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Abstract

Given a finite associative ring with unity, R, and its two-dimensional left module, 2R, the
following two problems are addressed: 1) the existence of vectors of 2R that do not belong
to any free cyclic submodule (FCS) generated by a unimodular vector and 2) conditions
under which such (non-unimodular) vectors generate FCSs. The main result is that for a
non-unimodular vector to generate an FCS of 2R, R must have at least two maximal right
ideals of which at least one is non-principal.
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1 Introduction

Projective geometries over finite associative rings with unity have recently found important
applications in coding theory (see, e. g., [1]) and quantum information theory (see, e. g.,
[2, 3, 4]). When constructing a geometry over a ring, a majority of authors consider as
points of such a geometry only free cyclic submodules (FCSs) generated by unimodular
vectors [5], whilst some authors consider all cyclic submodules [6, 7]. It has recently been
shown [9] that there exists rings for which some vectors of the submodule are not contained
in an FCS generated by a unimodular vector. These vectors have been called outliers.
Even more interesting is that some outliers themselves generate FCSs. A geometry may be
constructed using all FCSs.

Analysing all finite associative rings with unity up to order 31 inclusive, only several
rings are found to feature outliers. Out of these, only few non-commutative rings exhibit
FCSs comprising solely non-unimodular vectors [8]; the smallest example being the ring of
ternions over the Galois field of order two [9]. These examples motivated a more systematic
and general treatment of the questions of the existence of outliers and FCSs generated by
them. The outcomes of our explorations are not only interesting on their own, but they can
also have interesting physical bearings (like, e. g., those proposed in [10]).

2 Definitions and Preliminaries

All rings considered are finite, associative and with unity (multiplicative identity). It is well
known that in such a ring, R, an element is either a unit or a (two-sided) zero-divisor (see,
for example, [11, §2.1]); in what follows the group of units of R is denoted by R∗ and the
set of zero divisors by R\R∗. 1 is the unity element of R and the symbol ⊂ stands for strict
inclusion.
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Definition 1. Let 〈R, ·,+〉 be a ring. A left ideal, Il, is a subgroup of 〈R,+〉 such that
rx ∈ Il for all r ∈ R and x ∈ Il. A right ideal, Ir, is a subgroup of 〈R,+〉 such that xr ∈ Ir
for all x ∈ Ir and r ∈ R. An ideal is principal if it is generated by a single element of R.
For a ∈ R the principal left ideal generated by a is Ra, and a principal right ideal generated
by a is aR.

For further background on rings see, for example, [12].

Definition 2. [5, Defi 2.9][13, p. 16] Let S ⊆ R. The left (right) annihilator of S, denoted
⊥S (S⊥), is defined as:

⊥S = {x ∈ R : xa = 0, ∀a ∈ S},

S⊥ = {x ∈ R : ax = 0, ∀a ∈ S}.

For sets containing a single element, the notation is simplified ⊥{a} := ⊥a.

Lemma 3. Let P, S ⊆ R, then ⊥S is a left ideal, S⊥ is a right ideal and

⊥P ∩ ⊥S = ⊥(P ∪ S).

Definitions below are given for left modules, the mirrored definitions can be given for
right modules.

Definition 4. [5] Let R be a ring with unity, and 2R be a left module over R, and let

aR+ bR = {ax+ by : x, y ∈ R}. (1)

(a, b) ∈ 2R is unimodular if aR+ bR = R.

Note that aR and bR are principal right ideals of R. The following Lemma provides an
alternate definition of unimodular.

Lemma 5. [5] Let R be a ring with unity, and 2R be a left module over R. (a, b) ∈ 2R is
unimodular if and only if there exists x, y ∈ R such that ax+ by = 1.

Definition 6. R(a, b) is a cyclic subset of 2R generated by (a, b):

R(a, b) = {(αa, αb) : α ∈ R}.

If (αa, αb) = (0, 0) only when α = 0, then R(a, b) is a free cyclic submodule.

Reworking the definition of a free cyclic submodule using annihilators leads to the obvious
lemma:

Lemma 7. Let R be a finite associative ring with unity. R(a, b) is a free cyclic submodule
of 2R if and only if

⊥a ∩ ⊥b = {0}. (2)

Proof. Let (a, b) be the generating vector, then by definition R(a, b) is free if α(a, b) = (0, 0)
only if α = 0. This is equivalent to equation (2).

