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Efficient, long-range correlation from occupied wavefunctions only
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We use continuum mechanics [Tao et al, PRL103,086401] to approximate the dynamic density
response of interacting many-electron systems. Thence we develop a numerically efficient exchange-
correlation energy functional based on the Random Phase Approximation (dRPA). The resulting
binding energy curve E(D) for thin parallel metal slabs at separation D better agrees with full
dRPA calculations than does the Local Density Approximation. We also reproduce the correct
non-retarded van der Waals (vdW) power law E(D) ≈ −C5/2D

−5/2 as D → ∞, unlike most vdW
functionals.

PACS numbers: 73.22.-f,31.15.E-,74.25N-,34.20.Gj

An increasing body of work[1–4] has demonstrated
that the correlation energy EdRPA

c in the direct Random-
Phase Approximation (dRPA) is highly accurate for en-
ergy differences in many and varied electronic systems,
at least in cases where orbital self interaction is not an
issue. dRPA binding properties for a wide variety of bulk
materials[2] are typically more accurate than those from
the local density approximation (LDA), especially for dis-
persion (van der Waals, vdW) bound systems[3]. For the
vdW attractive potential, which is totally neglected in
the LDA, the dRPA proves to be versatile, predicting
unusual vdW coefficients[5] and power laws[6] in agree-
ment with quantum Monte Carlo results[7].
EdRPA

c is typically obtained in three steps: i) The bare
response χ̂0 is obtained from occupied and unoccupied
groundstate wavefunctions. This is typically the numer-
ical bottleneck. Recent developments[8] attempt to by-
pass unoccupied states but will not work for metallic sys-
tems. ii) The interacting response is calculated through
the dRPA as χ̂λ(ω) = χ̂0(ω) + λχ̂0(ω)v̂χ̂λ(ω) where v̂ is
the Coulomb potential |r − r′|−1. iii) Finally the corre-
lation energy is calculated through the Adiabatic Con-
nection and Fluctuation Dissipation Theorem (ACFDT)
approach

EdRPA
c =−

∫ ∞

0

dω

2π
Tr

[

log[1̂− Â(ω)] + Â(ω)
]

(1)

where Â(ω) = v̂1/2χ̂0(ω)v̂
1/2 is an Hermitian operator[9].

Other efficient van der Waals functionals[10, 11] give
good results for many systems. However they repre-
sent EvdW

c in an additive two-point approximation that
is either obtained semi-empirically[10] or derived[11] by
solving the dynamical screening problem (1) perturba-
tively. As a result, these functionals miss non-pairwise-
additive vdW energy contributions that can be substan-
tial in highly polarizable, highly anisotropic systems[5, 6],
including low-dimensional metals.
Here we solve equation (1) accurately thus avoiding

the pairwise additive approximation, but we use the con-
tinuum mechanics of Tokatly, Tao, Gao and Vignale
(TTGV)[12, 13] to approximate χ̂0 in a numerically effi-

cient manner. A conceptually similar approach was taken
in [14] but the direct scheme for χ̂0 used there was nu-
merically inefficient and even ambiguous in general ge-
ometries. TTGV rigorously define a relationship between
the change in density and the external potential utilising
groundstate properties only. Their method is appropri-
ate in the high-frequency and low-wavenumber limit for
all electronic systems and gives[13] the correct excitation
frequencies ΩN of quantal one-electron systems.

The TTGV scheme uses the continuum fluid displace-
ment u, which is related to the density perturbation n1

by[13, 15]

n1(r, t) = −∂µ[n0(r)uµ(r, t)]. (2)

For a small change to the KS potential V 1(r, t) we can
approximate u through the following hydrodynamic-like
equation (from equations 3, 4 and 14-16 of [13])

∂ttuµ(r, t) =− ∂µV
1(r, t)− Φ0

µνuν(r, t) +
F 0
µ(r, t)

n0(r)
(3)

where n0(r), Φ0
µν = [∂µνV

KS(r)] and F 0
µ(r, t) are

groundstate propertes of the system.

The force F 0
µ defined in equation 14 of [13] can be

written as a linear Hermitian operator acting on the dis-
placement vector through F 0

µ = −K̂µνuν(r, t). Here

K̂µν =K̂(T )
µν − 1

4
K̂(n)

µν (4)

K̂(T )
µν =∂αT̄

0
µν∂α + ∂ν T̄

0
µα∂α + ∂αT̄

0
αν∂µ (5)

K̂(n)
µν =∂µαn

0(r)∂αν (6)

where the groundstate kinetic stress tensor is T̄ 0
µν =

ℜ∑

n fn[∂µψn(r)]
∗[∂νψn(r)]− ∂µνn

0(r)
4 [16].

