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SOURCES OF LOG CANONICAL CENTERS

JÁNOS KOLLÁR

1. Introduction

Let X be a smooth variety and S ⊂ X a smooth hypersurface. The Poincaré
residue map is an isomorphism

R : ωX(S)|S ∼= ωS .

In additive form it gives the adjunction formula (KX +S)|S ∼ KS, but this variant
does not show that R is a canonical isomorphism.

Its generalization to log canonical pairs (X,S+∆) has been an important tool in
birational geometry; see, for instance, [K+92, KM98]. One defines a twisted version
of the restriction of ∆ to S, called the different and, for m > 0 sufficiently divisible,
one gets a Poincaré residue map

Rm :
(

ω
[m]
X (mS +m∆)

)

|S ∼= ω
[m]
S

(

mDiffS ∆
)

,

where the exponent [m] denotes the double dual of the mth tensor power. As
before, it is frequently written as a Q-linear equivalence of divisors

(

KX + S +∆)|S ∼Q KS +DiffS ∆.

There have been several attempts to extend these formulas to the case when S is
replaced by a higher codimension log canonical center of a pair (X,∆) [Kaw97,
Kaw98, Kol07]. None of these have been completely successful; the main difficulty
is understanding what kind of object the different should be.

Let Z ⊂ X be a log canonical center of a pair (X,∆). We can choose a resolution
f : X ′ → X such that if we write f∗

(

KX +∆
)

∼Q KX′ +∆′ then there is a divisor
S ⊂ X ′ that dominates Z and appears in ∆′ with coefficient 1. The usual adjunction
formula now gives

(

KX′ +∆′
)

|S ∼Q KS +DiffS(∆
′ − S) =: KS +∆S .

Note further that KX′ +∆′ is trivial on the fibers of f , hence so is KS +∆S . Thus

f |S : (S,∆S) → Z

is a fiber space whose (possibly disconnected) fibers have (numerically) trivial (log)
canonical class. The aim of previous attempts was to generalize Kodaira’s canonical
bundle formula for elliptic surfaces (cf. [BPVdV84, Sec.V.12]) to this setting. The
difficulty is to make sure that we do not lose information in the summand that
corresponds to the j-invariant of the fibers in the classical case. (For families of
elliptic curves this could be achieved by keeping the corresponding variation of
Hodge structures as part of our data.)

This suggests that it could be better to view the pair (S,∆S) as the answer to
the problem. However, in general there are many divisors Sj ⊂ X ′ that satisfy our
requirements and they do not seem to be related to each other in any nice way.
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Our aim is to remedy this problem, essentially by looking at the smallest possible
intersections of the various divisors Sj on a dlt model of (X,∆). There can be many
of these models and intersections, but they turn out to be birational to each other
and have several unexpectedly nice properties. These are summarized in the next
theorem. For the rest of this note we work over a field of characteristic 0.

Theorem 1. Let (X,∆) be an lc pair, Z ⊂ X an lc center and n : Zn → Z its
normalization. Let f :

(

Xm,∆m
)

→ (X,∆) be a dlt model (5) and S ⊂ Xm a

minimal (with respect to inclusion) lc center of
(

Xm,∆m
)

that dominates Z. Set

∆S := Diff∗
S ∆m (4) and fS := f |S. Let fn

S : S → Z̃S → Zn denote the Stein
factorization.

(1) (Uniqueness of sources) The birational equivalence class of (S,∆S) does not
depend on the choice of Xm and S. It is called the source of Z and denoted
by Src(Z,X,∆).

(2) (Uniqueness of springs) The isomorphism class of Z̃S does not depend
on the choice of Xm and S. It is called the spring of Z and denoted by
Spr(Z,X,∆).

(3) (Crepant log structure) (S,∆S) is dlt, KS+∆S ∼Q f∗
S

(

KX+∆
)

and (S,∆S)
is klt on the generic fiber of fS.

(4) (Poincaré residue map) For m > 0 sufficiently divisible, there are well
defined isomorphisms

f∗
(

ω
[m]
X (m∆)

)

|S ∼= ω
[m]
S (m∆S) and

n∗
(

ω
[m]
X (m∆)

) ∼=
(

(

fn
S

)

∗
ω
[m]
S (m∆S)

)inv

where the exponent inv denotes the invariants under the action of the group
of birational self-maps BirZ(S,∆S).

(5) (Galois property) The extension Z̃S → Z is Galois and BirZ(S,∆S) ։

Gal
(

Z̃S/Z
)

is surjective.
(6) (Adjunction) Assume ∆ = D+∆1. Let nD : Dn → D be the normalization

and ZD ⊂ Dn an lc center of
(

Dn,DiffDn ∆1

)

such that nD(ZD) = Z.
Then there is a commutative diagram

Src
(

ZD, Dn,DiffDn ∆1

) bir∼ Src
(

Z,X,D +∆1

)

↓ ↓
ZD

nD→ Z.

Crepant log structures are defined in Section 2. Theorem 10 shows that minimal
lc centers are birational to each other; this proves (1.1) and it also establishes (1.6).
Its consequences for the Poincaré residue map are derived in Section 3. Sources
and springs are formally defined in Section 4 and (1.5) is proved in (20).

Section 5 contains the main application, Theorems 25–26. We show that nor-
malization gives a one-to-one correspondence:







slc pairs (X,∆)
such that

KX +∆ is ample







∼=







lc pairs
(

X̄, D̄ + ∆̄
)

plus an
involution τ of

(

D̄n,DiffD̄n ∆̄
)

such that KX̄ + D̄ + ∆̄ is ample







.

The papers [Oda11, OX11] contain further applications to K-stability and to slc
models of deminormal schemes.
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Shokurov informed me that his forthcoming paper [Sho11] contains another ap-
proach to Theorem 1.

2. Crepant log structures

Definition 2. Let Z be a normal variety. A crepant log structure on Z is a proper,
surjective morphism f : (X,∆) → Z such that

(1) f has connected fibers,
(2) (X,∆) is lc and
(3) KX +∆ ∼f,Q 0.

A proper morphism f : (X,∆) → Z is called a weak crepant log structure on Z if
it satisfies (2–3) but the fibers of f are allowed to be reducible and ∆ is allowed to
be a non-effective sub-boundary. (This variant is probably too far from a crepant
log structure to be of practical use, but it is convenient to have a notion that is
birationally invariant and applies to all restrictions to lc centers. One would need
to pose further restrictions as in the notion of quasi-log varieties [Amb03] to get
useful applications.)

Any lc pair
(

Z,∆Z

)

has a trivial crepant log structure where (X,∆) =
(

Z,∆Z

)

.

Conversely, if f is birational then
(

Z,∆Z := f∗∆
)

is lc.
An irreducible subvariety W ⊂ Z is a log canonical center or lc center of a weak

crepant log structure f : (X,∆) → Z iff it is the image of an lc center WX ⊂ X of
(X,∆). A weak crepant log structure has only finitely many lc centers.

Let (Z,∆Z) be an lc pair and f : X → Z a proper, birational morphism. Write
KX+∆X ∼Q f∗(KZ+∆Z). Then f : (X,∆X) → Z is a weak crepant log structure.
The lc centers of f : (X,∆X) → Z are the same as the lc centers of (Z,∆Z).

By (5), we can choose f such that f : (X,∆X) → (Z,∆Z) is a crepant log
structure, X is Q-factorial and (X,∆X) is dlt.

