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Abstract

In this paper we consider the relation between random sums and compositions of different processes. In particular,

for independent Poisson processes N, (t), Ng(t), t > 0, we show that N, (Ng(t)) 4 Z?{fit)Xj, where the X;s are
Poisson random variables. We present a series of similar cases, the most general of which is the one in which the
outer process is Poisson and the inner one is a nonlinear fractional birth process. We highlight generalisations of
these results where the external process is infinitely divisible. A section of the paper concerns compositions of
the form N,(7}), v € (0, 1], where 7} is the inverse of the fractional Poisson process, and we show how these
compositions can be represented as random sums. Furthermore we study compositions of the form ©(N(t)),
t > 0, which can be represented as random products. The last section is devoted to studying continued fractions
of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the

scale parameter in terms of ratios of Fibonacci numbers.
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1 Introduction

Publications in the field of probability have devoted considerable attention to compositions of different processes,
as e.g. Brownian motions, fractional Brownian motions and telegraph processes. Also, more general cases as stable
processes, combined in different ways have been investigated and the p.d.e. connections analysed. In the present
paper we focus our attention on the composition of point processes, e.g. Poisson processes, fractional Poisson
processes, and others. For independent homogeneous Poisson processes N, (t), Ng(t), t > 0, we are able to show
that N,(Ng(t)) has a remarkable connection, with respect to distributional properties, with random sums, that is,



we prove that

Ng(t)

N(6) =N, (Ns(£) £ D X;. (1.1
=

The first part of the paper is devoted to the presentation of similar results involving more general processes as e.g.
nonlinear fractional birth processes " (t), t > 0, v € (0, 1], so as to obtain

2V (1)

N2 ()< DX, (1.2)
j=1

where the X;s appearing in (1.1) and (1.2) are independent Poisson random variables of parameter A,. A more
general result is obtained when the external process is replaced by a process © possessing infinitely divisible
distribution. In this case, we are able to show that

Ng(t)

oW = Y &, (1.3)
j=1

where the random variables & ;s are the components of the infinitely divisible random variable ©(1), and Ng(t),
t > 0, is a homogeneous Poisson process. The representation (1.1) is remarkable in that it results in the explicit
law of a random sum which is rarely possible in general. The distribution of (1.1) can be given as
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Pr{N,(Np(1)) =k} = 2%e ™™ Zf (1.4)
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=2t (e
where
0 er
Br(x)=e Z(; T (1.5)

are the so-called Bell polynomials, and A,, A4, are the parameters of, respectively, N,(t) and Ng(t). The
composition (1.1) produces a process with linearly increasing mean value and variance:

{ENa(Nﬁ(t)) = AaApt, 1.6
VarN,(Ng(t)) = A4(Aq + DAgt.
For the iterated Poisson process we find that the first-passage time
Ty = inf(s: N,(Ng(s)) = k), k>1, 1.7
has distribution
Pr{T, € ds} = ds Aﬁekaekﬁs% io eI [+ 1) = j*] @ 5<0. (1.8)
=

Furthermore, Pr{T, < oo} < 1, for all k > 1, so that there is a positive probability of never hitting the level k
because the iterated Poisson process can take jumps of arbitrary integer-valued size.



Finally, we note that the iterated Poisson process produces a Galton—-Watson process (continuous in time).
In the case in which Ng(t) is replaced by a non-homogeneous Poisson process 91(t), with rate A(t), t > 0, we still
have a representation of the composition N,(91(t)) as a random sum, i.e.

MN(t)

N(U)E D X, 1.9

j=1

where the X;s are independent Poisson random variables of parameter A4,. Since the probability generating
function of (1.9) reads

EyNa(UO) = o f Aw)dw [0 1] (1.10)

we have also that

{JENa((t)) =24 f(f A(w)dw, (1.11)

Var=2A,(4,+1) fot A(w)dw.

The process (1.1) has non-decreasing sample paths with jumps of integer-valued size and thus differs and extends
the classical homogeneous Poisson process. We note that, for A, # A3, we have that

Pr {N, (N () # Np(No(t))} = 1, (1.12)

as can be inferred from the structure of the probability generating function. The interchange of the non-
homogeneous Poisson process 9(t), with the homogeneous one produces a composed process

M(N, (1)), (1.13)

whose probability generating function can be written as

new, S0 [ aowaw Pat)” 5
Ey"Na(0)) :Ze uml)joMwidw 27 = oAt (1.19)
— r!

r=0

Even the mean value of (1.13) differs from (1.11) since

00 r r 00 j
EN(N,(t)) = e’latz [J A(w)dw} Pat) _ Z {f A(w)dwj| Pr{N,(t) > j}. (1.15)
0 =1 LJj-1

— =
p— r!

The third section deals with the inverse of the fractional Poisson process N"(t), t > 0. The process N*(t) can be
viewed as a renewal process with Mittag—Leffler distributed intertimes and the following probability distribution
(see Mainardi et al. [2004], Beghin and Orsingher [2009])

Vi _ > (] (lﬁtv)j
priv(6) = mi = -1 () ) s 1.16)

j=m

S (EmY (At
_(Aﬁt) ]ZO( ] )m, t>0,’\/€(0,1].

The inverse of the fractional Poisson process is defined as

T, =inf(t: NV(t) = k), k>1,ve€(0,1], (117



with distribution

. X fk ; sv(k+j)—1
Pr{tr] eds}/ds=A Apg——s 1.18
i € dol/ds ﬁzo( e (118
and moment generating function
, u” *
Ee—ﬂfi=(—+1) . (1.19)
Ap

It should be noted that for v = 1 this coincides with the Erlang process. The composed process N, (7)) has
probability generating function

—k

Ay

EuNa(0) — |:1+(1_u)V_aj| (1.20)
Ap

which suggests the following interesting representation:
&
NL(T)) =D &), (1.21)
=1

where the independent random variables £;, 1 < j < k, are discrete Mittag-Leffler (see Pillai and Jayakumar
[1995]). From (1.20), we can infer that N,(7}) has Linnik distribution and, for v = 1, this coincides with the
negative binomial distribution having parameters k and 4,/(A, + 44). For the special case v = 1, we also have the
following representation of N, (7} ):

Ny (T 2 X, + -+ Xy, (1.22)

where N is a Poisson random variable of parameter u = log((A, + Ag)/ A4 )k, and the X js are independent and
possess logarithmic distribution of parameter n = 4,/(A, + Ag). Furthermore, the case N,(¢; ) where the inner
process is the inverse ¢, of a fractional linear pure birth process Y[;’ (t), is examined.