Lemma 8. [5, §1] Let (a, b) be a unimodular vector in 2R, then R(a, b) is a free cyclic
submodule.

Unimodular vectors have other useful properties [5], and for many rings all free cyclic
submodules are generated by unimodular vectors. However this is not always the case.
Corollaries 21 and 24 show two classes of rings for which all free cyclic submodules are
generated by unimodular vectors. The ring of ternions [9] is an example where some free
cyclic submodules are generated by non-unimodular vectors.
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Definition 9. An outlier is a vector which is not contained in any free cyclic submodule
generated by a unimodular vector.

The aim of this research is to get some insight into which rings contain outliers, and,
more specifically, which rings contain outliers that generate free cyclic submodules. This
question is of interest for general nR, but we only treat the simplified case of 2R where R is
a finite associative ring.

3 Results

3.1 Unimodular vectors

We begin by collecting some important facts about unimodular vectors.
If a ∈ R∗, then aR = R, hence for all b ∈ R, aR+ bR = R. Thus any vector containing a

unit as an entry is a unimodular vector. Unimodular vectors may be divided into two types:

• Type I: vectors which contain at least one entry which is a unit;

• Type II: vectors which contain no entries that are units.

Theorem 10. Let R be a finite associative ring with unity. If a, b ∈ R \ R∗, then (a, b) is
a unimodular vector in 2R if and only if there exist maximal right ideals, I1, I2, such that
a ∈ I1 \ I2 and b ∈ I2 \ I1.

Proof. ⇒ Assume (a, b) is unimodular. Since a, b ∈ R \ R∗, aR and bR are right ideals
strictly contained in R. If there is some proper right ideal, I, that contains a and b, then
aR + bR ⊆ I ⊂ R. Hence, if (a, b) is unimodular, then a and b cannot be contained in the
same maximal ideal.

⇐ Assume a ∈ I1 \ I2 and b ∈ I2 \ I1, then aR and bR are right ideals for which aR ⊂ I1
and bR ⊂ I2. aR+bR is a right ideal not contained in either I1 or I2. Therefore aR+bRmust
be contained in a right ideal that contains both I1 and I2. Since I1 and I2 are maximal, the
only right ideal containing them both is R. Hence aR+ bR = R, and (a, b) is a unimodular
vector of 2R.

All type II unimodular vectors of 2R conform to the conditions of Theorem 10.

Theorem 11. Let R be a finite associative ring with unity. a, b, α ∈ R.

1. R(αa, αb) ⊆ R(a, b).

2. R(αa, αb) = R(a, b) if and only if α ∈ R∗.

3. If (a, b) is a unimodular vector in 2R, then (αa, αb) is also unimodular if and only if
α ∈ R∗.

Proof. 1, 2. Let R be a finite associative ring with unity. Then R(αa, αb) ⊆ R(a, b). If
α ∈ R∗, then R(αa, αb) = R(a, b). 3. [14, Prop 2.1].

Theorems 10 and 11 give criteria for checking for unimodular vectors of 2R. More difficult
is finding outliers.
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3.2 Outliers

In the light of Theorem 11 we can refine our notion of outlier.

Definition 12. Let R be a finite associative ring with unity. (a, b) is an outlier of 2R if
there does not exist α, c, d ∈ R such that (a, b) = (αc, αd) and (c, d) is unimodular.

Theorem 13. Let R be a finite associative ring with unity. (a, b) is an outlier of 2R if and
only if there exists a right ideal I ⊆ R, such that a, b ∈ I and

1. there are no principal right ideals which contain both a and b;

2. for all principal right ideals αR such that a, b ∈ αR, then aR+ bR ⊂ αR.

Proof. ⇒ Theorem 10 shows that if (a, b) is an outlier of 2R then a and b are contained
in some maximal right ideal. Either a, b 6∈ αR for some α ∈ R \ R∗ (showing part 2)
or there exists α, c, d such that (αc, αd) = (a, b) only if (c, d) is not unimodular. Assume
that there exists (αc, αd) = (a, b) with (c, d) not unimodular. Let C = {c : αc = a} and
D = {d : αd = b}. If αx = αy with x 6= y, then α(x− y) = 0, thus (x− y) ∈ α⊥. Since,

C = {c}+ α⊥ and D = {d}+ α⊥, (3)

one gets

aR+ bR = αcR+ αdR

= α(cR+ dR + α⊥).

