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YOUNG’S SEMINORMAL FORM AND SIMPLE MODULES FOR

Sn IN CHARACTERISTIC p.

STEEN RYOM-HANSEN

Abstract. We realize the integral Specht modules for the symmetric group
Sn as induced modules from the subalgebra of the group algebra generated by
the Jucys-Murphy elements. We deduce from this that the simple modules for
FpSn are generated by reductions modulo p of the corresponding Jucys-Murphy
idempotents.

1. Introduction.

This article is a continuation of the investigation pursued in [RH1-2] that
seeks to demonstrate the importance of Young’s seminormal basis for the
modular, that is characteristic p, representation theory of the symmetric
group Sn. A main obstacle is here that Young’s seminormal basis is defined
over the field Q and indeed there seems to be a general consensus that this
obstacle makes Young’s seminormal basis a characteristic zero phenomenon,
essentially. Still we believe that Young’s seminormal basis is a fundamental
object for the modular representation theory as well, and we think that the
results of our works provide strong evidence in favor of this claim.

Let Parn be the set of partitions of n and let S(λ) be the integral Specht
module for Sn associated with λ ∈ Parn. Then, as has been known for a long
time, the set of SQ(λ) := S(λ) ⊗Z Q classifies the irreducible QSn-modules
when λ ∈ Parn, whereas the reduced Specht modules S(λ)⊗ZFp are reducible
in general. In fact the irreducible modulesD(λ) for FpSn are classified by the
set of p-regular partitions Parregn and are obtained as D(λ) = S(λ)/ rad(·, ·)
where (·, ·) is a certain symmetric bilinear and Sn-invariant form on S(λ).

The decomposition numbers [S(λ) : D(µ)] for FpSn have been the topic of
much research activity in recent years, but still remain unknown in general
and even the dimensions of D(µ) are not known in general. But using the
theory of Young’s seminormal form we obtain in this work, as our main
Theorem 5, a construction of D(µ) that may be a good starting point for
obtaining combinatorial expressions for dimD(µ).

The basic principles behind this construction are parallels of standard
methods in the modular representation theory of algebraic groups. Indeed,
let S(λ)⊛ denote the contragredient dual of S(λ). Then (·, ·) corresponds to
a homomorphism cλ : S(λ) → S(λ)⊛. Moreover, for λ ∈ Parregn we have that
D(λ) = im cλ where cλ is the reduced homomorphism modulo p. Passing
to the representation theory of an algebraic group G over an algebraically
closed field of characteristic p, the Weyl module ∆(λ), the dual Weyl module
∇(λ) and the simple module L(λ) correspond to S(λ), S(λ)⊛ and D(λ) and
the bilinear form (·, ·) on S(λ) corresponds to a form on ∆(λ) that we denote
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the same way. It induces a G-linear homomorphism cλ : ∆(λ) → ∇(λ) and
the simple module satisfies L(λ) = im cλ. But in the G-module setting, ∇(λ)
can also be constructed as the module of global sections of a line bundle on
the associated flag manifold, and using this, one obtains a new construction
of cλ without using the bilinear form. The properties of this new construction
of cλ then provide a useful method for obtaining information on L(λ), see
eg. [A, Jan].

Returning to the symmetric group, we then look for a different construc-
tion of cλ. For this we prove in our Theorem 3 that S(λ) is induced from
a certain subalgebra, denoted GZn, of the group algebra, corresponding to
the fact that ∇(λ) is induced from a Borel subgroup of G. Given this, our
new construction of cλ is obtained from a Frobenius reciprocity argument.

At the basis of our work are the famous Jucys-Murphy elements Lk, k =
1, 2, . . . , n that were introduced independently by Jucys and Murphy in [Ju1-
3] and [Mu81]. They give rise to idempotents Et of QSn, the Jucys-Murphy
idempotents, indexed by λ-tableaux t, that are closely related to Young’s
seminormal basis of the Specht module SQ(λ). Moreover they commute
with each other and therefore generate a commutative subalgebra of the
group algebra. This is the algebra GZn that was mentioned above, the
Gelfand-Zetlin algebra. In the case of the ground field Q it was considered by
Okounkov and Vershik in [OV] as a kind of Cartan subalgebra of a semisimple
Lie algebra, but for us it is important to work with an integral version of
GZn, where the analysis of [OV] fails.

We have now formulated the main ingredients of our result. The surpris-
ingly simple final result is that D(λ) is generated by aλEλ where Eλ = Etλ

and aλ is the least common multiple of the denominators of Eλ. It should be
noted that, even though it appears to be a very natural idea to investigate
the ZSn or FpSn-submodule of S(λ) generated by aλEλ, the only reference
in the literature along these lines is [RH2], as far as we know.

