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The formalism of the scattering matrix is applied to describe the transmission properties of multilayered
structures with deep variations of the refractive index and arbitrary arrangements of the layers. We show that
there is an exact analytical formula for the transmission spectrum, which is valid for the full spectral range
and which contains only a limited number of parameters for structures satisfying the quarter-wave condition.
These parameters are related to the poles of the scattering matrix, and we present an efficient algorithm to
find them, which is based on considering the ray propagation inside the structure and subsequent application
of the harmonic inversion technique. These results are significant to analyze the reshaping of ultrashort pulses
in multilayered structures.

OCIS codes: 290.5825, 230.4170, 310.6860, 320.5540.

Multilayered structures with periodic arrangement of the
layers represent the simplest example of photonic crys-
tals. Such structures are widely used as distributed re-
flectors, spectral filters and can be applied for compres-
sion or reshaping of ultrashort pulses [1]. A lot of at-
tention has been paid to the question of how to mod-
ify the properties of multilayered structures by intro-
ducing artificial defects. As a more general case, struc-
tures with quasiperiodic and deterministically aperiodic
arrangements of the layers were considered [2]. The stan-
dard technique to compute the transmission spectrum of
multilayered structures is based on the transfer matrix
method. However, being a strictly numerical method, it
does not provide a proper understanding of the trans-
mission properties from the physical point of view.

In this paper, we show that there is an exact analytical
formula for the transmission spectrum which is applica-
ble for multilayered structures with a deep variation of
the refractive index and arbitrary arrangement of the
layers. It is valid for the full spectral range and contains
only a limited number of parameters for structures satis-
fying the quarter-wave condition. The knowledge of the
precise analytical formula for the broad band transmis-
sion allows one not only to compute easily many impor-
tant characteristics such as the group velocity dispersion
or the photonic density of modes, but also to analyze the
propagation of arbitrary signals through the structure in
the time domain.

Any multilayered structure can be considered as a
black box, the input and output from which are related
by the scattering matrix. It is known that the poles and
zeros of the scattering matrix determine the properties
of a system uniquely [3]. Taking into account that the
components of the scattering matrix can be interpreted
as reflection and transmission coefficients, one can de-
scribe the transmission spectrum T (ω) of an arbitrary
multilayered structure by the following formula

T (ω) =

∞∑
p=−∞

σp
ω − ωp

, (1)

where σp is the strength of the resonance at ωp, and
the sum is taken over all resonances. The resonances
are associated with poles in the transmission spectrum
T−1(ωp) = 0. For media without gain all poles are lo-
cated in the lower part of the complex frequency plane
Im(ωp) < 0. The strength of the resonances can be found
as σp = [dT−1(ω)/dω]−1ω=ωp

.
In general, the number of resonances is infinite, but

due to the time-reversal symmetry T (−ω∗) = T ∗(ω),
which means that the poles exist in pairs {ωp,−ω∗p} and
that their strengths are related as σ(−ω∗p) = −σ∗(ωp).
Those multilayered structures, which satisfy the quarter-
wave condition nmdm = λqw/4 at the wavelength λqw for
each layer m with the refractive index nm and thickness
dm, have the additional symmetry T (ω+4kωqw) = T (ω),
where k is an arbitrary integer, ωqw is the frequency
at which the quarter-wave condition holds (ωqw/c =
2π/λqw). Therefore, there is only a limited number of
independent poles P in the interval (−2ωqw, 2ωqw], and
the positions of all the others can be found by adding
4kωqw.