Thus aR+bR = αR if and only if there exists c ∈ C and d ∈ D such that cR+dR+α⊥ = R.
let CR = {cr : c ∈ C, r ∈ R} and DR = {dr : d ∈ D, r ∈ R}. Since we can choose any c ∈ C

and d ∈ D, we require that

CR +DR+ α⊥ = R.

From equation (3) it follows:

CR+DR+ α⊥ = CR +DR.

If CR +DR = R, then there exists c ∈ C and d ∈ D and x, y ∈ R such that cx + dy = 1,
implying that (c, d) is a unimodular vector. This contradicts that (a, b) is an outlier, and
hence we find that aR+ bR ⊂ αR (showing part 1).

⇐ 1. If all right ideals that contain a and b are non-principal, then there does not exist
α ∈ R \R∗ such that a, b ∈ αR. Hence (a, b) is an outlier of 2R.

2. Let αR be a principal right ideal for which a, b ∈ αR. Then there exists c, d such that
αc = a and αd = b. If aR+ bR ⊂ αR, then

(αc)R + (αd)R ⊂ αR,

α(cR+ dR) ⊂ αR,

cR+ dR ⊂ R,

and (c, d) is not unimodular. This holds for all principal right ideals containing a and b;
hence (a, b) is an outlier.

If R is commutative then (a, b) is an outlier of the left module exactly when (a, b)T is
an outlier of the right module. In a non-commutative ring, the set of left outliers may be
different to the set of right outliers (the smallest example is the ring of ternions of order 8
[9]). The set of outliers is dependent on the structure of the ideals of the ring. If the left and
right ideals of a ring have different structures, then a left outlier may be right unimodular.

From Theorems 10 and 13 we get that:
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Lemma 14. If a and b are in some right ideal which is non principal, not both in any
principal right ideal, and not both in the same maximal left ideal, then (a, b) is an outlier
and (a, b)T is unimodular.

3.3 Free cyclic submodules and outliers

We have established that the structure of the ideals of a ring determines the set of outliers and
unimodular vectors. The Jacobson radical is an important ideal and of crucial importance
in the study of unimodular vectors.

Definition 15. [12, §4] For a finite ring R, the Jacobson radical, rad(R), may be equivalently
defined as:

• the intersection of all the maximal left ideals of R;

• the largest left ideal J such that 1 + j ∈ R∗ for all j ∈ J .

Note that the Jacobson radical is a left and right ideal.

Definition 16. [12, Defi 4.9] A one-sided or two-sided ideal, I, is nilpotent of nilpotency m

if a1.a2 . . . am = 0 for any set of elements a1, a2, . . . , am ∈ I.

Lemma 17. [12, Thm 4.12] Let R be a finite associative ring. Then rad(R) is nilpotent.

Theorem 18. Let R be a finite associative ring. Let J ≡ rad(R). Then no vector from nJ

generates a free cyclic submodule.

Proof. From Lemma 17 it readily follows that J has nilpotency m for some m ∈ N. Let
(a1, a2, . . . , an) ∈

nJ , x1, x2, . . . , xm−1 ∈ J and α = x1.x2 . . . xm−1. Then (αa1, αa2, . . . , αan)
= (0, 0, . . . , 0). Hence R(a1, a2, . . . , an) is not a free cyclic submodule.

Definition 19. [12, §19] A local ring is an associative ring that has exactly one maximal
left (and also right) ideal.

As a side note we mention that geometries over local rings are called Hjelmslev geometries
[5, §9], and have applications in coding theory [1].

Theorem 20. Let R be a local ring.

1. No outliers of 2R generate free cyclic submodules.

2. (a, b) is an outlier of 2R if and only if a 6∈ bR and b 6∈ aR.

Proof. 1. R has exactly one maximal ideal, which is therefore the Jacobson radical, J . All
ring elements not belonging to J are units. Hence any outlier of 2R has both entries as
elements of J . Theorem 18 shows that no vectors with both entries from J can generate a
free cyclic submodule.

2. J , the unique maximal ideal of R, cannot generate R. By Theorem 10, no unimodular
vector of 2R can contain elements of the same maximal ideal. Since every element of R is
either a unit or an element of J , all unimodular vectors have a unit entry; all unimodular
vectors are of type I. So, the outliers of 2R are those vectors which are not contained in a
free cyclic submodule of 2R generated by (1, x) or (x, 1), x ∈ R. A vector which is not an
outlier is of the form

(a, ax) or (ax, a), for some a, x ∈ R.