In an important recent paper [BK], J. Brundan and A. Kleshchev showed
that FpSn is a Z-graded algebra in a nontrivial way by establishing an iso-
morphism between FpSn and the cyclotomic KLR-algebra, i.e. cyclotomic
Khovanov-Lauda-Rouquier algebra, of type A. Their results work in greater
generality than FpSn but we shall only consider this case. J. Hu and A.
Mathas refined in [HuMa] this graded structure on FpSn to a graded cellular
algebra structure by constructing an explicit graded cellular basis. A second
goal of our paper is to show that key features of their constructions can be
carried out entirely within the theory of Young’s seminormal form, as devel-
oped by Murphy. We hope that this approach to their results, together with
our main Theorem 5, may provide a combinatorial expression for dimD(λ).

The generators of the cyclotomic KLR-algebra are

{ e(i) | i ∈ (Fp)
n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

and [BK] prove their Theorem by constructing elements in FpSn, denoted
the same way, that verify the cyclotomic KLR-algebra relations. The yi are
essentially Jucys-Murphy operators and e(i) are certain idempotents, not
necessarily nonzero. In fact they can be identified with the idempotents con-
structed in [Mu83] by summing Jucys-Murphy idempotents Et over tableaux
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classes. The elements ψi are the most difficult to handle and [BF] take as
starting point for this certain explicitly given intertwining elements φi. These
intertwiners, together with the e(i) and yi, already satisfy relations that are
close to the cyclotomic KLR-relations but still need to be adjusted to get
the complete match.

We here give a natural construction of the intertwining elements φi within
Murphy’s theory for the seminormal basis. Indeed, we see them as natural
analogues of certain elements Ψi of the Hecke algebra that appear in [Mu92],
although only in the semisimple case. We show that Murphy’s ideas, in a
suitable sense, can be carried out over Fp as well. From this we obtain
a cellular basis for FpSn using a modification of the constructions done in
[HuMa].

Let us sketch the layout of the paper. In section 2 we fix the basic nota-
tion of the paper. It is mostly standard, except possibly for the notion of
tableau class which was introduced in [Mu83]. We also review the construc-
tion from [Mu83] of the tableau class idempotents. Section 3 contains the
construction of the intertwiners ΨL,i. This requires a control of the denom-
inators of the Jucys-Murphy idempotents that are involved in the tableau
class idempotents. In section 4 we construct the cellular basis. In section
5 we first introduce the Gelfand-Zetlin algebra GZn and then set up the
induction functor. We then prove that the Specht module is induced up
from a “rank one” module of GZn. Two important ingredients for this are a
uniqueness statement, due to James [J], of the integral Specht module and a
recent result of Hu and Mathas [HuMa1] on the action of the Jucys-Murphy
operators on Murphy’s standard basis. Finally in section 6 we deduce our
main results.

Note that the notation used throughout the paper may vary slightly from
the one used in the introduction.

It is a pleasure to thank H. H. Andersen, J. Brundan, P. Desrosier, S.
Griffeth, L. Lapointe, A. Mathas, O. Mathieu, D. Plaza and W. Soergel,
among others, for useful discussions.

2. Basic notation and idempotents in positive characteristic.

We are concerned with the representation theory of the symmetric group
Sn in positive characteristic. Let us first set up the basic notation. Let p
be a prime. We use the ground rings Z, Q, R := Zp and Fp, the finite field
of p elements. Recall that R is a local ring with maximal ideal pR and that
R/pR = Z/pZ = Fp. Let n be a positive integer and let Sn be the symmetric

group on n letters. Set An := RSn, An := FpSn and An,Q := QSn. An
n-composition is a sequence λ = (λ1, λ2, . . . , λk) of positive integers with
sum n. An n-partition is an n-composition λ = (λ1, λ2, . . . , λk) such that
λi ≥ λi+1 for all i. The set of n-partitions is denoted Parn. For λ ∈ Parn, the
associated Young diagram, also denoted λ, is the graphical representation
of λ through n empty boxes in the plane. The first λ1 boxes are placed in
the first row, the next λ2 boxes are placed in the second row, left aligned
with respect to the first row, etc. This is the English notation for Young
diagrams. The boxes are denoted the nodes of λ and are indexed using
matrix convention. Thus the node of λ indexed by [2, 3] is the one situated
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in the second row and the third column of λ. The p-residue diagram of a
partition λ is obtained by writing j − i mod p in the [i, j]’th node of λ. The
[i, j]’th node is called a k-node of λ if k = j− i mod p. A node of the Young
diagram λ is said to be removable if it can be deleted leaving as result the
Young diagram of a partition µ. Dually, this ’virtual’ node is said to be an
addable node for µ.