In particular, we show that

P (H2 1)
EuMe3 ) — gy e

r (—%“‘“)v +1+ k)
Ap

. Jul<1. (1.23)

The final section of this paper deals with random products of non negative i.i.d. random variables of the form

N(t)
N,(t) = ]_[Xj, t>0, (1.24)
i=1

where N(t) is a homogeneous Poisson process. We show that the Mellin transform of N, (t) is
E (N, (£)"" = M [Ex 1], (1.25)
Furthermore, we can evaluate the covariance function of the process N, (t) which reads

Cov [Nn(t),Nn(s)] — pM(EX-1) (eAsIEX(X—l) _ eAs(EX—l)) . (1.26)

4



Clearly, the random products can be viewed as compositions of the form Z(N(t)), where

=)= 1 k=0, 1.2
T\ = B, g1 a2n
j= ’ :
Finally, we consider continuous fractions with a random number of levels:
1
[XI;X27"'1XN(I)] =X1+X n 1 > (128)
2
K --Q-XN([),l'Q'L

XN(6)

where the X s are independent standard Cauchy random variables and N(t) is a homogeneous Poisson process.
We show that the conditional distribution of (1.28) is Cauchy in which the scale parameter equals F,,/F,, where
F,, are Fibonacci numbers. This permits us to give a stochastic representation of (1.28) in the form

Fnio+1

d
X1 X, Xno] = D Yingos (1.29)
j=1

where Y; y(,) are Cauchy random variables with scale parameter equal to 1/Fy ).

2 Composition of Poisson processes with different point processes
In this section we examine the following compositions:

1. N4(Ng(t)), where N, and Ng are independent Poisson processes;
2. N,(M(t)), where 9(t) is a non-homogeneous Poisson process with rate A(t), t > 0;
. N (" (t)), where ¥ (t) is a nonlinear fractional birth process with birth rates A,,...,A;,...,and 0 <v < 1;

3
4. N,(Y"(t)), where Y"(t) is a linear fractional birth process. This is a special case of the preceding point.
5. N (Z(98)), where & () is a Poisson field.

6

. ©(Ng(t)), where ©(1) is an infinitely divisible random variable and N(t) is an arbitrary point process.

We will establish some distributional relations between these composed processes and random sums.

2.1 Iterated Poisson process

We start our analysis by considering the iterated Poisson process N(t) = N,(Ng(t)), t > 0. The sample paths of
N(t) are non-decreasing with jumps of arbitrary integer-valued size. In the figures 1 and 2, we give the trajectories
of N,(t) and Ng(t) separately and then the sample path of N(t) obtained by their composition.

We note that the iterated Poisson process N(t) jumps at the occurence of events of the inner process Ng(t). Thus,
if the rate of Ny(t) is large, then N(t) has rapidly increasing trajectories for large A,. However high values of A,
and low levels of Ag can produce contradictory results and thus compensate each other.
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Figure 1: A realisation of the external Poisson process N,(t), t > O.

A
N()

13 —_—
12 :
11
10

9

8 e —

7

6

5

4

3

2

1

»
0|
t
N

7 —_—
6
5 —
4 —_—
3
2

1

»
0] 4 b G

Time W K N

Figure 2: A path of the process N(t) = N,(Ng(t)), t > 0, together with its relation for a specific path of the internal
process Ng(t), t > 0.



Theorem 2.1. The distribution of N(t) = N,(Ng(t)) reads

00 e Aol -k A t r
PR — k= _WZ ( ) 2.1
r=0
Ak g
_ kz;z e Apt—e gy, (Aﬁte%“) , k>0,t>0,
where
00 rer
Bi(x)=e™" Z o’ @2
r=0 :

is the kth order Bell polynomial [Boyadzhiev, 2009]). The probability generating function of N(t) has the form

EuN([) _ e)tﬁt(e“(“_“—l), lul < 1. 2.3)
Proof.
Pr{N(t) =k} = ZPr{N (r) = k}Pr{Ng(t) = r} 2.4)
[ee] r
Ze (A r) lﬁt(kﬁt) .
r!
Furthermore
. 00 X —A,T k —lﬁt(k t)r
NG _ X e ()L r) e B
Eu¥O = kY : u (2.5)
k=0 r=0
— i e—)tareularekﬁt (Aﬂ t)r
r=0 r!
and thus (2.3) emerges. O

In Figure 3 we present the first four state probabilities as a function of time t for the iterated Poisson process in
which 4, =25 =1.

Theorem 2.2. The following equality in distribution holds:

Ng(t)

N.(Np() = Y X;, 2.6)
=

where the X s are i.i.d. Poisson random variables of parameter A,.

Proof. The probability generating function of the random sum (2.6) is

N ® 5 0
ﬁ Z X)kPr{Nﬁ(t) — k} — e—)tﬁt-l’},ﬁ[‘]Eux — e}»ﬁt(ela(uil)—l), (27)
k=0

and this coincides with (2.3). O
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Figure 3: The first four state probabilities (Iterated Poisson). The parameters are A, =1, Aﬁ =1.

Remark 2.1. For the iterated Poisson process we can write

EN(t) = EN,(Ng(t)) = A, At,

VarN(t) = A,(1+ A,)Agt.

(2.8)

(2.9)

We can obtain (2.8) directly, by means of the probability generating function, and also by applying Wald’s formula for

random sums.

EN () = 3k 3 e rer e e o)
k=0 r=0 r:
e (1/3 (Aar )
— Agt )\ r
=e ; Z(k—l)!