Let f : (X,∆X) → Z be a dlt crepant log structure and Y ⊂ X an lc center.
Consider the Stein factorization

f |Y : Y
fY−→ ZY

π−→ Z

and set ∆Y := Diff∗
Y ∆X (cf. (4)). Then

(

Y,∆Y

)

is dlt, fY :
(

Y,∆Y

)

→ ZY is a

crepant log structure and f |Y :
(

Y,∆Y

)

→ Z is a weak crepant log structure.

Definition 3 (Divisorial log terminal). A pair (X,
∑

aiDi) is called simple normal
crossing (abbreviated as snc) if X is smooth and for every p ∈ X one can choose
an open neighborhood p ∈ U and local coordinates xi such that for every i there is
an index a(i) such that Di ∩ U = (xa(i) = 0).

As key examples, I emphasize that the pair
(

A2
k, (x

2 = y2 + y3)
)

is not snc and
(

A2
k, (x

2 + y2 = 0)
)

is snc iff
√
−1 ∈ k. Thus being snc is a Zariski local but not an

étale local property.
Given any pair (X,∆), there is a largest open subset Xsnc ⊂ X such that

(

Xsnc,∆|Xsnc

)

is snc.
A pair (X,∆) is called divisorial log terminal (abbreviated as dlt) if the discrep-

ancy a(E,X,∆) is > −1 for every divisor whose center is contained in X \Xsnc.

Definition 4 (Different). Let (X,∆) be a dlt pair and Y ⊂ X an lc center. Gener-
alizing the usual notion of the different [K+92, Sec.16], there is a naturally defined
Q-divisor Diff∗

Y ∆, called the different of ∆ on Y such that
(

KX +∆
)

|Y ∼Q KY +Diff∗
Y ∆.
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The traditional different [K+92, Sec.16] is defined such that if Y = D is a divisor
then

(

KX +D +∆
)

|D ∼Q KD +DiffD ∆.

Thus, in this case, Diff∗
D(D + ∆) = DiffD ∆. This inductively defines Diff∗

Y ∆
whenever Y is an irreducible component of a complete intersection of divisors in
⌊∆⌋. In the dlt case, this takes care of every lc center; see [Kol10, Chap.2] for
details.

The following result was proved by Hacon (and published in [KK10]). A simpli-
fied proof is in [Fuj10].

Proposition 5. Let (Z,∆Z) be an lc pair. Then it has a Q-factorial, crepant, dlt
model p : (X,∆X) → (Z,∆Z). That is, X is Q-factorial, (X,∆X) is dlt, KX +∆X

is p-nef and ∆X = E + p−1
∗ ∆Z where E contains all p-exceptional divisors with

multiplicity 1. �

6 (Birational weak crepant log structures).

Let f : (X,∆) → Z be a weak crepant log structure. If f factors as X
g→ X ′ f ′

→ Z
where g is birational, then f ′ : (X ′,∆′ := g∗∆) → Z also a weak crepant log
structure. We say that f : (X,∆) → Z birationally dominates f ′ : (X ′,∆′) → Z.

Conversely, assume that f ′ : (X ′,∆′) → Z is a weak crepant log structure and
g : X → X ′ is a proper birational morphism. Write KX + ∆ ∼Q g∗

(

KX′ + ∆′
)

.
Then f := f ′ ◦ g : (X,∆) → Z is also a weak crepant log structure.

By (5), every (weak) crepant log structure f : (X,∆) → Z is dominated by
another (weak) crepant log structure f∗ : (X∗,∆∗) → Z such that (X∗,∆∗) is dlt
and Q-factorial. If ∆ is effective then we can choose ∆∗ to be effective.

Two weak crepant log structures fi : (Xi,∆i) → Z are called birational if there
is a third weak crepant log structure h : (Y,∆Y ) → Z which birationally dominates
both of them. If the ∆i are effective and Y is the normalization of the closure of the
graph of the birational map then ∆Y is also effective. Thus if the fi : (Xi,∆i) → Z
are crepant log structures then we can choose h : (Y,∆Y ) → Z to be a crepant log
structure.

The group of birational self-maps of a weak crepant log structure f : (X,∆) → Z
is denoted by BirZ(X,∆). By also allowing k-automorphisms, we get the larger
group Birk(X,∆).

Let f : (X,∆) → Z be a weak crepant log structure and f ′ : X ′ → Z a proper
morphism. Assume that there is a birational map φ : X 99K X ′ such that f ′◦φ = f .
By the above, there is a unique Q-divisor ∆′ such that f ′ : (X ′,∆′) → Z is a weak
crepant log structure that is birational to f : (X,∆) → Z. If φ−1 has no exceptional
divisors, then ∆′ = φ∗∆ and hence ∆′ is effective if ∆ is.

Let fi : (Xi,∆i) → S be weak crepant log structures and φ : X1 99K X2 a
birational map. Let Z1 ⊂ X1 an lc center such that, at the generic point of Z1, the
pair (X1,∆1) is dlt and φ is a local isomorphism. Then Z2 := φ∗Z1 is also an lc
center and

φ|Z1
:
(

Z1,Diff∗
Z1

∆1

)

99K
(

Z2,Diff∗
Z2

∆1

)

is birational.

Theorem 7. [NU73, Uen75, Gon10, FG10] Let f : (X,∆X) → Z be a crepant log
structure. Then:

(1) The BirZ(X,∆X) action on ω
[m]
X (m∆X) is finite for every m ≥ 0.
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(2) If Z is projective and KX+∆X ∼Q f∗(ample Q-divisor) then the Birk(X,∆X)
action on Z is finite. �

8 (Minimal dominating lc centers). Let f : (X,∆) → S be a dlt, weak crepant log
structure. Let W ⊂ S be an lc center and {Wi : i ∈ I(W )} the minimal (with
respect to inclusion) lc centers of (X,∆) that dominate W . We claim that the set
of their birational isomorphism classes

{(

Wi,Diff∗
Wi

∆
)

: i ∈ I(W )
}

(8.1)

is a birational invariant of f : (X,∆) → S.
To see this note that by [Sza94] we can assume that (X,∆) is snc. Then it is

enough to check birational invariance for one smooth blow up. If we blow up V ⊂ X
that is not an lc center, then the set of lc centers is unchanged.

If V is an lc center that is the complete intersection of say D1, . . . , Dr ⊂ ⌊∆⌋,
then we get an exceptional divisor EV that is a Pr−1-bundle over V . Locally on V ,
we get a direct product

(

EV ,Diff∗
EV

∆BV X

) ∼=
(

V,Diff∗
V ∆

)

×
(

Pr−1, (x1 · · ·xr = 0)
)

,

thus every minimal lc center of
(

V,Diff∗
V ∆

)

corresponds to r isomorphic copies

of itself among the minimal lc centers of
(

EV ,Diff∗
EV

∆BV X

)

, hence among the

minimal lc centers of
(

BV X,∆BV X

)

. �

Our next aim is to prove that for crepant log structures, the invariant defined in
(8.1) consist of a single birational equivalence class.

P1-linking of minimal lc centers.

Definition 9 (P1-linking). A standard P1-link is a dlt, Q-factorial, pair
(

X,D1 +
D2 + ∆) whose sole lc centers are D1, D2 (hence D1 and D2 are disjoint) plus a
proper morphism π : X → S such that KX +D1 +D2 +∆ ∼Q,π 0, π : Di → S are
both isomorphisms and every reduced fiber redXs is isomorphic to P1.