For n-partitions λ and µ, we write λ `p µ if λ can be obtained from µ
by removing one removable i-node from λ and adding it in the position of
an addable node of λ, for some i. We let ∼p be the equivalence relation
on n-partitions generated by `p. Then the blocks of FSn are given by ∼p,
according to the Nakayama conjecture.

Let t be a λ-tableau, i.e. a filling of the nodes of λ using the numbers
of {1, 2, . . . , n}, each once. We write t[i, j] = k if the [i, j]’th node of t is
filled in with k and rt(k) = j − i if t[i, j] = k. For k ∈ {1, 2, . . . , n} we
define t(k) := [i, j] where t[i, j] = k. A tableau t is said to be standard if
t[i, j] ≤ t[i, j + 1] and t[i, j] ≤ t[i + 1, j] for all i, j such that the terms are
defined. The set of standard tableaux of n-partitions is denoted Std(n). If
t and s are tableaux of n, we write t ∼p s if rt(k) = rs(k) mod p whenever
t[i, j] = s[i1, j1] = k. This defines an equivalence relation on the set of all
tableaux. We define Shape(t) := λ if t is a λ-tableau. Note that t ∼p s
implies that Shape(t) ∼p Shape(s).

When we refer to a tableau class we always mean a class with respect to
the above relation. If t is a tableau we denote by [t] the tableau class of t.
We denote by Cn the set of tableau classes of n-partitions.

We use the convention that Sn acts on the right on {1, . . . , n} and hence
on tableaux. In other words, we multiply cycles in Sn from the left to the
right.

For t a λ-tableau, we define the associated element d(t) ∈ Sn by

tλd(t) = t

where tλ denotes the highest λ-tableau, having the numbers {1, 2, . . . , n}
filled in along rows. Highest refers to the dominance order ≤ on tableaux.
It is derived from the dominance order ≤ on compositions given by

λ ≤ µ if

m
∑

i=1

λi ≤

m
∑

i=1

µi for m = 1, 2, . . . ,min(k, l)

for λ = (λ1, . . . , λk) and µ = (µ1, . . . , µl) by viewing tableaux as series of
compositions. Similarly the dominance order can be extended to pairs of
tableaux in the following way

(s, t) ≤ (s1, t1) if s ≤ s1 and t ≤ t1.

In [HuMa] this order on pairs of tableaux is called the strong dominance
order and is written ◭. In [Mu92] the dominance order on tableaux and the
above extension of it to pairs is denoted ⊳.

The dominance orders are all partial. We shall occasionally need the
lexicographic order ≤lex on compositions which is total. It is given by λ <lex
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µ if there is an m0 such that

m
∑

i=1

λi =
m
∑

i=1

µi for m = 1, 2, . . . ,m0 and

m0+1
∑

i=1

λi <

m0+1
∑

i=1

µi

The lexicographic order can be extended to tableaux and to pairs of tableaux,
using the same method as for the dominance order. These extended orders
are also denoted ≤lex, but note that they are no longer total.

Let t be a λ-tableau with node (i, j). The (i, j)-hook consists of the nodes
to the right and below the (i, j) node, its cardinality is the hook-length
hi,j . The product of all hook-lengths only depends on λ and is denoted

hλ. The hook-quotient is γt,n =
∏ hi,j

hi,j−1 with the product taken over all

nodes in the row of λ that contains n, omitting hooks of length one. For
general i, we define γt,i similarly, by first deleting from t the nodes containing
i+ 1, i + 2, . . . , n. We set γt =

∏n
i=2 γt,i.

In general, when we use λ as a subscript it refers to the tableau tλ. In
this situation we have

γλ = γtλ =
∏

i

λi!.

For k = 1, 2, . . . , n the Jucys-Murphy elements Lk ∈ ZSn are defined by

Lk := (1, k) + (2, k) + . . .+ (k − 1, k)

with the convention that L1 := 0. They commute with each other and satisfy
the following commutation relations with the simple transpositions

(k − 1, k)Lk = Lk−1(k − 1, k) + 1
(k − 1, k)Lk−1 = Lk(k − 1, k)− 1
(k − 1, k)Ll = Ll(k − 1, k) if l 6= k − 1, l 6= k.