_ - \Ap
—=e Apt E )La o :Aalﬁt.
Alternatively

d " )
ENa(Nﬂ(t)) — aEuN(t) — Aalﬁt (ela(u—l)) ekﬁf(ela( 1) 1)
u=1

= Aakﬁ t

u=1

and, by applying the Wald’s formula
EXENg(t) =EN(t) = A, Agt.

For the second moment, analogously we obtain

ENz(t)—ZkZZ A f(lkr) e Pt

|
k=0 r=0 r

(2.10)

(2.11)

(2.12)

(2.13)



Therefore

(Aar)k“

= Q| &
[Z oot

k=0

:e_lﬁ[i( pt) [(A r)?+ (A, r)}

1)+Z( p)" a:|

(Aﬁ )r+1

)

r=0

= Aalﬁt +A,(Zx7\,/3t +2,(2x

2
Aﬁt

k!

VarN(£) = EN?(t) — [EN(0)]® = AuA5(1 + Ag)t.

This result can be confirmed by applying the Wald’s formula for the variance.

|

VarN(t) = VarNg(t) [EX]* + VarXENg(t) = A, A(1 + A,)t,

because EX = VarX = A,.

Remark 2.2. The state probabilities p,(t) = Pr{N(t) = k} satisfy the difference-differential equations

d
aﬁk(f) = —2pP(t) + Age e

In order to prove (2.16) we write

so that

k

et

m=0

—m(t),

Bi(t) = Y Pr{N,(r) = k}Pr{Ng(t) =},
r=0

d > d
a0 = 2 PriNa(r) =K oPriN(0 =

=2 ZPr{N (r) = k}PriNg(t) = r} + A ZPr{N (r) = kK}Pr{Ng(t) = r — 1}

r=0
k 00

A
= _A’ﬁpk(t) + Xﬁ—e_lﬁ Z

A,k
= _A’[J’pk(t) + Aﬁk_‘!}‘e_lﬁ

Mg ]

Il
o

T
k k

Ay
= —2ApPi(t) + Age Mot 2 ki ~Ha Z

—)La(r

r}

r=0

k(kﬂt)r_l
(r—=1)

+1)

r!

(r+1)

(Apt)"
!

k=o0.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



—m

= —ApPr(6) + g Ake Z TP
k Am
= —Apbi(t) + Age ™ Z cem(t)-

It is now easy to show that
o0
k ~
= ()
k=0

satisfies the partial differential equation

0
¢ = ¢ A (u=-1) A — & Aqu—-1) _
5,6 ) =—2Gu, ) + Age DG, ) = AG(u, ) (7D —1).

Remark 2.3. For the composition N,(91(t)) we have that

t r
N & 2 ‘ [ A(w)dw
D PN, () =k} =t ' Gar)” r) e Jo uw)dw_[ i } Rt
k=0 k=0 r=0 r
r=0 r!
— o[ D=1] f{ Aw)dw

We can also ascertain that

MN(t)

d
N, (U1 = > X;
j=1
by using result (2.21).

2.1.1 Hitting time for the iterated Poisson process

Here we study the distribution of the random variable

Tj = inf(s: N,(Ng(s)) = k), k>1,

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

which represents the first-passage time of the iterated Poisson process at level k. In the next theorem we state the

main result.
Theorem 2.3.

A& (Aps)

_ —Ag -2 —2q . k_ sk
Pr{T, € ds} = dsAge ki ﬁSZe J[(J+1) J] T s> 0.

j=0

Proof. In order to arrive at result (2.24), we first write

k
Pr{T; € ds} = > Pr{N,(Ns(s)) = k — h,N,(Nj(s + ds)) = k}
h=1

10

(2.24)

(2.25)



=

= Pr{N,(Np(s)) = k — h,N,(Np(s) + dNg(s)) = k}.
h=1

Clearly, dNg(s) either takes the value O with probability 1 — A5ds (and, in this case, all events appearing in (2.25)
are mutually exclusive) or the value 1. Therefore

k
Pr{T} € ds} = A,4ds ZPr{Na(Nﬁ(s)) =k — h,N,(Ng(s)+1) = k}. (2.26)
h=1

In the interval (Ng(s), Ng(s) + 1), the external process can take all possible values 0 < k —h < k — 1. The value k
must be excluded because if at time s, N,(Ng(s)) = k, the first attainment of value k cannot be recorded during the
interval (s,s + ds]. Furthermore

Pr{N, (N5(5)) = k — h, No(Nj(s) + 1) = kINp(s) = j} 227)

= Pr{Na(]) =k— h>Na(j + 1) = k}

= Pr{N,(j) = k — h}Pr{N,(j + 1) — N,(j) = h}

i Gl R

(k—h)! e

By inserting (2.27) into (2.25), we arrive at

(2.28)

oo k k—h h j

(Aod) AL (Ags)
Pr{T, €ds} =ds Aﬂe_xﬁs Thaf L pmHa @ T
ZZ G—m1 ¢ w

Ak & A (Ags)
_ ~hap—Pps Zat i [ k_ sk B
=ds Age & ‘Eoe TG+ -] }—J,! .
p

We note that Pr{T}, < oo} < 1, for all k > 1. From (2.24), we have that

k 00
Pr{T, < oo} =e™* k—“Z Pl [+ 1k = j*] (2.29)

k 00 Jj+1
—Aq a k-1
e” xdx
P }

j=0

Ak oo rjt+l
— - al' J e—Aa(]+1)xk—1dx
(k=D =5,

Ak f“’
a —AgX k=1
< — e M x T dx = 1.
(k—1)! 0

O

Remark 2.4. The previous result shows that there is a positive probability of never reaching level k for the iterated
Poisson process. For some cases this probability can be evaluated explicitly.