Let F denote a general smooth fiber. Then
(

(KX +D1 + D2) · F
)

= 0, hence
(∆ · F ) = 0. That is, ∆ is a vertical divisor, the projection gives an isomorphism
(

D1,DiffD1
∆
) ∼=

(

D2,DiffD2
∆
)

and these pairs are klt.

The simplest example of a standard P1-link is a product
(

S × P1, S × {0}+ S × {∞}+∆S × P1
)

for some Q-divisor ∆S .
It turns out that every standard P1-link is locally the quotient of a product.

To see this note that
(

(D1 − D2) · F
)

= 0, thus every point s ∈ S has an open

neighborhood U such that D1 − D2 ∼Q 0 on π−1(U). Taking the corresponding
cyclic cover we get another standard P1-link

π̃ :
(

X̃U , D̃1 + D̃2 + ∆̃) → Ũ

where the D̃i are now Cartier divisors and ∆̃ = π̃∗∆̃U for some Q-divisor ∆̃U . Here
D̃1 ∼ D̃2, hence the linear system |D̃1, D̃2| maps X̃U to P1. Together with π̃ this
gives an isomorphism

(

Ũ × P1, Ũ × {0}+ Ũ × {∞}+ ∆̃U × P1
) ∼=

(

X̃U , D̃1 + D̃2 + ∆̃).

Let g : (X,∆) → S be a crepant, dlt log structure and Z1, Z2 ⊂ X two lc
centers. We say that Z1, Z2 are directly P1-linked if there is an lc center W ⊂ X
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containing the Zi such that g(W ) = g(Z1) = g(Z2) and
(

W,Diff∗
W ∆

)

is birational

to a standard P1-link with Zi mapping to Di.
We say that Z1, Z2 ⊂ X are P1-linked if there is a sequence of lc centers

Z ′
1, . . . , Z

′
m such that Z ′

1 = Z1, Z
′
m = Z2 and Z ′

i is directly P1-linked to Z ′
i+1

for i = 1, . . . ,m− 1 (or Z1 = Z2).

The following strengthening of [KK10, 1.7] was the reason to introduce the notion
of P1-linking.

Theorem 10. Let k be a field and S essentially of finite type over k. Let f :
(X,∆) → S be a proper morphism such that KX + ∆ ∼Q,f 0 and (X,∆) is dlt.
Let s ∈ S be a point such that f−1(s) is connected (as a k(s)-scheme). Let Z ⊂ X
be minimal (with respect to inclusion) among the lc centers of (X,∆) such that
s ∈ f(Z). Let W ⊂ X be an lc center of (X,∆) such that s ∈ f(W ).

Then there is an lc center ZW ⊂ W such that Z and ZW are P1-linked.
In particular, all the minimal (with respect to inclusion) lc centers Zi ⊂ X such

that s ∈ f(Zi) are P1-linked to each other.

Remarks. For the applications it is crucial to understand the case when k(s) is
not algebraically closed. See (12) for some relevant examples.

Each P1-linking defines a birational map Z 99K ZW , but different P1-linkings
can give different birational maps, see (13).

Proof. We use induction on dimX and on dimZ.
Write ⌊∆⌋ = ∑

Di. By passing to a strict étale neighborhood of s ∈ S we may
assume that each Di → Y has connected fiber over s and every lc center of (X,∆)
intersects f−1(s). (We need a strict étale neighborhood, that is, the residue field
at s is unchanged, to make sure that f−1(s) stays connected, cf. [Mil80, I.4.2].)

Assume first that f−1(s) ∩ ∑

Di is connected. By suitable indexing, we may
assume that Z ⊂ D1, W ⊂ Dr and f−1(s) ∩Di ∩Di+1 6= ∅ for i = 1, . . . , r − 1.

By induction, we can apply (10) to D1 → S with Z as Z and D1 ∩ D2 as W .
We get that there is an lc center Z2 ⊂ W such that Z and Z2 are P1-linked. As we
noted in (9), Z2 is also minimal (with respect to inclusion) among the lc centers of
(X,∆) such that s ∈ f(Z2). Note that Z2 is an lc center of

(

D1,Diff∗
D1

(∆)
)

. By

adjunction, it is an lc center of (X,∆) and also an lc center of
(

D2,Diff∗
D2

(∆)
)

.
Next we apply (10) to D2 → S with Z2 as Z and D2 ∩D3 as W , and so on. At

the end we work on Dr → S with Zr as Z and W as W to get an lc center ZW ⊂ W
such that Z and ZW are P1-linked. This proves the first claim if f−1(s) ∩∑

Di is
connected.

If f−1(s)∩∑

Di is disconnected, then write ∆ =
∑m

i=1 Di +∆1. We claim that
in this case m = 2 and D1, D2 ⊂ X are directly P1-linked (by W = X). We may
assume that X is Q-factorial.

First we show that
∑

Di dominates S. Indeed, consider the exact sequence

0 → OX(−∑

Di) → OX → O∑
Di

→ 0

and its push-forward

OS
∼= f∗OX → f∗O∑

Di
→ R1f∗OX(−∑

Di).

Since −∑

Di ∼Q,f KX +∆1, the sheaf R
1f∗OX(−∑

Di) is torsion free by [Kol86]
(see [KK10] for the extension to the klt case that we use). Thus OS ։ f∗O∑

Di
is

surjective hence
∑

Di → S has connected fibers, a contradiction.
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This implies that KX +∆1 is not f -pseudo-effective and so by [BCHM10, 1.3.2]
one can run the (X,∆1)-MMP over S.

Every step is numerically KX+
∑

Di+∆1-trivial, hence
∑

Di is ample on every
extremal ray. Therefore a connected component of

∑

Di can never be contracted
by a birational contraction. By the Connectedness Theorem [K+92, 17.4], the
connected components of

∑

Di are unchanged for birational contractions and flips.
Thus, at some point, we must encounter a Fano contraction p : (X∗,∆∗

1) → V where
∑

D∗
i is p-ample. So there is an irreducible component, say D∗

1 that has positive
intersection with the contracted ray. ThereforeD∗

1 is p-ample. By assumption, there
is another irreducible component, say D∗

2 that is disjoint from D∗
1 . Let Fv ⊂ X∗ be

any fiber that intersects D∗
2 . Since D

∗
2 is disjoint from D∗

1 , we see that D
∗
2 does not

contain Fv. Thus D∗
2 also has positive intersection with the contracted ray, hence

D∗
2 is also p-ample.
Thus D∗

1 and D∗
2 are both relatively ample (possibly multi-) sections of p and

they are disjoint. This is only possible if p has fiber dimension 1, the generic fiber
is a smooth rational curve and D∗

1 and D∗
2 are sections of p.

Since p is an extremal contraction, R1p∗OX∗ = 0, which implies that every fiber
of p is a tree of smooth rational curves. Both D∗

1 and D∗
2 intersects every fiber in

a single point and they both intersect every contracted curve. Thus every fiber is
irreducible and so p : (X∗,∆∗) → V is a standard P1-link with D∗

1 , D
∗
2 as sections.