(1)

These elements are a key ingredient for understanding the representation
theory of Sn. Their generalizations appear in many contexts of representa-
tion theory, for example as the degenerate affine Hecke algebra, where the
Lk are commuting generators that satisfy the above relations with the sim-
ple transpositions. In the original works of Jucys and Murphy, [Ju1], [Ju2],
[Ju3] and [Mu81], the Lk’s were used to construct orthogonal idempotents
Et ∈ QSn, indexed by tableaux t, and to derive Young’s seminormal form
from them. We denote these idempotents the Jucys-Murphy idempotents.
Their construction is as follows

Et :=
∏

{ c |c=−n+1,... ,n−1}

∏

{ i |rt(i)6=c}

Li − c

rt(i)− c
.

They can be constructed for all λ-tableaux t, but for t nonstandard Et = 0.
They form a set of primitive and complete idempotents, that is their sum
is 1. Moreover, they are eigenvectors for the action of the Jucys-Murphy
operators in QSn, since

(Lk − rt(k))Et = 0 or equivalently Lk =
∑

t∈Std(n)

rt(k)Et (2)

which is the key formula for deriving Young’s seminormal basis from them.
In this situation (1) gives Young’s seminormal form for the action of σi on
the seminormal basis.
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Unfortunately, the Et contain many denominators and hence it is not pos-
sible to reduce them modulo p. In order to overcome this obstacle, Murphy
introduced in [Mu83] certain elements ET for each tableau class T . They
are defined as follows

ET :=
∑

t∈T

Et.

He showed that the ET ’s, with T varying over all classes, give a set of
complete orthogonal idempotents in An. The most difficult part of this is
to show that ET ∈ An since they are clearly orthogonal, idempotent and
complete. We now present his proof that ET ∈ An, in our notation. Several
of its ingredients will be important for us.

A key point is to consider Ft for t any tableau, given by

Ft :=
∏

{ c |c=−n+1,... ,n−1}

∏

{ i |rt(i)6=c mod p}

Li − c

rt(i)− c
. (3)

It is clear that Ft ∈ An and that all Ft’s and ET ’s commute. The de-
nominator of Ft depends only on the underlying partition Shape(t) = λ
of t and is denoted wλ. Although wλ is not constant on the classes, we
have that wλ = wµ modulo p if λ ∼p µ. Especially, if s ∼p t we get that

wShape(s) = wShape(t) modulo p. The numerator of Ft only depends on the
class [t] of t and so we have

Fs = Ft if s ∼p t and Shape(s) = Shape(t)

Suppose that t ∈ T . Using (2) we get that

FtEs =

{

wShape(s)/wShape(t)Es if s ∼p t
0 otherwise

(4)

and so we deduce

Ft =
1

wλ

∑

s∈T

wShape(s)Es. (5)

Hence ETFt = Ft where we set T = [t]. Using this we get for any positive
integer m that

(ET − Ft)
m =

∑m
i=0

(

m
i

)

(−1)m−iEi
TF

m−i
t =

ET − 1 + 1 +
∑m−1

i=0

(

m
i

)

(−1)m−iEi
TF

m−i
t =

ET − 1 +
∑m

i=0

(

m
i

)

(−1)m−iFm−i
t = ET − 1 + (1− Ft)

m

Combining this with equation (5) we arrive at the formula

ET = 1− (1− Ft)
m +

∑

s∈T

(

1−
wShape(s)

wλ

)m

Es. (6)

Using it, the proof that ET ∈ An follows by taking m big enough for

(1−
wShape(s)

wλ
)mEs ∈ An

to hold for all s ∈ T .
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3. Commutation rules.

Our next aim is to generalize certain results valid for Et to ET . We are
especially looking for a generalization for ET of the elements denoted Ψt in
[Mu92]. For this we need to work out the commutation relations between
ET and the simple transpositions σk = (k − 1, k).

We first consider the case where [tσk] = [t], that is rt(k−1) = rt(k) mod p.
We write T := [t]. We then prove the following Lemma.

Lemma 1. Suppose that [σkt] = [t] = T . Then

σkET = ETσk.

Proof. We consider the commutator [σk, ET ]. By the previous section it
belongs to An. We show that it actually belongs to pNAn for any positive
(big) integer N , from which the result follows. Fix therefore such an N .
We use formula (6) and first consider the individual terms of that sum. We

choose m big enough for (1− wShape(t1)

wµ )mEt1 ∈ pNAn to hold for all t1 ∈ T .
From this we get that



σk,
∑

t1∈T

(

1−
wShape(t1)

wµ

)m

Et1



 ∈ pNAn

and so by (6) it is enough to prove that σk commutes with Ft.
Now by the commutation rules (1), we have that σk commutes with all

terms of Ft of the form Li − c where i 6= k − 1, k. But the remaining terms
may be grouped together in pairs of the form

(Lk−1 − c)(Lk − c)

since by assumption rt(k−1) = rt(k) mod p. But these expressions are sym-
metric in Lk−1 and Lk and therefore commute with σk by the commutation
rules (1). The Lemma is proved. �

We next consider the case where s := tσk /∈ T , that is rt(k − 1) 6=
rt(k) mod p. We set S := [s] and T := [t]. In order to work out the commu-
tation rule between σ and ET in this case, we first consider E := ES + ET .
We need the following auxiliary Lemma.