> o Age M

Pr{T, < o0} = Aae_laZe_laJ =1 2 — <L (2.30)
. —e e
j=0

11



This is because
0<1—e?* —A,e?=1—Pr{N,(1) =0} —Pr{N,(1) = 1}. (2.31)
From (2.25) we can evaluate the distribution of T; as follows.
Pr{T, eds} =ds Aae_’lalﬁe_’lf’s(l_e%a), s> 0. (2.32)

By similar calculations we have also that

7L26_}L .
e~ ps(1—e ) Na
Pr{T, € ds} =ds Ag—“— 5 f [1+2(Ags)e ] (2.33)
Furthermore
2 Aoc
Pr{T, < oo} = [Pr{T; < oo}]|" + EPr{T1 < o0}. (2.39)
Finally, an alternative form of (2.25) reads
Pr{T, €ds} = Aﬁdst e PaUt1- X)Pr{T"‘ €ds}, (2.35)
j

where T\* = inf{s: N,(s) = k} and Pr{T’ € ds} is the Erlang distribution for the external Poisson process.

2.2 Subordination of a homogeneous Poisson process to a fractional pure birth process

Let & (t), t > 0,0 <v <1, be a nonlinear fractional pure birth process with rates A; > 0, j €N (representing an
extension of the classical nonlinear pure birth process). It has been shown in Orsingher and Polito [2010] that

l_[ ]Z E 1(=Ant") k>1,

Pr{¥"(t) =k|#"(0) =1} = " T a2’ (2.36)
V,l(_xlt ): k= 1’
where E, ;(x) is the Mittag—Leffler function. For the process N, (%" (t)) we have the following result.
Theorem 2.4. For the composition N,(%"(t)) we have that

2V(1)

N2 ()= D] X, (2.37)

j=1
where the X »J=1, are i.i.d. Poisson random variables with rate A,.
Proof. In order to prove (2.37), we evaluate the probability generating function of both members.

[e8)

EuNa(2"(©) — Z "

k=0

= ela(u—l)EV’l(_ll ) + i [ela(u—l)] r
r=2

r—

(A r)k 1
Ep (—At")+ ) e er E, 1 (—2,,t")| (2.38)
(=t Z ﬂ anmu T3P

r—1 r 1
A
=1 ’ m=1 l_l =1 l#m(ll A’m)

Ev,l(_km tv)~
j

12



The probability generating function of the right-hand side of (2.37) reads

EuZ %) = ehalu- 1>pr{@ﬂ(t)—1}+2 FleDrpr{ @y () = 1}, (2.39)
r=2

as EuX = e*«=1 because X is a Poisson random variable of parameter A,. By comparing (2.38) with (2.39), in
view of (2.36), we have the claimed result. O

Remark 2.5. For the fractional linear birth process Y"(t), t > 0, the distribution (2.36) specialises and takes the
form

k

k—1 . ,
Pr{Y* () =k|Y*(0)=1}= Y (j } 1)(—1)] E,1(~2gjt"). (2.40)

j=1

For v = 1, the distribution (2.40) reduces to the geometric distribution of the classical Yule—Furry process. The
probability generating function of the composed process N,(Y" (t)) becomes

- O (l r) 1 - v
E[ N(Y()) ;ukg ;(] 1)(—1)1 'E, 1 (=Agjt") (2.41)
e L r—1 . Ly
=2 “rewz(jﬂ)(_”] Eya(=2pjt")

_g
Il

1 =
= (r—1

1 j*lE —Aait¥ e*la(lfu)r
(1Y By () );j(i—l)

(—1Y 7B,y (— At e Py (] e 1) o~ Pal1-0r

r=0 r
— j—1 _ s vy, — AL (1-w)j _j 1V oA (1—w)r
=2 A S (e

Mg EMS EMS IMg

( 1)jflef)ta(17u)j (1 _ efka(lfu))_l Ev,l(_lﬁjtv)

~.
Il
-

Aa(u—l)

J
(-1 {W} E, 1(=Agjt").

I
M8

Il
—

J

2.3 Subordination with a Poisson field
Let B a Borel set and let us indicate with A(B) its Lebesgue measure. The aim of this section is to study the process
N,(7(B)), (2.42)

where N,(t), t > 0, is a homogeneous Poisson process with rate A, > 0, and Z(B), is a homogeneous Poisson field
with rate A > 0. Analogously to the iterated Poisson process, the representation

N (FB) X, +-- +X2), (2.43)

13



where the random variables X; are i.i.d. Poisson distributed of parameter A, > 0, is still valid. Therefore, the state
probabilities can be written as

Ak -2,
Pr{N,(Z(B)) =k} = k—j‘e*WB)(l*e V%5, (AA(Be ™)), k=0, (2.44)

and the probability generating function reads
G(u,B) = ME(-1) <. (2.45)
The emptiness probability is given by:
Pr{N,(Z(B)) = 0} = ¢ M®(1-¢7) (2.46)

Let now B, be the disc with radius I, centred in the origin. The first-contact distribution H(I), | € R*, (with the
first point) is

H()=1-Pr{N,(Z(B)) =1} =1— e 0" [ eR™, (2.47)
The probability density is in turn
h(D) = 2Anl(1 — e 2 )e Al* A=) | e R (2.48)

that is, a Rayleigh distribution (see, for the classical non subordinated case, Stoyan and Stoyan [1994], page 213).

3 Compositions of Poisson processes with first-passage time of different
point processes

In this section, we consider a fractional Poisson process N”(t) (see Beghin and Orsingher [2009] for information
on this process) whose first-passage time

T, =inf(t: N"(t) = k), k>1, 3.1
is composed either with a homogeneous Poisson process N, (t) (4, > O is its rate) or with a Yule-Furry process

Yo ().
The distribution of (3.1) has the following density

d
Pr(t} €dt)/dt = aPr{N”(t) >k} = )L;‘St”"*lEi‘,vk(—/\ﬁtv), t>0, A5 >0, (3.2)

[Beghin and Orsingher, 2010, formula (1.6)], where

5 _ = (5)rzr
ES (2)= Z(; TG ories R(E) > 0. 3.3)

The function Eg,y(z) is called generalised Mittag-Leffler function (see Mathai and Haubold [2008, page 91])

Theorem 3.1. The composed process N" (k) = N, (7}) has the distribution

1R (A TR+ D)
PT{N (k)—r}— r—):ZO( ] ) (A_g) W—i—j)), r 0, (34)

A%
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and possesses probability generating function

—k
A
Eu' ) = [1+(1—u)vl—“} ;o =L (.5
B

Proof. We start our proof with the following relation:
[0.9)
Pr {NV(k) = r} = J Pr{N,(s) = r}Pr{rz € ds}, k>1,r>0. (3.6)
0

Instead of writing the distribution of 7} in terms of generalised Mittag-Leffler functions, it is more convenient to
work with the following expression which we derive from scratch.
From Beghin and Orsingher [2009], we know that the distribution of the fractional Poisson process is

Pr{N (t)—m}—;( 1y (m) it D (3.7)

_ vym S j+m (_Aﬂtv)j
= (Apt") ;( j )—F(V(m+j)+1)’ t>0,ve(0,1].