As we noted in (9), the rest of ∆∗ consists of vertical divisors. Thus any other D∗
i

would make f−1(s) ∩∑

Di connected. Therefore D
∗
1 , D

∗
2 are the only lc centers of

(X∗, D∗
1 +D∗

2 +∆∗
1) and so D1, D2 are the only lc centers of (X,∆). As noted at

the end of (6), D1, D2 ⊂ X are directly P1-linked (by W = X). �

Corollary 11. Let f : (X,∆X) → S be a dlt, crepant log structure. Let Y ⊂ X

be an lc center. Consider the Stein factorization f |Y : Y
fY−→ SY

π−→ S and set
∆Y := Diff∗

Y ∆X . Then

(1) fY :
(

Y,∆Y

)

→ SY is a dlt, crepant log structure.

(2) Let WY ⊂ SY be an lc center of fY :
(

Y,∆Y

)

→ SY . Then π(WY ) ⊂ S is

an lc center of f : (X,∆X) → S and every minimal lc center of
(

Y,∆Y

)

dominating WY is also a minimal lc center of (X,∆X) dominating π(WY ).
(3) Let W ⊂ S be an lc center of f : (X,∆X) → S. Then every irreducible

component of π−1(W ) is an lc center of fY :
(

Y,∆Y

)

→ SY .

Proof. (1) is clear. To see (2), note that WY is dominated by an lc center
VY of

(

Y,Diff∗
Y ∆). Thus, by adjunction, VY is also an lc center of (X,∆), hence

π(WY ) = f(VY ) is an lc center of S. By (10), a minimal lc center of Y that
dominates WY is also a minimal lc center of X that dominates π(WY ). Thus
Src

(

WY , Y,∆Y

)

∼ Src
(

π(WY ), X,∆X

)

.
Finally let W ⊂ S be an lc center of f : (X,∆X) → S and w ∈ W the generic

point. Let VX ⊂ X be a minimal lc center that dominates W . By (10), there is an
lc center VY ⊂ Y that is P1-linked to VX . By adjunction, VY is also an lc center
of

(

Y,Diff∗
Y ∆). Thus fY (VY ) ⊂ SY is an lc center of fY :

(

Y,∆Y

)

→ SY and it is

also one of the irreducible components of π−1(W ).
In order to get (3), after replacing S by an étale neighborhood of w, we may

assume that Y = ∪Yj such that each f−1(w) ∩ Yj is connected. By the previous
argument, each Yj yields an lc center fYj

(VYj
) ⊂ SYj

and together these show that

every irreducible component of π−1(W ) is an lc center of fY :
(

Y,∆Y

)

→ SY . �
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The following example illustrates some of the subtler aspects of the dlt condition
in (10).

Example 12. Set X = A3 and D1, D2, D3 planes intersecting only at the origin.
Let π : B0X → X denote the blow-up of the origin with exceptional divisor E.
Then KB0X + E +

∑

D′
i ∼ π∗(KX +

∑

Di) where D′
i := π−1

∗ Di. There are 3
minimal lc centers over 0, given by pi := E ∩D′

i−1 ∩D′
i+1 (indexing modulo 3).

Assume now that we are over Q, D1 is defined over Q and Gal(Q̄/Q) interchanges
D2, D3. Now there are 2 minimal lc centers. One is p1 the other is the irreducible Q-
scheme p2+p3. Thus p1 and p2+p3 can not be P1-linked. This is not a contradiction
since (B0X,E+

∑

D′
i) is not dlt; the divisor D

′
2+D′

3 (which is irreducible over Q)
is not normal. We get a dlt model by blowing up the curve D′

2 ∩ D′
3. Now there

are 2 minimal lc centers over 0, both isomorphic to p2 + p3.
Similarly, if Gal(Q̄/Q) permutes the 3 planes, then we need to blow up all 3

intersections D′
i ∩ D′

j to get a dlt model. Over Q̄, there are 6 minimal lc centers

over Q̄. Over Q there is either only one (if Gal(Q̄/Q) acts on the planes as the
symmetric group S3) or two, both consisting of 3 conjugate points and isomorphic
as Q-schemes to each other (if Gal(Q̄/Q) permutes cyclically).

Example 13. Fix m ≥ 3 and ǫ a primitive mth root of unity. On Pm−1 consider
the µm-action generated by

τ1 : (x0 : x1 : · · · : xm−1) 7→ (x0 : ǫx1 : · · · : ǫm−1xm−1).

The action moves the divisor D0 := (x0 + x1 + · · · + xm−1 = 0) into m different
divisors D0, . . . , Dm−1. One easily checks that

(

Pm−1, D0 + · · ·+Dm−1

)

is snc (if
ǫ is in our base field) and has trivial log canonical class.

Let A be an abelian variety with a µm-action τ2. On
(

Pm−1 ×A,∆ := D0 ×A+ · · ·+Dm−1 ×A
)

we have a µm-action generated by τ := (τ1, τ2).
Let X1 :=

(

Pm−1 ×A
)

/〈τ〉. The quotient of the boundary ∆ has only 1 compo-
nent but it has complicated self-intersections, hence it is not dlt. Let (X,∆X) be
a dlt model.

We see that the minimal lc centers are isomorphic to (A, 0) and the different
P1-linkings between them differ from each other by a power of τ2.

3. Poincaré residue map

Definition 14. Let (X,∆) be a dlt pair and Z ⊂ X an lc center. As in (4), if

ω
[m]
X (m∆) is locally free, then, by iterating the usual Poincaré residue maps for

divisors, we get a Poincaré residue map

Rm
X→Z : ω

[m]
X (m∆)|Z

∼=−→ ω
[m]
Z (m ·Diff∗

Z ∆). (14.1)

(This is well defined in m is even, defined only up to sign if m is odd.)
Let f : (X,∆) → Y be a dlt, weak crepant log structure. Choose m > 0 even

such that ω
[m]
X (m∆) ∼ f∗L for some line bundle L on Y . Let Z ⊂ X be an lc center

of (X,∆). For m > 0 and even, we can view the Poincaré residue map as

Rm
X→Z : f∗L|Z ∼= ω

[m]
X (m∆)|Z

∼=−→ ω
[m]
Z (m ·Diff∗

Z ∆). (14.2)
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The following result shows, that, for minimal lc centers, (14.2) is essentially
independent of the choice of Z.

Proposition 15. Let f : (X,∆) → Y be a dlt crepant log structure (2). Choose

m > 0 even such that ω
[m]
X (m∆) ∼= f∗L for some line bundle L on Y . Let Z1, Z2 be

minimal lc centers of (X,∆) such that f(Z1) = f(Z2). Then there is a birational
map φ : Z2 99K Z1 such that the following diagram commutes

ω
[m]
X (m∆) ∼= f∗L ∼= ω

[m]
X (m∆)

Rm
X→Z1

↓ ↓ Rm
X→Z2

ω
[m]
Z1

(

mDiff∗
Z1

∆
) φ∗

−→ ω
[m]
Z2

(

mDiff∗
Z2

∆
)

(15.1)

Proof. By (10) it is sufficient to prove this in case there is an lc center W that
is birational to a P1-bundle P1 × U with Z1, Z2 as sections. Thus projection to U
provides a birational isomorphism φ : Z2 99K Z1.