Lemma 2. E belongs to An and commutes with σk.

Proof. Clearly E belongs to An since ES and ET do. For each t ∈ T we have
that Et + Etσk

is symmetric in Lk−1 and Lk and therefore commutes with
σk. But

E =
∑

t∈T

(Et + Etσk
)

and so the Lemma follows. Note that t 7→ tσk defines a bijection between
the classes T and S, since in the definition of ET and ES we may assume
that the classes consist of general tableaux, not only standard tableaux. �

For each tableau class T we choose an arbitrary t ∈ T and define

rT (i) := rt(i).

Thus rT (i) ∈ Z, but it is only well defined modulo p. With this notation we
can formulate our next Lemma.
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Lemma 3. There is a positive integer m1 such that the following formulas
hold for m ≥ m1

ET =

(

Lk − rS(k)

rT (k)− rS(k)

)m

E, ES =

(

Lk−1 − rS(k)

rT (k)− rS(k)

)m

E.

Proof. For t ∈ T and s ∈ S we define Et,s = Et + Es. Then obviously Et,s

is an idempotent. By (2) we have that Lk =
∑

u∈Std(n) ru(k)Eu and so for

s = σkt we deduce that

Et =

(

Lk − rs(k)

rt(k)− rs(k)

)

Et,s. (7)

Similarly we have that

Es =

(

Lk−1 − rs(k)

rt(k)− rs(k)

)

Et,s. (8)

The above argument is used in Murphy’s papers but unfortunately it does
not generalize to ET since we do not have Lk =

∑

U∈Cn
rU (k)EU even though

ru(k) = ru1(k) mod p for u ∼p u1. The problem is that the individual Eu

lie in QSn rather than RSn.

Instead we proceed as follows. Consider first an a ∈ pR. From the bino-
mial expansion we get the following formula in R[x], valid for any positive
integer m

(x+ a)p
m

= xp
m

mod pm+1R[x]. (9)

We deduce from it the formula
(

x+ a

c+ d

)pm

=
(x

c

)pm

mod pm+1R[x] (10)

for any c ∈ R× and a, d ∈ pR.

Using (7), when m is large enough we have

ET =
∑

t∈T Et =
∑

t∈T,s=tσk

(

Lk−rs(k)
rt(k)−rs(k)

)

Et,s =

∑

t∈T,s=tσk

(

Lk−rs(k)
rt(k)−rs(k)

)pm

Et,s =
∑

t∈T,s=tσk

(

Lk−rS(k)
rT (k)−rS(k)

)pm

Et,s

The last equality follows from (10), since for any N we may choose m big
enough to make the difference of the two sides belong to pNAn. But then
ET is equal to

∑

t∈T,s=tσk

(

Lk−rS(k)
rT (k)−rS(k)

)pm

Et,s =
(

Lk−rS(k)
rT (k)−rS(k)

)pm

(ES + ET ) =
(

Lk−rS(k)
rT (k)−rS(k)

)N
E

as claimed. The other equality is proved the same way. By choosing m even
bigger we may take N to be the same in the two equations. �

At this stage Murphy constructs in [Mu92], using the formulas (7) and (8),
elements Ψt and Φt of QSn satisfying

EλΦt = ΨtEt. (11)

The construction is as follows. Let t be any λ-tableau and let k be an integer
between 1 and n. The radial length between the nodes t[k] and t[k − 1] is
defined as ht,k = hk := rt(k − 1) − rt(k). Let d(t) = σi1σi2 . . . σiN be a
reduced expression of d(t). We associate with it a sequence of tableaux
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t1 = tλ, t2, . . . , tN+1 = t by setting recursively tk+1 := tksik . Then Φt and
Ψt are given by the formulas

Φt :=
(

σi1 −
1

ht1,i1

)(

σi2 −
1

ht2,i2

)

. . .
(

σiN − 1
htN ,iN

)

Ψt :=
(

σi1 +
1

ht1,i1

)(

σi2 +
1

ht2,i2

)

. . .
(

σiN + 1
htN ,iN

) (12)

As noted in [Mu92], Φt and Ψt actually do depend on the chosen decomposi-
tion of d(t), and not just on d(t), and so the notation is slightly misleading.
On the other hand, the key property (11) holds independently of the choice
of reduced expression of d(t), and so we just take anyone.