By considering that Pr{t} <s} =Pr{N"(s) > k}, we have that

Priv} < ds}/ds = iprw(s) =m} oY
ST
IR e
_ disg(—aﬁ)hr(%il)g (:J(_Dm
_ %g};(—lﬂ)hr(%il)ﬁl)k (Z: D
_ Z( Ag)'(— 1)"( 1) r(iwh—:)

vh—1

N ne 4k (T1Y S
= 2D (e fem
gv(ki)-1

jmhk (TR ST
= ZOZ( A )J+( 1)( k—1 )F(v(k-i—j))

00 ) v(k+j)—1
=% 0( )ﬁF(V(kﬂ))

j=

15



In the fifth step of (3.8), we used the following formula which is interesting in itself

S (M gm0
5 ()en-co(i2)

m=k

We provide here a proof of (3.9) in the following way:

3(Jor-$

h k—1 h k-1 h .
Ly E -5 (e

m=k m=0 ~ Z
_ _qqp M) Ao D(R—2) - 1) - 2)(h-3)
2 2:3 2-3-4
kh(h_l)(h—Z)...(h—k—i—z)
o (1) e
—(h-1) [1—_ h(h 2) _ h(h—2)(h—3)
2 2-3 2.3.4
+...+(_1)kh(h_2)~-(h—k+2)]

2

_(h=1)(h-2) [—1+

_ (h=1)(h-2)(h—

2-3--(k—1)

h h(h—3) h(h=3)...(h—k+2)
37 sa POV TR TG }

3)T. h Jh=4). (h=k+2)]
[1_Z+'"+(_1) 5. (k—1) ]_

). (h—k+2) [, . h
- [(—1) (1) m]

2-3
(h—1)(h—2)(h—
- =
(h—=1)(h—2)(h—
- =
. (A=)
=V G-

.. (h—k+2) h
2)! -1 [‘”m]

. w(h-1
k)!_( 2 (k—l)‘

By inserting (3.8) into (3.6) we obtain that

Pr{NY(k) =1} = f

—A S(A’ s)r ; v(k+]) 1
r Aﬁz( ) POk )
AT X =K\ .. TWk+j)+r)
= %)k ( .)AJ ‘
i 2 ) e )

&k (A Tk + )+ 1)
_HZ(]') v T(v(k+j))

This proves formula (3.4). The probability generating function

o) . 00 —A s(l S)r s3] . v(k+1) 1
B = Z“f T Z( )ﬁF(V(kﬂ))

r=

),

0
[e)

j=0
v(k+]) 1

00 k ;
—AeS Asul A
;0(1) P
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k

(mu—ur) 2( (W(l ﬁ“)”)j
) (rsttey)
3R

=

(M(l—u)v

= [1+(1 Aﬁ

O

Remark 3.1. The waiting time T), k > 1, for the kth event of the fractional Poisson process can be viewed as the sum
of independent waiting times T j separating the events of the Poisson flow, i.e.

v
"L'k—

M-

Ty (3.13)
j=1

It is well-known (see e.g. Mainardi et al. [2004] or Beghin and Orsingher [2009])

Pr{ﬂ,j €ds} =Pr{r] €ds} (3.14)
© (~ sy
=2 sv—l -
’ ]z.; r(v(j+1)
= Aﬁsv_lEv,v(—)L/jSV)

d v
= =By (~2gs").

From (3.14) it follows that
J Pr{ﬂ’j edst=1, (3.15)
0

and, by writing the distribution of T as convolution of the terms pertaining to T » we have also that

J Pr{t, €ds}=1. (3.16)
0

The Laplace transform of (3.8) is easily calculated and reads
! 00 00 ; v(k+]) 1
Ee ¥ = [ ™2 — 3.17
: J JZ( ) T (317)

00 v -k
S5
:U’Vk j=0 ] ‘uv A'[5 ’

and this clearly confirms the additive structure (3.13).

Remark 3.2. Result (3.17) suggests the following representation for the composed process N" (k):

R Ley+.. &, (3.18)
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where the 5}7 are independent random variables which are called discrete Mittag—Leffler random variables (see Pillai

and Jayakumar [1995]) having parameters v and A} /Ag. The discrete Mittag-Leffler reduces to the geometric random
variable of parameter ¢ = A, /(A, + Ag) when v = 1. We now give the explicit distribution of the generalised geometric
random variables 6}’.

v, 1 F(v(j+1)+r)
Pr{g _r}_r—!;(m) ToGTD) (3.19)

A 00 0 v(j+1)+r—1 A j
= B eiW Z W— __/3 dW
Anrt ) = rv(j+1)) A

B A[J’ ooe_W Wv+r—lE ( )"[5 WV) dw
- 5 5 LByl T 5y .
20 rl A

For v =1, we extract from (3.19) the geometric distribution.

A i T agw Ag/ Ay
Prigt=r}= A_ﬁJ e’WV:—effTde = L =pq"! (3.20)
o !

iPr{gv =r}= A—ﬁ ) e "w'E —ﬁ dw (3.21)
% o A |

(T4, AP
=), Tawr T )T

Furthermore, formula (3.5) shows that N"(t) possesses Linnik distribution and its form is explicitly given by (3.4).
Finally, the distribution (3.4), for v = 1, becomes the negative binomial distribution having parameters k and
Ao/(Aq + Ap). Indeed, from (3.4), we have that

0 A6\ (k+m+r—1)!
yal _ _ _aym | 2B :
pr(N'(k)=r) _Z:( 1 (la) T (3.22)
ktr—1) & o (kmAr—1
- > (2 S
m=0 a m
_(k+r-1 Ap i Aﬁ —(k+r1)
B Ao ) =\ Ay m
_ k+r—1 A[j k 1+A/3 —(k+r)
B Aa A
_(ktr-1 e\ L ‘
N r A‘a + 2,/3 A’a + A’ﬂ ’
Remark 3.3. We now find the distribution of a slightly modified first-passage time
t 1/v
Y= (E) T (3.23)
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where TZ is defined in (3.1) and has distribution (3.8).