Since Rm
X→Zi

= Rm
W→Zi

◦Rm
X→W , we may assume that X = W . The sheaves in

(15.1) are torsion free, hence it is enough to check commutativity after localizing at
the generic point of U . This reduces us to the case when W = P1

L with coordinates
(x:y), Z1 = (0:1) and Z2 = (1:0). A generator of H0

(

P1, ωP1(Z1 + Z2)
)

is dx/x
which has residue 1 at Z1 and −1 at Z2. Thus (15.1) commutes for m even and
anti-commutes for m odd. �

Remark 16. By (15), we get a Poincaré residue map as stated in (1.4) but it is
not yet completely canonical. We think of (Z,∆Z) as an element of a birational
equivalence class thus so far Rm is defined only up to the action of BirY (Z,∆Z).
However, by (7), the image of this action is a finite group of rth roots of unity for

some r. Thus the BirY (Z,∆Z) action is trivial on ω
[mr]
Z (mr∆Z ) hence

Rmr : ω
[mr]
X (mr∆)|Z ∼= ω

[mr]
Z (mr∆Z ) (16.1)

is completely canonical. Assume next that ω
[mr]
X (mr∆) ∼ f∗L. Let us factor

f |Z : Z → f(Z) using g : Z → W and the normalization n : W → f(Z). Then we
can push forward (16.1) to get an isomorphism

n∗L ∼=
(

g∗ω
[m]
Z (m∆Z)

)inv
(16.2)

where the exponent inv denotes the invariants under the action of the group of
birational self-maps BirY (Z,∆Z). This shows the second isomorphism in (1.4).

Notation 17. Let (Y,∆Y ) be lc and (X,∆X) → (Y,∆Y ) a crepant, dlt model. Let
W ⊂ Y be an lc center of (Y,∆Y ) and Z ⊂ X minimal (with respect to inclusion)
among the lc centers of (X,∆X) that dominate W . By (14), we obtain a Poincaré
residue map RX→Z .

Let D ⊂ ⌊∆Y ⌋ be a divisor with normalization π : Dn → D. Let DX ⊂ X be
its birational transform on X and set ∆DX

:= Diff∗
DX

∆X . Let WD ⊂ Dn be an lc

center of
(

Dn,Diff∗
Dn ∆Y

)

. Then WX := π(WD) is an lc center of
(

Y,∆Y

)

. Choose
minimal lc centers ZX ⊂ X (resp. ZD ⊂ DX) dominating WX (resp. WD).

Theorem 18. Notation and assumptions as in (17). Then there is a birational
map φ : ZD 99K ZX such that for m sufficiently divisible, the following diagram
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commutes

ω
[m]
X (m∆X)

Rm
X→DX−→ ω

[m]
DX

(m∆DX
)

Rm
X→ZX

↓ ↓ Rm
DX→ZD

ω
[m]
ZX

(

mDiff∗
ZX

∆X

) φ∗

−→ ω
[m]
ZD

(

mDiff∗
ZD

∆DX

)

Proof. If we choose ZX as the image of ZD, this holds by the definition of the
higher codimension residue maps. This and (15) proves the claim for every other
choice of ZX . �

4. Sources and Springs

Definition 19. Let f : (X,∆) → S be a crepant, dlt log structure and Z ⊂ S an
lc center. An lc center Z ′ of (X,∆) is called a source of Z if f(Z ′) = Z and Z ′ is
minimal (with respect to inclusion) among the lc centers that dominate Z.

By restriction we have f |Z′ :
(

Z ′,Diff∗
Z′ ∆

)

→ Z and KZ′ +Diff∗
Z′ ∆ ∼f,Q 0. By

adjunction, there is a one-to-one correspondence between lc centers of
(

Z ′,Diff∗
Z′ ∆

)

and lc centers of (X,∆) that are contained in Z ′. Thus Z ′ is a source of Z iff the
general fiber of

(

Z ′,Diff∗
Z′ ∆

)

→ Z is klt.
By (10), all sources of Z are birational to each other (as weak crepant log struc-

tures over Z). Any representative of their birational equivalence class will be de-
noted by Src(Z,X,∆). One can choose a representative (St,∆t) → Z whose generic
fiber is terminal. Such models are still not unique, but their generic fibers are iso-
morphic outside codimension 2 sets. However, if there is an irreducible component
of ∆t whose coefficient is 1 (these can not dominate Z) then it does not seem
possible to choose a sensible subclass of models that are isomorphic to each other
outside codimension 2 sets.

Note further that by (8), if two crepant log structures fi : (Xi,∆i) → Y are
birational over Y , then Src(Z,X1,∆1) is birational to Src(Z,X2,∆2).

One can uniquely factor f |Z′ as

f |Z′ :
(

Z ′,Diff∗
Z′ ∆′

)

= Src(Z,X,∆)
cZ−→ Z̃ ′ pZ−→ Z (19.1)

where Z̃ ′ is normal, pZ is finite and cZ has connected fibers.
Thus in (19.1), Z̃ ′ is uniquely defined up to isomorphism over Z. Any repre-

sentative of its isomorphism class will be denoted by Spr(Z,X,∆) and called the
spring of Z.

Define the group of source-automorphisms of Spr(Z,X,∆) as

Auts Spr(Z,X,∆) := im
[

Birk Src(Z,X,∆) → Autk Spr(Z,X,∆)
]

. (19.2)

By (7), if KX + ∆ is ample then Auts Spr(Z,X,∆) is finite for every lc center
Z ⊂ X .

Let (Y,∆) be lc and f : (X,∆X) → (Y,∆) a dlt model (5). Let Z ⊂ Y be an
lc center of (Y,∆). As noted above, the source Src(Z,X,∆X) of Z depends only
on (Y,∆) but not on the choice of (X,∆X). Thus we also use Src(Z, Y,∆) (resp.
Spr(Z, Y,∆)) to denote the source (resp. spring) of Z.

Next we prove (1.5).
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Proposition 20. Let f : (X,∆) → Y be a crepant log structure and Z ⊂ Y an lc
center. Then the field extension k

(

Spr(Z,X,∆)
)

/k(Z) is Galois and

Gal
(

Spr(Z,X,∆)/Z
)

⊂ Auts Spr(Z,X,∆).

Proof. We may localize at the general point of Z. Thus we may assume that Z
is a point and then prove the following more precise result.

Lemma 21. Let g : (X,∆) → Y be a weak crepant log structure over a field k.
Assume that (X,∆) is dlt and X is Q-factorial. Let z ∈ Y be an lc center such
that g−1(z) is connected (as a k(z)-scheme). Then there is a unique smallest finite
field extension K(z) ⊃ k(z) such that

(1) Every lc center of (Xk̄,∆k̄) that intersects g−1(z) is defined over K(z).
(2) Let Wz̄ ⊂ Yk̄ be a minimal lc center contained in g−1(z). Then K(z) =

kch(Wz̄), the field of definition of Wz̄.
(3) K(z) ⊃ k(z) is a Galois extension.
(4) Let Wz be a minimal lc center contained in g−1(z). Then

Birk(z)
(

Wz ,Diff∗
Wz

∆
)

→ Gal
(

K(z))/k(z)
)

is surjective.

Proof. There are only finitely many lc centers and a conjugate of an lc center is
also an lc center. Thus the field of definition of any lc center is a finite extension
of k. Since K(z) is the composite of some of them, it is finite over k(z).