In the absence of an external potential, equation (3)
has time-periodic eigen-solutions defined by the hydro-
dynamic eigen-equation

−Ω2
Nn

0(r)uNµ(r) =[n0(r)Φ0
µν + K̂µν ]uNν(r) (7)
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where uN (r, t) = eiΩN tuN (r) is related to an eigen-
function of χ̂0, ΩN is related to the excitation ener-
gies (exactly in one-e− systems) and

∫

drn0(r)u∗
N (r) ·

uM (r) = δNM .
By definition χ0(r, r

′;ω) is the change in density
n1(r)eiωt in response to a small change in the KS po-
tential of form V 1(r; r′, t) = δ(r − r′)eiωt and can be
obtained through equations (2)-(3). Expanding χ0 in the
eigen-solutions of (7) provides the convenient form

χ0(r, r
′;ω) =−

∑

N

fN(ω)dN (r)d∗N (r′) (8)

where fN (ω) = (Ω2
N − ω2)−1 and dN (r) = −∇ ·

[n0(r)uN (r)].
From (8) the projection of Â [see (1)] in reciprocal

space is A(q, q′) = −
∑

N fN (ω)w∗
N (q)wN (q′) where

wN (q) =− iq
√

v(q) ·
∫

dreiq·rn0(r)uN (r) (9)

or wN =
√

v(q)dN (q) (here v(q) = 4πq−2). Set-

ting WNM =
∫ dq

(2π)3w
∗
N (q)wM (q) allows us to define

an NEig × NEig matrix A(ω) with elements ANM (ω) =
−fN(ω)WNM and its Hermitian counterpart B(ω) with

BNM (ω) =−
√

fN (ω)fM (ω)WNM . (10)

As NEig → ∞ TrN [F (B(ω))] = TrN [F (A(ω))] =

Trq[F (Â(ω))][17] for any analytic function F .
Defining the eigen-values of B(ω) to be βκ(ω) we reduce

the correlation energy (1) to the form

ECM
c =−

∫ ∞

0

dσ

2π

∑

κ

{log[1− βκ(iσ)] + βκ(iσ)} (11)

where we integrate over imaginary frequencies such that
fN (iσ) = (Ω2

N + σ2)−1. In practice we need only a small
number NEig of eigen-solutions for converged correlation
energies and this calculation is O(NσN

3
Eig).

In the Homogeneous Electron Gas (HEG) the TTGV
method gives the exact χ̂0 for q → 0 and ω → ∞ and is
robust for wavenumber q . kF and frequency ω & vF q
where kF /vF is the Fermi wavenumber/velocity. This
suggests that, as a crude first approximation, we should
use the dRPA only for long-range correlation and use a
local approximation for the short-range. A well-studied
means of doing so is range-separation and is described in
various papers[18]. It involves replacing the Coulomb po-
tential by a long-range component only so that v(µ)(r) =

erf(µr)r−1 and v(µ)(q) = 4πq−2e−q2/(4µ2). This is equiv-

alent to replacing (9) by w
(µ)
N (q) = wN (q)e−q2/(8µ2). We

label the corresponding correlation energyE
lrCM(µ)
c . This

has the additional benefit of improving convergence and
speeding up calculation.
For χ̂0 to be reliably approximated by continuum me-

chanics without a separate treatment of the low frequen-
cies we must choose µ to be substantially less than kF .

Here we use µ = 0.25r−1
s = 0.13kF where rs is a global

measure of the inter-electron distance. For the jellium
slab problems studied below we simply choose rs corre-
sponding to the background charge density of each slab,
though more general prescriptions exist.
The remaining correlation must be included from local

approximations. We set

E
CM(µ)
c [n] =E

lrCM(µ)
c +

∫

drn(r)ǫ
Lsr(µ)
c (12)

where ǫ
Lsr(µ)
c is the correlation energy per electron of the

HEG with a short-ranged interaction, taken from[19].
The full dRPA exchange-correlation energy of a Kohn-