W o s Ky
Pr{f{eds}zds(é) ng(jk)Ag[s(f) } (3.24)

T (k+7)
3 00 —k ki k k+j Sv(k+j)—1
‘dsz(j)kﬁ](?) Tv(k+7)

The Laplace transform of (3.24) becomes

0 t‘uv -k
f e Pr{t) eds} = [1 + Ag P ] . (3.25)
0
For k — 0o we obtain the fine result
[09)
klim f e #Prit] eds} = e et (3.26)
—00 0
Result (3.26) shows that the rescaled first-passage time (3.23) converges in distribution to a positively skewed stable

law of order v € (0, 1).

We now consider the Yule-Furry process Y,(t), with a single progenitor, subordinated to the first-passage time 7} .
The distribution of Y, (7}) is given below and can be determined as follows. Bearing in mind the distribution (3.8),
we have that

e}

; v(k+]) 1
Pr{Ya(TZ):r}ZJ; C_A“S(l et ) Tk Z( ) ﬁm (3.27)
© T v(k+]) 1
r h=1 5= Aqhs ) k j
Jo hz(h D * Z( ) T
. L (r et k 1
=42 () ,ZO( Vi

(if Ap/2% < 1)
r 2 k r—1 2 —k
B h—1 B
_1 ]_ PR,
2l (oo [

—(r—1 h-1 Ay -
(-1 1+h"— , r=0.
— h—1 lﬁ

The probability generating function of the distribution (3.27) reads

—k
) 00 r -1 AY
Eu Y70 :ZurZ (}:_ 1)(—1)h_1 {1+hvx—a} (3.28)

r=1  h=1 B

o vk o
:}; 1)h1[1+h” “} Zuf(r_l)

r=,
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[e¢] u h }IV _k
=S (- (—) {1 +h”l—“} L qul<1.
= 1—u B
We remark that the inversion of sums in (3.28) is valid only for |u| < 1.

3.0.1 The classical case v =1

For v = 1 we have special interesting results for Na(’ri) and Ya(f}c). For the first process we have the following
result.

Theorem 3.2. The composed process Na(’ri) has the following representation:
Nyt L X, 4+ Xy, (3.29)

where N is a Poisson random variable of parameter

Agt+ 25\
u =log s (3.30)
Ap

and the X ;s are i.i.d. random variables with logarithmic distribution of parameter q = A, /(A4 + Ag).

Proof. The random variable Na(T}() is a negative binomial W (see (3.22)) with distribution
k+r—1Y\ ,
PriWw =r} = P q". (3.31)
r

In our case p = Ag/(A, + Ap) and q = A,/(A, + Ag). It is well-known that it can be expanded as a random sum of
the form

Nyt LX)+ + Xy, (3.32)
where N is a Poisson random variable of parameter u = —klogp and X is a logarithmic distribution of parameter
q. O
Remark 3.4. From (3.22) we can infer that

- Aot 2Ap
EN(k) = k, (3.33)
Ag
and
i Ag(Ag + Ag)
VarN (k) = % (3.34)
B

These results can be confirmed by applying Wald’s formula to the random sum (3.29).

Remark 3.5. For v =1, the distribution (3.27) becomes

. —k

-1

PriY (th)=r}=) Cl B 1)(—1)’1‘1 [1 +h%} ,  r>21,k>1 (3.35)
h=1 B
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We are able to give a fine expression of (3.35) for k = 1. We have

r l
Pr{Ya(ﬁ)=r}—Z(; e e (3.36)
:Z(r )( 1)h ;
h=0 (1+ +h)

In light of the formula (see e.g. Kirschenhofer [1996])

i M= ok 397,
k=0(k) X+k_X(x+]_)(x+N)’ .

the probability (3.36) becomes

Pr{Y,(t])=r}= r>1. (3.38)

kﬁ(r_l)'r(i_i_i—l)_l_ﬁ]gt ( )Lﬁ )
A r(7a+1+r) T

We can easily check that (3.38) sums up to unity because

O A A
Z ﬁBeta (r k—ﬂ-l-l) —J r1(1 — x )/ Radx (3.39)

— _J (1 x)lﬁ/)\ -1_

Remark 3.6. The mean value and the variance of Ya(T}() can be obtained by means of the following calculations.

A,k 00 A,k 00 2 k
EYa(T}() = @ —ﬁl)' f erassk=le=Apsds = C —ﬁl)' f e~ (M= adsgh=1qs — ( P ) ) (3.40)
*Jo *Jo

if Ag > A Analogously we have that

A’l[(j 00 A/j k Aﬂ k
1y _ A AaSVek—1,—Ags 1.
VarY,(7,) = (k—l)!fo et (1+ete®)s e s = (?Lﬁ—?ta) + (—kﬁ—Zla) , Ag >22,. (3.41)

3.1 Composition of Poisson processes with the inverse of an independent fractional
linear birth process

Let Yﬁv (t), t > 0, be a fractional linear pure birth process with rate 15 > 0, studied in Orsingher and Polito [2010].
From Cahoy and Polito [2010], the distribution of

¢, = inf(t: Yg(¢) = k), (3.42)

is obtained and has the following probability density:
k m
m-—1
Prigy ede}/de=D">" ( 1 )(_1)1_17tﬁltv_lEv’v(—lﬁltv) (3.43)
m=1 =1
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Il
M»

(~1)' Al E, (— Aﬁm)Z( 11)

k -1 v—1 v
l(—l) Aglt""E, ,(—Aglt")