Let Wz̄ ⊂ Xk̄ be a minimal lc center contained in g−1(z) and kch(Wz̄) its field
of definition. Let Di ⊂ ⌊∆⌋ be the irreducible components that contain Wz̄. Each
Di is smooth at the generic point of Wz̄ , hence the k̄-irreducible component of Di

that contains Wz̄ is also defined over kch(Wz̄). Thus every lc center of (Xk̄,∆k̄)
containing Wz̄ is also defined over kch(Wz̄). Therefore, any lc center that is P1-
linked to Wz̄ is defined over kch(Wz̄). By (10) this implies that every lc center of
(Xk̄,∆k̄) that intersects g−1(z) is defined over kch(Wz̄), hence kch(Wz̄) ⊃ K(z).
By construction, kch(Wz̄) ⊂ K(z), thus kch(Wz̄) = K(z).

A conjugate of Wz̄ over k(z) is defined over the corresponding conjugate field of
kch(Wz̄). By the above, every conjugate of the field of kch(Wz̄) over k(z) is itself,
hence kch(Wz̄) = K(z) is Galois over k(z).

Finally, in order to see (4), fix σ ∈ Gal
(

K(z)/k(z)
)

and let W σ
z̄ be the cor-

responding conjugate of Wz̄ . By (10), W σ
z̄ and Wz̄ are P1-linked over K(z); fix

one such P1-link. The union of the conjugates of this P1-link over k(z) define an
element of Birk(z)

(

Wz ,Diff∗
Wz

∆
)

which induces σ on K(z)/k(z). (The P1-link is
not unique, hence the lift is not unique. Thus in (4) we only claim surjectivity, not
a splitting.) �

Example 22. The Galois extension K(z)/k(z) can be arbitrary. To see this
pick a Galois extension K = k(α)/k of degree n. In An

k consider the subspace
(
∑

i α
i−1xi = 0) and its n conjugates D1, . . . , Dn. Then

(

An
k ,
∑

Di

)

is lc, the
origin is an lc center and its spring gives the Galois extension K/k.

From the classification of 2-dimensional lc pairs we see that if codimX Z = 2
then Gal

(

Spr(Z,X,∆)/Z
)

is cyclic or dihedral.

The examples in [Kol11b] show that if codimX Z = 3 then Gal
(

Spr(Z,X,∆)/Z
)

can be arbitrary.

We also note the following direct consequence of (11).
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Corollary 23 (Adjunction for sources). Let (X,D+∆) be lc and n : Dn → D the
normalization. Let ZD ⊂ Dn be an lc center of

(

Dn,DiffDn ∆
)

and ZX := n(ZD)
its image in X. Then

(1) Src
(

ZD, Dn,DiffDn ∆
) bir∼ Src

(

ZX , X,D +∆
)

and

(2) Spr
(

ZD, Dn,DiffDn ∆
) ∼= Spr

(

ZX , X,D +∆
)

. �

5. Applications to slc pairs

24 (Normalization of slc pairs). Let (X,∆) be a semi log canonical pair. Let
π : X̄ → X denote the normalization of X , ∆̄ the divisorial part of π−1(∆) and
D̄ ⊂ X̄ the conductor of π. Since X is seminormal, D̄ is reduced. X has an ordinary
node at a codimension 1 singular point, thus interchanging the two preimages of
the node gives an involution τ of the normalization n : D̄n → D̄. This gives an
injection

{

slc pairs (X,∆)
}

→֒
{

lc pairs
(

X̄, D̄ + ∆̄
)

plus an involution τ of D̄n

}

. (24.1)

For many purposes, it is important to understand the image of this map. That is,
we would like to know which quadruples

(

X̄, D̄ + ∆̄, τ
)

correspond to an slc pair
(X,∆). An easy condition to derive is that τ is an involution not just of the variety
D̄n but of the lc pair

(

D̄n,DiffD̄n ∆̄
)

. Thus we obtain a refined version of the map

{

slc pairs (X,∆)
}

→֒
{

lc pairs
(

X̄, D̄ + ∆̄
)

plus an
involution τ of

(

D̄n,DiffD̄n ∆̄
)

}

. (24.2)

For surfaces, the above constructions are discussed in [K+92, Sec.12]. The higher
dimensional generalizations are straightforward; see [Kol11a, Chap3].

There are three major issues involved in trying to prove that the map (24.2) is
surjective.

24.3.1. Does τ generate a finite equivalence relation?
The normalization n : D̄n → D̄ → X̄ and τ generate an equivalence relation

R(τ), called the gluing relation, on the points of X̄ by declaring n(p) ∼ n(τ(p))
for every p ∈ D̄n. It is clear that if X exists, then every equivalence class of
R(τ) is contained in a fiber of π : X̄ → X . In particular, if X exists then the
R(τ)-equivalence classes are finite.

Example 35 shows that in general the R(τ)-equivalence classes need not be finite.
Moreover, non-finiteness can appear in high codimension.

This is the question that we will study here using the sources of lc centers,
especially their Galois property (1.5).

24.3.2. Constructing (X,∆) from
(

X̄, D̄ + ∆̄, τ
)

.
Assume that the R(τ)-equivalence classes are finite. Following the method of

[Kol08], it is proved in [Kol11a, Chap.3], that if the R(τ)-equivalence classes are
finite, then (X,∆) exists.

24.3.3. Is KX + ∆ a Q-Cartier divisor? The answer turns out to be yes, see
[Kol11a, Chap.3], but my proof, using Poincaré residue maps and (7), is somewhat
indirect. Example 36 shows that this result depends on delicate properties of lc
pairs.

As a consequence we obtain that (24.2) is one-to-one for pairs with ample log
canonical class.
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Theorem 25. Taking the normalization gives a one-to-one correspondence between
the following two sets, where X, X̄ are projective schemes over a field.







slc pairs (X,∆)
such that

KX +∆ is ample







∼=







lc pairs
(

X̄, D̄ + ∆̄
)

plus an
involution τ of

(

D̄n,DiffD̄n ∆̄
)

such that KX̄ + D̄ + ∆̄ is ample







.

This can be extended to the relative case as follows.

Theorem 26. Let S be a scheme which is essentially of finite type over a field.
Taking the normalization gives a one-to-one correspondence between the following
two sets.

(1) Slc pairs (X,∆) such that X/S is proper and KX + ∆ is ample on the
generic fiber of W → S for every lc center W ⊂ X.

(2) Lc pairs
(

X̄, D̄+∆̄
)

such that X̄/S is proper and KX̄ + D̄+∆̄ is ample on

the generic fiber of W̄ → S for every lc center W̄ ⊂ X̄, plus an involution
τ of

(

D̄n,DiffD̄n ∆̄
)

.

Furthermore, the cases when KX + ∆ is ample on X/S correspond to the cases
when KX̄ + D̄ + ∆̄ is ample on X̄/S.

As we noted in (24.3), the following result implies (25).

Proposition 27. Let
(

X̄, D̄+∆̄
)

be an lc pair and τ an involution of
(

D̄n,DiffD̄n ∆̄
)

.
Assume that X is proper over a base scheme S that is essentially of finite type

over a field. Assume furthermore that KX̄ + D̄ + ∆̄ is ample on the generic fiber
of W̄ → S for every lc center W̄ ⊂ X̄.

Then the gluing relation R(τ), defined in (24.3.1), is finite.

This in turn will be derived from a structure theorem (33) on the gluing relation
R(τ) which applies whether KX̄ + D̄ + ∆̄ is ample or not.

Roughly speaking, we prove that for every lc center W̄ ⊂ X̄ there is a “canon-
ically” defined finite cover p : W̃ → W̄ such that the following hold outside the
union of lower dimensional lc centers.