The inverse Fourier transform of Eq. (1) gives the re-
sponse function G(t) of the structure to the excitation
in the form of the Dirac delta function δ(t)

G(t) = −ih(t)

P∑
p=1

σpe
−iωpt

∞∑
k=−∞

e−i4kωqwt, (2)

where h(t) is the Heaviside step function, and the
periodicity of the poles for the quarter-wave struc-
tures was used explicitly. Applying the following
property of the Dirac comb

∑∞
n=−∞ δ(t− nτ) =∑∞

k=−∞ τ−1 exp[−ik(2π/τ)t] leads to

G(t) =

∞∑
n=0

anδ(t− nτ), (3)

where τ = π/(2ωqw) = nmdm/c has the meaning of
time necessary for a signal to go through a quarter-
wave layer. The coefficients in Eq. (3) are defined as
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Fig. 1. (Color online) (a, d) Transmission spectrum of a quarter-wave structure described by a binary sequence. The letters
”A” and ”B” correspond to layers with the refractive indices 1.55 and 2.3, respectively. (b, e) Positions of the poles in the
complex frequency plane. In contrast to (a, d), where Im(ω) = 0 and |T (ω)| ≤ 1, transmission goes to infinity in the vicinity
of poles, and the gray areas display regions where it exceeds a few fixed values. (c, f) Group delay as a function of frequency.

an = −
∑P
p=1 iσpτ exp(−inωpτ), and thus the response

function can be viewed as a sum of exponentially decay-
ing modes, which are sampled over the discrete intervals
τ . It is worth noting that all coefficients an are real be-
cause G(t) is real by definition. Moreover, the signal at
the output cannot appear immediately, and an = 0 for
n < M , where M is the total number of layers in the
structure. These causality relations emphasize that σp
are not independent parameters and are related to ωp.

The Fourier transform of Eq. (3) gives

T (ω) =

∞∑
n=0

aneinωτ = −
P∑
p=1

iσpτ

∞∑
n=0

ein(ω−ωp)τ , (4)

which shows that an are equal to the Fourier compo-
nents of the transmission spectrum. Taking the sum of
the geometric progression in Eq. (4) leads to

T (ω) =

P∑
p=1

iσpτ

exp[i(ω − ωp)τ ]− 1
. (5)

Therefore, the transmission through the quarter-wave
structures can be described by a formula which does not
involve infinite series and has only a limited number of
parameters. We checked that it gives exactly the same re-
sults as the transfer matrix method over the full spectral
range. Two examples are shown in Fig. 1, which corre-
spond to multilayered structures based on the Fibonacci
sequence of the 7th order (on the left) and a periodic
sequence with a defect (on the right).

The periodicity of the poles could be used directly to
obtain a few other formulas for the transmission. The
repeated poles of equal strength can be constructed by
using the expansion of cotangent into partial fractions [4]

T (ω) =

P∑
p=1

πσp
4ωqw

cot

[
π(ω − ωp)

4ωqw

]
. (6)

Alternatively, one can operate with multiple zeros rather

than poles and to rewrite the transmission as a product

T (ω) =

P∏
p=1

sin[πωp/(4ωqw)]

sin[π(ω − ωp)/(4ωqw)]
. (7)

The formulas (5)–(7), are fully equivalent to each other.
For example, to derive Eq. (6) from Eq. (5), it is sufficient

to notice that due to causality a0 =
∑P
p=1 σp = 0.

To analyze the propagation of ultrashort pulses
through the structure, it is important to compute the
group delay as a function of frequency [5]. By separating
the amplitude and phase in the transmission spectrum
T (ω) = |T (ω)| exp(iϕ), the group delay can be defined as
τD(ω) = dϕ/dω = Im[T ′(ω)/T (ω)]. An explicit formula
for it can be obtained particularly easy from Eq. (7)

τD(ω) = − π

4ωqw
Im

(
P∑
p=1

cot

[
π(ω − ωp)

4ωqw

])
. (8)

Since the integral
∫ π/2
−π/2 cot(z − zp)dz = −iπ for any

zp in the lower part of the complex plane Im[zp] < 0,
the averaged variations of the group delay do not de-
pend on the particular arrangement of the layers in the

structure
∫ 2ωqw

−2ωqw
τD(ω)dω = πP . On the other hand, for

a homogeneous slab consisting of M quarter-wave lay-

ers
∫ 2ωqw

−2ωqw
(dϕ/dω)dω = 2πM . Therefore, P = 2M , or

the number of resonances in the interval (−2ωqw, 2ωqw]
equals twice the number of layers [cf. Fig. 1].