Our aim is to construct similar elements for ET and ES. For this we
need the following commutation rules between σk and the powers Lm

k and
(Lk − a)m.

Lemma 4. For m ∈ N and a ∈ R the following formulas hold:

a) σkL
m
k = Lm

k−1σk +
∑m−1

i=0 Li
k−1L

m−i−1
k

b) σk(Lk − a)m = (Lk−1 − a)mσk +
∑m−1

i=0 (Lk−1 − a)i(Lk − a)m−i−1.

Proof. Formula a) is proved using a straightforward induction on the com-
mutation rules given in (1). Formula b) is proved the same way, since Lk−a
satisfies the same commutation rules with σk as Lk does. �

We generalize the concept of radial length to tableaux classes by setting

hT,k = hk := rT (k − 1)− rT (k) ∈ Z

for k any integer between 1 and n. It depends on the choices of rT (k) and
is therefore only unique modulo p.

We are now going to construct certain elements ΨL, t, verifying a gener-
alization of (11) for the ET ’s. Set first hL(k) = hL := Lk−1 − Lk. Modelled
on Ψt, we shall construct ΨL, t as products of expressions of the form

σk −
1

hL
.

On the other hand, for such expressions to make sense in general, one would
need to consider an appropriate completion of the group ring, and define
1
hL

inside it as a power series. We here take a simpler approach, always

considering Lk and Lk−1 as elements of EndFp(V ) for V a Fp-vector such

that Lk−1 − Lk + α ∈ EndFp(V ) is nilpotent for some α ∈ F×
p . Under that

assumption, 1
hL

can be defined as the corresponding geometric series, which

is finite. The next Lemma should be seen in this light.

Lemma 5. Suppose that s = tσk and that T := [t] and S := [s] are different
tableaux classes. Let h := hT,k and let m be a positive integer. Then Lk−1−
Lk − h acts nilpotently in ET (FpSn). Especially, Lk−1 − Lk is invertible as
an element of EndFp(ET (FpSn)).

Proof. Notice that since ET ∈ An, the product ET (FpSn) is well defined.
Consider first Lk−1−Lk−h as an element of An. Using formula (2) we have
that

(Lk−1 − Lk − h)N =
∑

u

(ru(k − 1)− ru(k)− rT (k − 1) + rT (k))
NEu.
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Multiplied by ET it gives the formula

(Lk−1 − Lk − h)NET =
∑

u∈T

(ru(k − 1)− ru(k)− rT (k − 1) + rT (k))
NEu.

Each coefficient of Eu is here a multiple of p. Hence we may take N large
enough for (Lk−1 − Lk − h)NET to belong to pmAn. We reduce modulo p
and get the statement of the Lemma. �

We can now prove the following Lemma.

Lemma 6. Let s, t, S, T, h,m be as in the previous Lemma and let hL :=
Lk−1 − Lk. View 1/hL as an element of HomFp(ET (FpSn),FpSn) via the
previous Lemma. Then for N ∈ N and a ∈ Fp the following formulas hold
in HomFp(ET (FpSn),FpSn)

a) (σk −
1
hL

)LN
k = LN

k−1(σk −
1
hL

)

b) (σk −
1
hL

)(Lk − a)N = (Lk−1 − a)N (σk −
1
hL

).

Proof. Using the previous Lemma and the fact that ET commutes with Lr
k

and (Lk − a)r we first notice that the expressions are well defined transfor-
mations of ET (FpSn). Let us now show a). Since Lk and Lk−1 commute it
is equivalent to

hL(σkL
N
k − LN

k−1σk) = LN
k − LN

k−1

and hence, using Lemma 4, to the valid expression

(Lk − Lk−1)

N−1
∑

i=0

Li
k−1L

N−i−1
k = LN

k − LN
k−1.

Formula b) is proved the same way. �

We now obtain the following result.

Lemma 7. Let the notation be as above. Then we have
(

σk −
1

hL(k)

)

ET = ES

(

σk −
1

hL(k)

)

in HomFp(ET (FpSn),FpSn).

Proof. The proof is obtained by combining Lemma 2, 3 and 6. �

The Lemma is a generalization of Lemma 6.2 from [Mu92], where Lk, Lk−1

and hence hL act semisimply. Note that the second minus sign is there a
plus sign, corresponding to the fact that the eigenvalues of hL on Es and Et

are equal but with opposite signs.