1

[
M~

=1

I
M~

k (=1 —E, ;(=Azlt"), t>0,ve(0,1]
> S .
[ 1t v,1 B B) vV s

l

Il
—_

The relation er{n=1 T__ll) = (’;), used in the second step of (3.43), can be proved as follows:

k (1+1) (+1)(I+2) I(1+1)...(k—=1)
2(1—1) LR 2-3 B P SO

B [ 1(1+2) (+2)...(k—1)
_(1+1)[1 3t 33 Tt 330D ]
:(z+1)2(z+2) [1+— l(l+3)...(k—1)]

3T T S koD
:(z+1>(z+z>(z+s>...(k—1>[ l}z(")

1
k—1-1D) R I

The distribution of N,(¢; ) therefore becomes

Tt s@ ) S =15 -1
Pr(Ny(¢y)=r)= Z( )(—1) Agls"'E, ,(=Agls")ds

0 =1
1 (A" T+ 1)+ 1)
_r_!lzl( )(_ )Z(_ /1;) r(v(n+1))

The probability generating function of N,(¢; ) can be written in a neat form as

o0 o8] A r
EuMa(?i) = ZurJ s f) Z( )( D' Apls"'E,, (= 2Apls")ds

r=0 =1

00 k k
— f e Has(1—u) Z (l ) (_1)1—11/3 lsv_lEv,v(_lﬁ IsV)ds
0

—Ek](k)( I L’ 1( ey
=3\ [ =w]" + 251 3 MO g4

Ap
k!

(Aa(l—ur +1)( HEOI 2) (Aau—ur 4 k)
Ap Ap Ap
Av(1—u)”
k!l“( pm +1) A;(l—u)"
= a =k - Beta k’l——i_l s lu| < 1.
r( (ﬁ“) +1+k) p
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4 Poisson random products and Poisson random continued fractions

4.1 Multiplicative compound Poisson process
In this section we consider a multiplicative compound Poisson process (denoted here w-compound Poisson process),
defined as

N(t)
N.(t)= l_[Xj, t>0, 4.1)
j=1

where the X;s are i.i.d. random variables and N(t), t > 0, is a homogeneous Poisson process with rate 4 > 0. We

start by calculating the Mellin transform of N (t).

n—1 S 17k (a0) At At(BX71-1)
E[N.(0]"' =" [Ex"1] e =e : (4.2)
k=0 :
The relation (4.2) can be rewritten as
RelogN(0)n-1) — go(1-D XV logX; _ ,if 3V logX; _ ae(ex?) (4.3)

For the non-negative random variables X s, the random sum > =1"Oogx ; can be reduced to a Poisson random
product for the random variables X s possessing Mellin transform at point n = if§ + 1,

EX"! =EXF. (4.9
We give the explicit form of the covariance function in the next theorem.

Theorem 4.1. For 0 <s < t, the covariance of the random product N_(t), t > 0, reads

SEX(X—1)
COV(Nn(t),Nn(S)) — ekt(]EX—l) [EASJE[X(X—I)] _ e)Ls(IElX—l)j| — ekt(]EX—l)J Aelwdw‘ (4.5)
SE(X—-1)
Proof.
N(t) N(s) N(s) N(t) N(s)
o Tl =s T T 0T ] @9
j=1 r=1 j=1 [=N(s)+1 r=1
o0 o0
m
= > [Ex?]" [EX]"" Pr{N(s) = m,N(t) = n}
m=0n=m
o0 (o]
m
= > [Ex?]" [EX]" " Pr{N(s) = m}Pr{N(t — s) = n — m}
m=0n=m
00 e—ls As)" & e—k(t—s) At —=3s))
m! r!
m=0 r=0
— eAs(EXZ—l)eA(r—s)(Ex—l)‘
Therefore
N(t)  N(s)
(COV {I_IXJ’ l_[Xr} — els(]EXZ_l)eA([—S)(]EX—l) _ elf(]EX—l)els(]EX—l) (47)
j=1 r=1
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— M(EX-1) [eks]E[X(X—l)] _ e)\s(]EX—l)] ‘

O
Remark 4.1. Formula (4.5) shows that the process N (t) is positively correlated.
As a consequence of the previous calculations we have that
EN,(t) =MD B[N, (t)]* = ED), (4.8)
and
VarN,(t) = pMEX?=1) _ ,22t(EX—1) _ ,—At(1-EX?) [1 _ e—;mE(x—l)Z] . 4.9)
For X ~ N(0,1), the covariance function of N (t) takes the form
CovN,.(t) = 2sinh [A min(s, t)] e ™8 = 25inh [ACov(N(t),N(s))] e ACVINONED, (4.10)

Remark 4.2. If the random variables X, j > 1, are positively skewed stable with index v € (0, 1), we are able to give
an explicit form of the Mellin transform (4.2).
Since

Ee ™ =¢*, u>00<v<]l, (4.11)
we have that the characteristic function of X reads
. N v~ e v 2y v
ReifX = =B — o=lBl'e 2 = _ || [cos7 (1 — sgn 3 tan 7)] . (4.12)

Some manipulations as shown in D’Ovidio and Orsingher [2011 ] prove that

IEX”*:EF l-my_ 1 (4.13)
v v r(1i-=) )

This permits us to conclude that

E[N,(0)]"" = M) w1, 4.14)

Remark 4.3. When X; are i.i.d Bernoulli random variables of parameter p, we have that the fractional moments of
the compound process can be written as

E [N,(t)]" = e #1P), (4.15)
which do not depend on 1. It follows that the mean value and the variance are
EN,(t) =e 0P yN_(t) = e HOP (1 - e—““—l’)) ) (4.16)

Note how the mean value and the variance formally coincide with those of a linear pure death process with a single
progenitor.