The concept of group delay is closely related to other
characteristics of multilayered structures such as the
group velocity or the density of modes. This means
that similar analytical formulas can be derived for them.
For instance, the group velocity (or traversal velocity)
can be defined as vgr = L/τD, where L is the to-
tal length of the structure. It can be also rewritten as
vgr/c =Mτ/(τD〈n〉), where an averaged refractive index

〈n〉 = (
∑M
m=1 nmdm)/L was introduced. This makes eas-

ier the comparison of the data for the group delay shown
in Fig. 1 with the group velocity.
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Fig. 2. (Color online) Gaussian pulses before (solid) and
after (dashed) propagation through a multilayered structure.

In general, the transmitted signal fout(t) can be found
as a convolution of G(t) with the input signal fin(t):

fout(t)=

∫ +∞

−∞
G(t− t′)fin(t′)dt′=

∞∑
n=0

anfin(t− nτ). (9)

This series converges very rapidly because the coeffi-
cients an decay exponentially with increasing n. The
simplest reshaping of the signals takes place when only
one resonance is excited. As an example, we consider
a well isolated resonance at ωp ≈ ωqw that exists for
the structure shown in Fig. 1(d). It is worth noting
that the group delay experienced by the pulses with
the central frequency close to Re[ωp] can be estimated
as τD(Re[ωp])/τ ≈ −2/(πIm[ωp/ωqw]), and it coincides
with the decay time of the resonance in the absence of
excitation. Which effect will dominate depends on the
duration of the incident pulse [see Fig. 2]. The exponen-
tial stretching is more pronounced for shorter pulses, and
it can be accompanied with beating if several resonances
are located close to each other [6].

Although the positions of the poles can be found by it-
erations using the transfer matrix method, we developed
a more reliable and efficient algorithm which is based on
considering the ray propagation inside the structure.

Initially, the amplitudes of forward and backward
moving rays in all layers of the structure and on the
boundaries are set to zero α±m = 0 for 0 ≤ m ≤ M + 1
[see Fig. 3]. Then, a short probe signal is launched from
the left, which corresponds to setting α+

0 = 1 only for
the first moment of time t = 0. Afterwards, a time
marching scheme is applied to collect the outgoing sig-
nals on the right boundary at discrete moments of time
t = nτ . For odd (even) time steps n, one should apply

Fig. 3. (Color online) Propagation of rays inside a quarter-
wave multilayered structure.

[α−m, α
+
m+1]T = Ym,m+1[α+

m, α
−
m+1]T with index m run-

ning over even (odd) numbers. The matrix Yu,v consists
of the Fresnel coefficients which describe the scattering
of rays at the interface between media with the refractive
indices nu and nv

Yu,v =
1

nu + nv

[
nu − nv 2nv

2nu nv − nu

]
. (10)

Since the output signal on the right can be repre-
sented as a sum of exponentially decaying modes [A]n =

−
∑P
p=1 iσpτ exp(−inωpτ), the unknown amplitudes σp

and resonant frequencies ωp can be found as a solution
of the following eigenvalue problem [7]

Ĥ1Vp = exp(−iωpτ)Ĥ0Vp, (11)

where the matrix elements of auxiliary Hamiltonians Ĥk

are defined as [Ĥk]u,v = [A]u+v+k. This harmonic in-
version technique is very efficient because it requires the
knowledge of only 2P elements in the vector A. The poles
ωp are directly related to the eigenvalues of Eq. (11), and
their strength σp can be determined after a proper nor-
malization of the eigenvectors Vp

σp =
i

τ

[(Vp)
T ·A]2

(Vp)T · (Ĥ0Vp)
. (12)

In conclusion, we showed that the transmission spec-
trum of multilayered structures can be described by ana-
lytical formulas regardless of the specific arrangement of
the layers. These formulas use the position of resonances
as parameters, and we presented an efficient algorithm
to find them. This establishes a new approach to ana-
lyze the transmission properties of multilayers. It can be
useful not only for an advanced reshaping of ultrashort
pulses but also for the improvement of nonlinear effects
such as self-pulsing or nonreciprocal transmission [8, 9].
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