulatory decision-making about carbon nanotubes.  A first set of strategies stems from the realization that the use of these nanoparticles is a real-world experiment.  At least for the near future, this will be an experiment based on very limited and inconclusive quantitative data about nanotube toxicity.  Therefore, until more information is available, it will be wise to encourage the use of alternatives and to take steps to minimize exposure to nanotubes throughout their lifecycle.  Given that regulators are unlikely to ban the use of these substances completely, it will also be crucial to work toward monitoring human exposure in order to look for evidence of problematic effects.  Nevertheless, human epidemiological studies are notoriously prone to false negative errors; in other words, they have the potential to miss worrisome effects (see e.g., Shrader-Frechette 1985).  Therefore, it will also be important to continue pursuing in vivo, in vitro, and in silico toxicity studies of nanotubes that are more likely to identify potentially harmful effects, while encouraging broadly based deliberation about the results of the research.  Unfortunately, many of the existing toxicity studies have been performed by industrial laboratories, and the data have not been released to the public (see e.g., The Royal Society and The Royal Academy of Engineering 2004, pp. 44, 73-76).  In order to facilitate broadly based deliberation, these industry data should be made more widely available if at all possible.  Hopefully, this sort of scrutiny will facilitate the best possible decisions with existing and future data.

4. Conclusion
We have argued that, even though decision theorists regularly employ the distinction between decision-making under uncertainty and decision-making under risk, there has been inadequate attention to the difficulties involved in classifying decision situations into these categories.  We clarified that even when experts provide subjective probability judgments or when frequency data is available for estimating probabilities, there are often good reasons for challenging those estimates.  Thus, decision situations that appear to be under risk may be more appropriately described as being under uncertainty.  This complexity is further exacerbated by two additional considerations.  First, a particular scenario could be classified as either a decision under risk or a decision under uncertainty, depending on how high decision makers set their standards of evidence in order to trust probability estimates.  Second, the feasibility of assigning probabilities to outcomes depends on how the possible outcomes are described.
We showed that decisions about how to regulate carbon nanotubes illustrate many of these difficulties.  There is presently little quantitative information about their toxicity.  And, even when more data become available, the results will still be questionable because there are so many methodological worries about current toxicity assays of nanoparticles.  Finally, even when toxicity data become more reliable, there will continue to be difficult questions about how much they can be extrapolated beyond the specific conditions under which they were produced.  Thus, it will not be easy to decide when risk assessment data are sufficiently reliable to classify regulatory decisions about carbon nanotubes as being under risk rather than under uncertainty.

In response to these difficulties, we proposed two major sets of strategies that are designed to let decision makers take account of quantitative information while treating it with appropriate skepticism.  The first set of strategies is based on the goal of treating decisions as real-world experiments.  Policy makers can use quantitative information about risks as a starting point, but they can also make a point of looking for a range of alternative actions, making reversible decisions, carefully monitoring results, and altering policies accordingly.  The second set of strategies involved broadly based deliberation as a mechanism for scrutinizing the strengths and weaknesses of risk analyses.  We pointed out that Funtowicz and Ravetz’s concept of pedigree analysis could serve as a tool for evaluating the quality of deliberation about quantitative information.
Given the present lack of information about carbon nanotubes, these strategies encourage using alternatives and taking steps to minimize exposure to nanotubes throughout their lifecycle.  As further information is collected, it will be advisable to make as much data as possible publicly available and to create deliberative venues for scrutinizing those data.  Thus, even if it remains unclear whether decisions about nanotubes should be classified as decisions under uncertainty or under risk, decision makers will hopefully be better able to take account of quantitative information while remaining cognizant of its limitations.
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� Corresponding authors.  Thanks to an anonymous referee for comments on an earlier version.


� Knight acknowledges precursors to his work.  See note 1 of his ch. VII.


� Knight seems to acknowledge, though begrudgingly, that truly homogeneous classes of trials would, at least in most cases of interest, eliminate probability altogether.  He notes, for example, that even in the seemingly straightforward case of rolling a die, the initial conditions of the roll will differ for different rolls, so that the trials are not truly “homogeneous.”  If we were to categorize them in a truly homogeneous way (identical initial conditions and identical boundary conditions, for example), then there would be no more room for probability—the results within a given class would all be the same.


� Because our ability to make relevant judgements of similarity is clearly limited, Knight's three-fold distinction really just marks three “points” (two extremes and a large middle ground) on a spectrum.  Nonetheless, it is useful to maintain his three-fold distinction and we shall do so here.


� The complexity of decisions under uncertainty derives from a number of causes, an important one being that uncertainty itself comes in many varieties.  See, e.g., Stirling 2003 for one taxonomy of uncertainty that overlaps with Knight’s, but is more fine-grained.


� Admittedly, one would not need to treat these “probabilities” in the same ways that one would treat probabilities in which one had more faith (i.e., probabilities that one had reason to believe were “statistical” in Knight's sense).


� While Funtowicz and Ravetz’s pedigree score is a step in the right direction, it can be problematic, simply because it is itself presented as a number.  It is worth bearing in mind that presenting pedigree as a “score” runs the risk of effectively turning estimates into statistics.  The temptation will be to treat an estimate as a statistic if its pedigree score is high enough.  To do so is a mistake.  The fact that an estimate is trustworthy does not mean that it is a statistic, but only that it is worth taking seriously.  