Sham system is given by Exc[n] = EEXX
x +EdRPA

c where
the exact exchange energy can be written explicity as
EEXX

x = − 1
2

∫

drdr′|r − r′|−1|∑i fiψ
∗
i (r)ψi(r

′)|2. Ide-
ally we should also implement a range-separation for ex-
change, but this proves numerically difficult for the slab
geometries we investigate. We instead use the ratio of
the long-range exchange to total exchange of an HEG
Ax ≈ 1.1µrs/

√

1 + (1.1µrs)2 as a prefactor for EXX and
make up the remainder with the LDA. Combining this
with (12) gives

Exc = AxE
EXX
x + (1 −Ax)E

LDA
x + E

CM(µ)
c . (13)

With µrs = 0.25 we find Ax = 0.265.
The most trying calculation in this functional is that

of equation (7) as K̂ is a spatially-dependent, differential
operator. To overcome this problem we use an auxillary
basis set B ≡ {φj(r)}NBas

j=1 which need not be mutually or-
thogonal but must be complete in the limit NBas → ∞.
B can be optimised for a given geometry or problem.
With this basis set we define our eigen-function to be
uNµ(r) =

∑

j a
j
Nµφj(r) which we substitute into equa-

tion (7). This provides a set of 3NBas × 3NBas coupled
equations

Ω2
NN

0
jka

k
Nµ =

{

P 0
jkµν +Kjkµν

}

akNν (14)

while N0
jk(a

j∗
Nµa

k
Mµ) = δNM sets the orthogonality.

The non-operator terms in these equations
are N0

jk =
∫

drn0(r)φ∗j (r)φk(r) and P 0
jkµν =

−
∫

dr[n0(r)∂µνV
KS(r)]φ∗j (r)φk(r). Separating the

final term into Kjkµν =
∫

drφ∗j (r)K̂µν(r)φk(r) =

K
(T )
jkµν − 1

4K
(n)
jkµν and using integration by parts[20] gives

K
(T )
jkµν =−

∫

{T̄ 0
µα[∂νφ

∗
j ][∂αφk] + T̄ 0

αν [∂αφ
∗
j ][∂µφk]

+ T̄ 0
µν [∇φ∗j ] · [∇φk]}dr (15)

K
(n)
jkµν =

∫

n0[∂µ∇φ∗j ] · [∂ν∇φk]dr (16)

where all terms are functions of r and all derivatives can
be performed analytically on the basis functions.
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As a test of our proposed functional we choose a two-
slab metal problem with a background charge n+(z) =

ρ[H( s2 − |z − L|) + H( s2 − |z + L|)] where L = (D+s)
2

and H(x) = 1∀(x ≥ 0), 0 otherwise. This defines two
jellium slabs of width s, surface-to-surface distance D
and backround charge per unit area ρ = 3/(4πr3s). The
total number of electrons per unit area is set to Ns =
2sρ =

∫∞

−∞ n+(z).

The partial isotropy means V KS(r) ≡ V KS(z) and the
KS wavefunctions take the form ψnk‖

(r) = pn(z)e
−ik‖·r‖

where
∫

dzp∗npm = (2π)−2δnm. The KS energies are
ǫnk‖

= ǫn0 + 1
2 |k‖|2 with occupation fn = 2max(ǫF −

ǫn0, 0). The density is thus n0(z) =
∑

n fn|pn(z)|2 and

the kinetic pressure tensor is T̄
0
(z) = t0‖(z)[x̂⊗ x̂+ ŷ⊗

ŷ] + t0z(z)ẑ ⊗ ẑ with t0‖(z) =
∑

n fn
ǫF−ǫn0

2 |pn(z)|2 and
t0z(z) =

∑

n fn|∂zpn(z)|2 − 1
4∂zzn

0(z).
For the present slab problem we choose auxillary ba-

sis functions of the form φk(r) = bk(z)e
−iq‖·r‖ and set

uNq‖
=

∑

k φk(r)[a
k
Nz(q‖)ẑ + akN‖(q‖)q̂‖] (the q̂⊥ =

q‖ × ẑ term does not contribute to the correlation en-
ergy). Thus the eigen-equations are

Ω2
N (q‖)N

0
jka

k
N‖(q‖) =Kjk‖‖(q‖)a

k
N‖(q‖)

+Kjk‖z(q‖)a
k
Nz(q‖) (17)

Ω2
N(q‖)N

0
jka

k
Nz(q‖) =[P 0

jkzz +Kjkzz(q‖)]a
k
Nz(q‖)

+Kjkz‖(q‖)a
k
N‖(q‖) (18)

which must be solved for each q‖. Normalisation gives
∑

jkN
0
jk[a

j∗
N‖a

k
M‖ + aj∗Nza

k
Mz ] = (2π)−2δNM . Here Njk

and P 0
jkzz are independent of q‖ while Kjkzz , Kjkz‖ =

K∗
kj‖z and Kjk‖‖ are second, third and fourth order in

iq‖. They appear in full in the supplementary material.