Remark 4.4 (General case). Consider an infinitely divisible random variable Y in the sense of Mellin (or log-infinitely
divisible), thus decomposable in product of i.i.d. random variables {;. For Y we have that

EY" = [B07 " (4.17)
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The Mellin transform of the random product H?L(? {; is therefore

N 7L L e (Ag )k
Ell]e| =D [Erm] —— = e totehr ! = hpi[om], (4.18)
j=1 k k!
Let now ©: N — N such that for each r €N, O(r) = ]_[;zl &;. If the random variables s take integer values, then

E[ON())]" = D> \m"Pr{e(r) = m}Pr{N(t) = r} (4.19)

m=0 r=0

= i (Egnfl)rpr{N(t) — I”} — e*%&lﬂ;gn—l‘
r=0

If ©(r) is absolutely continuous the calculations follow in the same way and arrive at the Mellin transform (4.19):
E[ON(t)]" ! = ZJ x"Pr{e(r) e dx}Pr{N(t) =r} (4.20)
r=0J0

- i (Egn_l)rpr{N(f) =r}= e MptHAgEETH
r=0

In conclusion we have that

N(t)

o) =] |&; (4.21)

j=1

4.2 Continued fractions of Cauchy random variables with Poisson distributed levels

We consider in this section the random variables defined as

[Xl;XZ""5XN([):| :X1+ (4.22)

X, + 1 ’

: -+XNM_1+XN17
where X, j > 1, are independent Cauchy random variables with scale parameter equal to unity and location

parameter equal to zero. We will write X ~ C(0, 1). Furthermore N(t), t > 0, is a homogeneous Poisson process
independent of the Cauchy random variables X;. For the convenience of the reader we note that

[X;] =X, (4.23)
1
(X;X,] =X, + o (4.24)
2
1
[X1;X,,Xs] =X, + ) (4.25)
1 2 3 1 X2+XL3

The standard Cauchy random variable has the remarkable property that X ~ 1/X, and this is the reason for
which continued fractions can be treated when Cauchy random variables are involved (Cammarota and Orsingher
[2010]).

For our analysis, we need the following result.
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Lemma 4.1. For a Cauchy random variable C(a,b), a € R, b € R*, the random variable 1/C(a,b) ~ C(a/(a® +
b2), b/(a?+ b2)). In our case, a = 0 and therefore 1/C(0,b) ~ C(a, 1/b).

Our first result is stated in the next theorem.

Theorem 4.2. The nth level fraction

1
X1 Xq, .., X, =X, + ——m8M——, (4.26)
1542 n 1 X, + 1
X
has Cauchy distribution with scale parameter b, = F, ., /F,, where F, are the Fibonacci numbers.
Proof. We proceed by induction.
1
[XI;XZ] =X1 + )(_ ~ C(O, 2). (4.27)
2
In view of Lemma 4.1, we have that
1
[X15 X5, X3] =X, + T~ C(0,3/2). (4.28)
Xz X_3
Furthermore,
1
X1:X9,X3,X4] =X + ————= ~ C(0,5/3). 4.29
[X15X2,X3,X] =X, [X,: Xa,Xs] (0,5/3) (4.29)
In general we have that
X Xo,.. . X=X+ —————=X1+ ——F—— 4.30
X X =% [X3,X5,...,X,] ' C(0,F,_,/F,) (4.30)
:Xl + C(O’Fn/Fn—l) = C(O, 1 +Fn/Fn—1) = C(O:Fn—o—l/Fn);
and in the last step we took into account the definition of Fibonacci numbers. O
Remark 4.5. The Fibonacci numbers can be written in terms of the golden ration ¢ = (1+ +/5)/2 as
n_(1— n
PR Sk 2l 4.31)
V5
Therefore
1 (1_ n+1
F ¢n+1_(1_¢)n+1 - | —
i _ T = AVESEENNS (4.32)
Fo @' +(-9) 1-(2)

This means that [X1;X,,...,X,] 4 Cc(0,¢).

Remark 4.6. From the analysis above, we infer that [X1;X,,...,Xy], t > 0, is a process and, for each t, possesses
distribution equal to

1 Fn+1/Fn —At (kt)n

Pr{[X1; X5, ..., Xn]) € dx}/dx = 4 e (Fn+1/Fn)2e o

(4.33)
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We give now an alternative representation to the process [X;;X,,...,Xy], t > 0.

Theorem 4.3. The characteristic function of the random continued fraction [X1;X5,...,Xy(y)] reads

) [0 9) o0 _ 1-¢ nj
Ee'PlXi%arXnol = ¢ IFI0 N T Te 85(5) prn(e) = n}. (4.34)
n=0 j=1

Proof. In view of Theorem 4.2, we have that

[0 9)
EelBlXiXaXnw] — ZEeiﬁ[XI;XZs‘"an]Pr{N(t) =n} (4.35)

n=0
[o¢]
-|p| e
= e P PriN() = n}.
n=0

Since
1— n+1
Fn+1 1- (T
=¢ 7 (4.36)
F, )
- (%)
1_¢)n+1} o) (1_¢)n]
= 1—( —Z __ T
¢ { (5 2
0 1—¢ nj 1_¢00 1-¢ n(j+1)
S5 -5
{JZO 9 9 ]ZO ¢
S50
= 1+(1-
¢ { (-5 2
00 1— nj
=N
we have that
[e%9) _ o ((1-¢ nj
Eeiﬁ[X15X2w~7Xn] :Ze |ﬁ||:¢+£2J=l( ¢ ) ]PT{N(t) — Tl} (437)
=0
= e IFl® Z l_[e_lm‘/g(%)anr{N(t) =n}.
n=0 j=1
O
Remark 4.7. From (4.34) we can extract the following equality in distribution:
d 00 1— ¢ N(t)
j=1

The second term in (4.38) represents the effect of randomisation of the continued fraction.
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Remark 4.8. The above analysis suggests an alternative representation of the random continued fraction as

Fyio+

d
(X1 Xs, . Xno] = D Yineos (4.39)
j=1

where the Y; v, are independent Cauchy random variables with scale parameter equal to 1/Fy,). Clearly, F, are the
Fibonacci numbers.
The equality (4.39) can be ascertained by writing the characteristic function as follows:

EelfXiXar K] — b E0" Vv — []Eeiﬁ S e N(t):| (4.40)
00 Fniq L ) o
=>[[e PPNy =nt=> e "5 Prin(r) =n},

n=0 j=1 n=0

which coincides with (4.35).
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