(27.1) (p× p)−1
(

R ∩ (W̄ × W̄ )
)

is the union of graphs {Γ(g) : g ∈ G} where G is

a subgroup of Aut(W̃ ).
(27.2) G is compatible with p∗

(

KX̄ + D̄ + ∆̄
)

.

The compatibility condition (27.2) is somewhat delicate to state. Thus I give the

actual construction of W̃ and then specify the compatibility condition for that
particular case.

Almost group actions.

Definition 28. Let Y be an irreducible variety and G a countable (discrete) group
acting on Y . For g ∈ G, let Γ(g) ⊂ Y × Y be the graph of g. As a set, Γ(g) =
{(y, g(y)) : y ∈ Y }. Their union Γ(G) := ∪gΓ(g) is a pro-finite set-theoretic
equivalence relation on Y . Note that Γ(G) is finitely generated (that is, it is the
equivalence closure of finite relation) iff G is a finitely generated group.

Somewhat imprecisely, we say that a pro-finite equivalence relation R ⊂ Y × Y
is a group action if R = Γ(G) for some group G.

Let X be an irreducible variety and R ⊂ X ×X a pro-finite set-theoretic equiv-
alence relation. We say that R is almost a group action if there is an irreducible



14 JÁNOS KOLLÁR

variety Y , a finite surjection p : Y → X and an (at most) countable group G acting
on Y such that red(p× p)−1R = Γ(G).

Similarly, if X,Y are reducible, one can define the notion of R being almost a
groupoid action. This holds if every irreducible component of red(p× p)−1R is the
graph of an isomorphism between two irreducible components of Y .

Note that not every pro-finite equivalence relation is almost a group action.
First of all, Γ(G) is pure dimensional of dimension dimY , thus if R is almost a

group action then R is pure dimensional of dimension dimX . Every finite and pure
dimensional equivalence relation is almost a group action; see, for instance [Kol97,
21]. This fails for pro-finite equivalence relations, see (30), but the problem seems
to be entirely field-theoretic.

Proposition 29. Let X be an irreducible, normal variety and R = ∪i∈IRi a set-
theoretic equivalence relation of pure dimension dimX. Assume that R is generated
by the sub-relation RJ := ∪i∈JRi for some subset J ⊂ I. The following are equiv-
alent.

(1) R is almost a group action.
(2) There is a field K and embeddings ji : k(Ri) →֒ K such that

k(X)
π∗

1−→ k(Ri)
ji−→ K and k(X)

π∗

2−→ k(Ri)
ji−→ K (29.2.i)

are both finite degree Galois extensions for every i ∈ I, where π1, π2 are the
coordinate projections.

(3) The maps (29.2.i) are both finite degree Galois extensions for every i ∈ J .

Proof. Assume that p : Y → X and the group G show that R is almost a
group action. Then red(p × p)−1(diagonal of X ×X) ⊂ Γ(G) corresponds to a
finite subgroup H ⊂ G and H = Gal(Y/X). Then K := k(Y ) shows (2) and the
latter clearly implies (3).

Assume (3) and let Y be the normalization of X in K. Since K/k(X) is Galois,
K⊗k(X)k(Ri) is a direct sum of copies of K for both inclusions π∗

j : k(X) →֒ k(Ri).

Thus the irreducible components of red(p × p)−1(Ri) have degree 1 over Y for
both projections. They are also finite, hence graphs of automorphisms. Thus the
equivalence relation they generate is a group action. �

The next example shows that, even on P1, not every purely 1-dimensional equiv-
alence relation is an almost group action.

Example 30. Let R ⊂ P1×P1 be the equivalence relation generated by the graph
of (x : y) 7→ (x2 : y2) and by any curve C ⊂ P1 × P1 of geometric genus at least 2.

We claim that R is not almost a group action; it is not even a sub-relation of an
almost group action.

Assume to the contrary that there is a finite morphism p : D → P1 and a group
G acting on D such that (p × p)−1R ⊂ Γ(G). Note first that (x : y) 7→ (x2 : y2)
generates a pro-algebraic equivalence relation most of whose equivalence classes
are infinite. Thus the group G has to be infinite. On the other hand, one of the
components of Γ(G) dominates C, hence g(D) ≥ g(C) ≥ 2. Thus Aut(D) is finite
and so is G, a contradiction.

A more complicated, but theoretically much more significant example is the
following.
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Example 31. [BT09] There is a smooth curve D of genus ≥ 2 and a finite relation
R0 ⊂ D × D such that both projections R0 ⇒ D are étale but R0 generates a
non-finite pro-algebraic equivalence relation.

The structure of gluing relations.

We are now ready to formulate and prove a structure theorem for gluing relations:
they are almost groupoids on every stratum of the log canonical stratification.

Notation 32. Let (X,∆) be lc. Let S∗
i (X,∆) be the union of all ≤ i-dimensional

lc centers of
(

X,∆
)

and set Si(X,∆) := S∗
i (X,∆)\S∗

i−1(X,∆). Let Z0
ij ⊂ Si(X,∆)

be the irreducible components. The closure Zij of Z0
ij is an lc center of

(

X,∆
)

,

hence it has a spring pij : Spr(Zij , X,∆) → Zij (19). Set Spr(Z0
ij , X,∆) := p−1

ij Z0
ij

and

Spri
(

X,∆
)

:= ∐j Spr(Z
0
ij , X,∆).

Let pi : Spri
(

X,∆
)

→ Si(X,∆) be the induced morphism. Then pi is finite,
surjective and universally open since Si(X,∆) is normal. Furthermore, pi is Galois
over every Zij by (20)

Theorem 33. Let
(

X,D+∆
)

be lc, τ an involution of
(

Dn,DiffDn ∆
)

and R(τ) ⊂
X×X the corresponding pro-finite equivalence relation (24.3.1). Let pi : Spri

(

X,D+

∆
)

→ Si be as in (32). Then

(1) (pi×pi)
−1

(

R(τ)∩ (Si(X,∆)×Si(X,∆))
)

is a groupoid on Spri
(

X,D+∆
)

.

(2) For every irreducible component Z0
ij ⊂ Si(X,∆), the stabilizer of its spring

Spr(Z0
ij , X,D+∆) ⊂ Spri

(

X,D+∆
)

is a subgroup of the source-automor-

phism group Auts Spr(Zij , X,D +∆) (19.2).

Proof. We need to describe how the generators of R(τ) pull back to the spring
Spri

(

X,D +∆
)

.

First, the preimage of the diagonal of Z0
ij × Z0

ij is a group Γ(Gij) and Gij =

Gal
(

Spr(Zij , X,D +∆)/Zij

)

is a subgroup of Auts Spr(Zij , X,D +∆) by (20).
Second, let Zijk ⊂ Dn be an irreducible component of the preimage of Zij . Then

Zijk is an lc center of
(

Dn,DiffDn ∆
)

and

Src
(

Zijk, D
n,DiffDn ∆

) bir∼ Src
(

Zij , X,D +∆
)

by (23). Thus, for each ijk, the isomorphism τ : Dn ∼= Dn lifts to isomorphisms

τijkl : Spr(Z
0
ij , X,D +∆) ∼= Spr(Z0

il, X,D +∆).

Given ijk, the value of l is determined by Zil := n
(

τ(Zijk)
)

, but the lifting is
defined only up to left and right multiplication by elements of Gij and Gil.