Finally in this basis wNq‖ = iv1/2(
√

q2‖ + q2z)
∫

dzeiqzz

n0[q‖uNq‖‖
+ qzuNq‖z], WNM (q‖) = −

∫

dqz
2π w

∗
Nqz

wMqz

and E
lrCM(µ)
c = −

∫

dσ
2π

∫ 2πq‖dq‖
(2π)2 Tr[L(B(q‖, iσ))] with

BNM from (10) and L(x) = log(1− x) + x.
We test our method on slab pairs with s = 3a0, rs =

1.25a0 and s = 5a0, rs = 2.07a0 which have been studied
in ref. 21 and ref. 14 and 22 respectively. Especially in

Tok(µ) LDA dRPA
rs = 1.25 and s = 3, µ = 0.2

D0 3.33 3.38 3.32‡
ǫb 0.74 0.53 0.79‡
Czz 0.51 0.45 0.55‡

rs = 2.07 and s = 5, µ = 0.12
D0 1.57 1.56 1.62±0.1§
ǫb 1.78 1.72 1.85±0.1§
Czz 1.31 1.38 1.32±0.1§

TABLE I. Energies are in mHa/e− and distance are in Bohr
radii. ‡ from Ref. 21, § is guessed from Ref. 14 and 22 taking
into account likely numerical errors.
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FIG. 1. ǭ(D) graph for rs = 1.25, s = 3. RPA data from [21].
Inset data shows the vdW dominated region.

the first case the LDA and dRPA give significantly differ-
ent energy curves. We consider the cleavage energy per
electron ǭ(D) = ǫ(D)−ǫ(∞) = [E0(D)−E0(∞)]/Ns as a
function of D. Slabs with rs < 4 have a defined binding
length D0 where the force is zero. Thus a binding energy
ǫb = |ǭ(D0)| and an elastic modulus Czz = ∂DD ǭ(D0) can
also be defined.

In Figure 1 we plot ǭ(D) versus D for rs = 1.25, s = 3.
Our method matches the RPA closely for this system.
Binding properties for both studied systems are tabu-
lated in Table I and show that the rs = 2.07, s = 5
system is less well-predicted but still much better than
the LDA. If instead we set µ = ∞ the results become
much worse for both cases.

For widely separated slabs (D ≫ s) the TTGV the-
ory correctly describes coupled two-dimensional plas-
mons and hence correctly predicts the known asymptotic
dRPA form[6] ǭ(D ≫ s) ≈ −C5/2(D + s)−5/2 where

C5/2 = 0.012562
√
Ns and D + s is the distance be-

tween the centers of the slabs. With s = 12.8a0 and
rs = 2a0 . . . 6a0 we calculate numerical solutions within
8% of the theory for rs = 2 decreasing to just 2% error
for rs = 6. By contrast most other efficient vdW func-
tionals would predict an incorrect power law exponent in
this limit with ǭ(D) ≈ −C4D

−4.

Calculations are quite efficient with the slowest step
being either O(NrN

2
Bas), O(27N3

Bas) or O(NσN
3
Eig).

With highly non-optimised parameters[23] our code takes
approximately eight times longer than the groundstate
LDA calculation. Better optimisation could improve this
result.

While results for our test systems are not perfect, they
show closer agreement with the dRPA than the LDA both
in the binding region and for larger D. The vdW dis-
persive physics is treated accurately and shows excellent
agreement with the dRPA in contrast to other methods.
The current prescription has a wide scope for refinement
both empirically through adjustment of µ and Ax and
by introducing better physics, most obviously through
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improved treatment of low-frequency behaviour.
Overall we believe this method shows promise as an ef-

ficient functional with correct long-range correlation. Its
ability to correctly predict the vdW physics of metallic
systems is a distinct advantage over other efficient vdW
functionals. It is very likely that this advantage would
carry over into more typical systems with unusual geome-
tries.
The authors would like to thank J. Jung, A. Savin, J.

Àngyàn, I. Tokatly, and G. Vignale for fruitful discus-
sions.
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