Set T λ := [tλ]. For d(t) = σi1σi2 . . . σiN in reduced form we define

ΨL,d(t) :=
(

σi1 −
1

hL(i1)

)(

σi2 −
1

hL(i2)

)

. . .
(

σiN − 1
hL(iN )

)

(13)

where 1
hL(ij)

is set to 1 when [tj] = [tj−1]. Combining Lemma 1 and 7 we

get the following Theorem.

Theorem 1. ETλΨL,d(t) = ΨL,d(t)ET .
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We view σk − 1
hL(k)

as an analogue of the Khovanov-Lauda generator

ψi, or more precisely of the element denoted φi in [BK]. These intertwining
elements are the starting point of their work. In our approach the φ-elements
have a representation theoretical interpretation coming from the theory of
the seminormal basis whereas they appear somewhat pulled out of the sleeve
in [BK].

4. A cellular basis.

In this section we use the results from the previous sections to construct
a cellular basis for FpSn. Our construction is inspired by the one given by
J. Hu and A. Mathas in [HuMa].

Let us first introduce some notation. For λ a partition of n we let Sλ
denote the row stabilizer of tλ. Let xλ and yλ be the elements of An given
by

xλ =
∑

σ∈Sλ

σ and yλ =
∑

σ∈Sλ

(−1)|σ|σ

where |σ| is the sign of σ. For a pair (s, t) of λ-tableaux we define

xst = d(s)−1xλd(t) and yst = d(s)−1yλd(t).

If s is a λ-tableau we get that xss is the sum of the elements of the row-
stabilizer of s. A similar comment applies to yss.

The set {xst} with (s, t) running over pairs of standard λ-tableaux and λ
over partitions of n gives Murphy’s standard basis for An. Similarly {yst}
gives the dual standard basis. They are cellular bases in the sense of Graham
and Lehrer, [GL]. Thus, defining

A>λ
n := spanR{xst| (s, t) pair of µ-tableaux with µ > λ}

we have that A>λ
n is an ideal of An and the associated left cell module is

given by

C(λ) := R〈xsλ | s standard λ-tableau〉 mod A>λ
n .

Following modern terminology we shall refer to it as the Specht module,
although it rather corresponds to the dual Specht module defined via Young
symmetrizers.

We recall and state the following definitions An := An ⊗R Fp , A>λ
n :=

A>λ
n ⊗R Fp, An,Q := An ⊗R Q , A>λ

n,Q := A>λ
n ⊗R Q, C(λ) := C(λ) ⊗R Fp,

C(λ)Q := C(λ) ⊗R Q. We use the same notation xsλ for the classes of xsλ

in C(λ), C(λ) or C(λ)Q, they form a basis for C(λ) over R, for C(λ) over

Fp and for C(λ)Q over Q.

We need to recall another basis for An. Following [Mu92] we define for
λ ∈ Parn

ξλ =

n
∏

i=1

(Li + ρλ(i)) (14)

where ρλ(i) = k for tλ(i) = [k, l], that is ρλ(i) is the row number of the
i-node of tλ. For any pair (s, t) of λ-tableau we set

ξst := d(s)−1ξλd(t)
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Then {ξst} also defines a basis for An when (s, t) runs over the same pa-
rameter set as above. Indeed, by combining Lemma 3.7 and Theorem 4.5 of
[Mu92], as is also explained below Theorem 4.5 of loc. cit., we get that

ξst = xst +
∑

(u,v)>(s,t)

cuv xuv, cuv ∈ R. (15)

Applying this triangularity property to s = t = tλ, and using that A>λ
n is an

ideal in An, we find that the images of {ξsλ} in C(λ) coincide with xsλ, for
s standard λ-tableaux.

Motivated by the construction done by Hu and Mathas in [HuMa] we now
introduce for each pair of standard tableaux (s, t) of the same shape λ the
following elements of An

ψst := Ψ∗
L,d(s)ξλETλΨL,d(t). (16)

where ΨL,d(s),ΨL,d(t) are as in (13) and where ∗ is the usual antiautomor-

phism of An that fixes the transpositions. Since 1
hL(k)

is a polynomial expres-

sion of Jucys-Murphy elements, Ψ∗
L,d(s) is obtained from ΨL,d(s) by reversing

the factors. Note that in ψst the two middle factors ξλ and ETλ commute.

We aim at proving that the set of ψst is a cellular basis for An when (s, t)
runs over pairs of standard tableaux of the same shape. We begin with the
following preparatory Lemma.