Thus outliers are those vectors which do not fit this form. If (a, b) is contained in a free
cyclic submodule then there exists x ∈ R, such that ax = b or bx = a. Hence b ∈ aR or
a ∈ bR. If a 6∈ bR and b 6∈ aR, then (a, b) is an outlier.
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Corollary 21. If R is a finite local ring, then R(a, b) is a free cyclic submodule if and only
if (a, b) is unimodular.

This is a class of rings for which all free cyclic submodules are generated by unimodular
vectors (the reverse of Lemma 8). In particular, this means that Hjelmslev geometries (which
are geometries over a local ring) cannot have non-unimodular points.

Next we look at another property of ideals which precludes the existence of non-unimodular
free cyclic submodules.

Lemma 22. Let R be a finite associative ring with unity. Let a, b be elements of the same
principal proper right ideal, αR, then R(a, b) is not a free cyclic submodule of 2R.

Proof. a = αc and b = αd. Then

⊥a = {x : xa = 0}

= {x : xαc = 0}

⊇ {x : xα = 0}

= ⊥α.

By the same logic ⊥b ⊇ ⊥α. Hence ⊥a ∩ ⊥b ⊇ ⊥α 6= {0}.

Lemma 22 then gives the following important result.

Theorem 23. Let R be a finite associative ring with unity. If every right ideal is a principal
ideal, then there are no free cyclic submodules of 2R generated by non-unimodular vectors.

This shows that a necessary condition for the existence of non-unimodular free cyclic
submodules of 2R is the presence of non-principal right ideals.

Corollary 24. Let R be a principal ideal ring, then R(a, b) is a free cyclic submodule if and
only if (a, b) is unimodular.

This is another class of rings (see Corollary 21) for which all free cyclic submodules are
generated by unimodular vectors.

When using associative rings, free cyclic submodules are generated by either unimodular
vectors or outliers. If the assumption of associativity is removed, then this is no longer true.

Lemma 25. Let R be a finite ring with unity and let (a, b) be a unimodular vector in 2R. If
there exists α such that (αa, αb) is a non-unimodular vector and R(αa, αb) is a free cyclic
submodule of 2R, then R is non-associative.

Proof. Assume that R is associative. Then, by Theorem 3, if (αa, αb) is non-unimodular,
then α ∈ R \ R∗. If R(αa, αb) is free, then R(αa, αb) = R(a, b). Thus there exists β ∈ R

such that
(βαa, βαb) = (a, b),

under the assumption that R is associative, this requires that βα = 1, contradicting that
α ∈ R \R∗.

Hence if there exists α such that (αa, αb) is a non-unimodular vector and R(αa, αb) is a
free cyclic submodule, then R is non-associative.

Examples have been calculated of non-associative rings of order 8, where (a, b) is uni-
modular, R(αa, αb) is free and R(αa, αb) 6⊆ R(a, b).
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4 Conclusion and Further Directions

For the existence of FCSs of 2R that are generated by non-unimodular vectors (“non-
unimodular FCSs”), R must have at least two maximal right ideals, at least one of which
is non-principal. This is a necessary condition. Calculated examples [8] show that this con-
dition is not sufficient; other properties of a ring are required to guarantee the presence of
FCSs generated by non-unimodular vectors.

As already mentioned in the introduction, in our worked examples [8] non-unimodular
FCSs have been only found for non-commutative rings. One would be tempted to conjecture
that non-commutativity is essential in this respect. Yet, this is questionable because some
rings feature non-unimodular FCSs in 2R, but not in R2 (and vice versa). Hence, it is
highly desirable to clarify to what extent the existence of non-unimodular FCSs depends
on the non-commutativity of the ring; in particular, what is the smallest commutative ring
featuring non-unimodular FCSs?

Further, in all analysed examples, a non-unimodular FCS was found to share with any
other FCS at least one vector apart from (0, 0); is this true in general, or just a feature of
the particular small-order rings? Finally, within our bank of examples, we found rings where
all outliers generate FCSs (like the smallest ring of ternions [9]), as well as rings where only
some outliers have this property. What distinguishes the two kinds of rings? These are
exciting open questions we would like to focus on in the near future.
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