Thus (pi × pi)
−1

(

R(τ) ∩ (Si(X,∆) × Si(X,∆))
)

is the groupoid generated by

the Gij and the τijkl , hence the stabilizer of Spr(Z
0
ij , X,D+∆) is generated by the

groups τ−1
ijklGilτijkl . The latter are all subgroups of Auts Spr(Zij , X,D +∆). �

34 (Proof of (27)). We apply (33) to
(

X̄, D̄ + ∆̄
)

.
Since Spri(X,D+∆) has finitely many irreducible components, the groupoid is

finite iff the stabilizer of each Spr(Z0
ij , X,D+∆) is finite. By (33) this holds if the

groups Auts Spr(Zij , X,D +∆) are finite.

The automorphism group of a variety Z̃ over a base scheme S injects into the
automorphism group of the generic fiber Z̃gen.
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By assumption, KX̄ + D̄ + ∆̄ is ample on the generic fiber of Zij → S, thus (7)
implies that each Auts Spr(Zij , X,D +∆) is finite. �

Examples.

The next example shows that the stabilizer groups of the strata can change
drastically as we go to higher codimensions.

Example 35. Pick involutions r1, r2, r3 ∈ PGL(2,C) such that any 2 of them
generate a finite subgroup but the 3 together generate an infinite subgroup.

Consider X = A3×P1. Let xi be the coordinates on A3 and Di := (xi = 0)×P1.
On Di consider the involution τi which is the identity on Di and ri on the P1-
factor. Let R ⇒ X be the pro-finite set theoretic equivalence relation generated by
the τi : i = 1, 2, 3.

Note that

π1 :
(

X \D1

)

× P1 →
(

X \D1

)

×
(

P1/〈r2r3〉
)

is finite, thus R|X\D1
is a finite set theoretic equivalence relation. Similarly,

(

X \
Di

)

/
(

R|X\D1

)

exists for i = 2, 3. Set P1
0 := {0}× P1. Then the geometric quotient

(

X \ P1
0

)

/
(

R|X\P1

0

)

exists, but the restriction of R to P1
0 is not a finite equivalence relation since the

subgroup generated by r1, r2, r3 is infinite. Thus R is not a finite relation and there
is no geometric quotient of X by R.

In order to find such r1, r2, r3, its is easier to work with SO(3,R) ∼= SU(2,C).
Let Li ⊂ R3 be 3 lines such that the angles between them are rational multiples
of π. Let ri denote the reflections determined by the lines Li. By assumption, the
angle between any 2 lines is a rational multiple of π, hence any 2 rotations generate
a finite dihedral group.

The finite subgroups of G ⊂ SO(3,R) are all known. If G is not cyclic or
dihedral, then any rotation in G has order ≤ 6. Thus, as soon as the denominator
of the angle between Li, Lj is large enough, the subgroup generated by r1, r2, r3 is
infinite. �

The following example shows that for a seminormal surface T with normalization
(T̄ , C̄, τ) the Q-Cartier property of KT depends very subtly on τ .

Example 36. We describe a flat family of seminormal surfaces
{

T (λ, µ) : (λ, µ) ∈
C∗ × C∗

}

such that the canonical class of T (λ, µ) is Q-Cartier for a Zariski dense
set of pairs (λ, µ) ∈ C∗ × C∗ and not Q-Cartier for another Zariski dense set of
pairs.

In these examples the normalizations
(

T̄ (λ, µ), C̄(λ, µ)
)

are all isomorphic to

each other, C̄(λ, µ) is 2 copies of (xy = 0) ⊂ A2 and τ(λ, µ) is multiplication by λ
on the x-axis and by µ on the x-axis.

Start with a cone S over a hyperelliptic curve and two rulings Cx, Cy ⊂ S. Take
two copies of S and glue them together by the isomorphisms C1

x → C2
x and C1

y → C2
y

which are multiplication by λ ∈ C∗ (resp. µ ∈ C∗) to get a non-normal surface
T (λ, µ). We show that its canonical class is Q-Cartier iff λ/µ is a root of unity.

To get concrete examples, fix an integer a ≥ 0 and set

S :=
(

z2 = xy(x2a + y2a)
)

⊂ A3 and C := Cx + Cy
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where Cx = (y = z = 0) and Cy = (x = z = 0). Note that C is not Cartier but
2C = (xy = 0) is. Furthermore, ωS is locally free with generator z−1dx ∧ dy and
so ω2

S(2C) is locally free with generator

1

xyz2
(

dx ∧ dy
)⊗2

=
1

x2y2(x2a + y2a)

(

dx ∧ dy
)⊗2

.

The restriction of ω2
S(2C) to Cx is thus locally free with generator

1

x2(x2a + y2a)

(

dx ∧ dy

y

)⊗2∣
∣

∣

Cx

=
1

x2+2a

(

dx
)⊗2

.

Hence the different on Cx is the origin with coefficient 1+a. Similarly, the restriction

of ω2
S(2C) to Cy is locally free with generator y−2−2a

(

dy
)⊗2

.
Take now 2 copies Si with coordinates (xi, yi, zi) for i ∈ {1, 2}. Let τ(λ, µ) :

C1 → C2 be an isomorphism such that τ(λ, µ)∗x2 = λx1 and τ(λ, µ)∗y2 = µy1. Let
T (λ, µ) be obtained by gluing C1 ⊂ S1 to C2 ⊂ S2 using τ(λ, µ).

Assume that ω2m
T (λ,µ) is locally free with generator σ. Then the restriction of σ

to Si is of the form

σ|Si
=

1

x2m
i y2mi (x2a

i + y2ai )m
(

dxi ∧ dyi
)⊗2m · fi(xi, yi, zi)

for some fi such that fi(0, 0, 0) 6= 0. Furthermore,

τ∗
(

σ|S2

)

|C2
=

(

σ|S1

)

|C1
.

Further restricting to the x-axis, this gives

1

(λx1)2m+2am

(

λdx1

)⊗2m
f2(λx1, 0, 0) =

1

x2m+2am
1

(

dx1

)⊗2m
f1(x1, 0, 0).

which implies that

f2(0, 0, 0) = λ2amf1(0, 0, 0).

Similarly, computing on the y-axis we obtain that

f2(0, 0, 0) = µ2amf1(0, 0, 0).

If λ2am 6= µ2am, these imply that f1(0, 0, 0) = f2(0, 0, 0) = 0, hence ω
[2m]
T (λ,µ) is not

locally free. If λ2am = µ2am then f1(x1, y1, z1) ≡ 1 and f2(x2, y2, z2) ≡ λ2am give

a global generator of ω
[2m]
T (λ,µ).

For a ≥ 1, we have our required examples. As λ, µ vary in C∗×C∗, we get a flat
family of seminormal surfaces T (λ, µ). The set of pairs (λ, µ) such that λ/µ is a
root of unity is a Zariski dense subset of C∗ ×C∗ whose complement is also Zariski
dense.

Note, however, that for a = 0, ω
[2]
T (λ,µ) is locally free for every λ, µ. In this case,

S :=
(

z2 = xy
)

⊂ A3 is a quadric cone and T (λ, µ) is slc. (In fact T (λ, µ) is

isomorphic to the reducible quartic cone (x2 + y2 + z2 + t2 = xy = 0) ⊂ A4 for
every λ, µ.)
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