Lemma 8. For every partition λ of n we have

ξλETλ = ξλ = xλ mod A>λ
n .

Proof. From (15) and the definition of dominance order on pairs of tableaux,
we have that xλ − ξλ ∈ A>λ

n . Since ξλ, ETλ and xλ all lie in An it is now
enough to show that the difference ξλETλ − ξλ lies in A>λ

n,Q. On the other

hand, using (5.1) of [Mu92], we get that

ξλEs = δλsξλ +
∑

(σ,τ)>lex(tλ,tλ)

aστ ξστ , aστ ∈ Q

where δλs is the Kronecker delta. But ETλ is the sum of Es with s ∈ T λ and
so we deduce

ξλETλ = ξλ +
∑

(σ,τ)>lex(tλ,tλ)

aστ ξστ , aστ ∈ Q (17)

On the other hand, by Corollary 2.15 of [HuMa1] we have

xstLk = rt(k)xst +
∑

(u,v)>(s,t)

cuvxuv (18)

where (s, t) is a pair of standard tableaux of same shape and where (u, v) runs
over pairs of standard tableaux of the same shape and cuv ∈ R. Especially,
we get

xλLk = rλ(k)xλ +
∑

(u,v)>(tλ,tλ)

cuvxuv.

From this we get

xλETλ = dxλ +
∑

(u,v)>(tλ,tλ)

duvxuv



YOUNG’S SEMINORMAL FORM AND SIMPLE MODULES FOR Sn IN CHARACTERISTIC p.13

for certain d, duv ∈ Q since ETλ is a polynomial expression in the Lk. In this
equation, using (18) and (15), we may actually replace xλ and xst by ξλ and
ξst and obtain

ξλETλ = dξλ +
∑

(u,v)>(tλ ,tλ)

duvξuv (19)

Comparing (17) and (19) and using that the lexicographic order is a refine-
ment of the dominance order, we conclude that d = 1. The Lemma now
follows from (19). �

The next result gives the promised cellularity of {ψst}.

Theorem 2. For pairs of standard tableaux (s, t) we have

ψst = xst +
∑

(σ,τ)>(s,t)

aστxστ , aστ ∈ Fp

Moreover {ψs,t | (s, t) standard tableaux of same shape} is a cellular basis of

An with cell modules C(λ) for λ ∈ Parn

Proof. We have

ψst := Ψ∗
L,d(s)ETλξλΨL,d(t).

For d(t) = σi1σi2 . . . σiN in reduced form, we have that the first term of
ΨL,d(s) is σi1 − 1

hL(i1)
. Let us consider its action on ETλξλ. Assume first

that 1
hL(i1)

6= 1. Combining (15) and (18) we have that each Lk acts upper

triangularily on the ξst basis. But
1

hL(i1)
= 1

Li1−1−Li1
is a linear combination

of terms of the form

(Li1−1 − Li1 − rλ(i1 − 1) + rλ(i1))
l

and hence it also acts upper triangularly. Thus σi1 −
1

hL(i1)
maps ETλξλ to

xσi1
tλ,λ plus higher terms. If 1

hL(i1)
= 1 the same conclusion holds trivially.

Repeating this argument for the other terms of ΨL,d(s) and then for the
terms of Ψ∗

L,d(t), the triangularity statement of the Theorem follows.

From this we deduce that

A>λ
n = spanFp

{ψst | (s, t) pair of µ-tableaux with µ > λ}

and from this an argument similar to the one given in Theorem 5.8 of [HuMa]
gives the cellularity of {ψst} with ∗-involution satisfying ψ∗

st = ψts.
�

From the general theory of cellular algebras there is an associated bilinear
invariant form on C(λ), that we denote 〈·, ·〉λ. It it given by

ψλsψtλ = 〈ψsλ, ψtλ〉λ ψλ mod A>λ
n

Its radical radλ is a submodule of C(λ) and C(λ)/ radλ is either simple or
zero. The simple modules that arise this way classify the simple modules for
An . The next Lemma shows that 〈·, ·〉λ is in block form with respect to our
basis.

Lemma 9. The basis {ψsλ| s standard λ-tableau} of C(λ) is in block form
with respect to 〈·, ·〉λ with blocks given by the tableaux classes.
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Proof. Suppose that s, t are standard λ-tableaux and that the tableau classes
S := [s] and T := [t] are different. Then we have that

ψλsψtλ = ξλETλΨL,d(s)Ψ
∗
L,d(t)ETλξλ.

Using Theorem 1 and its ∗-version, and noting that E∗
U = EU for all U since

EU is a sum of products of Jucys-Murphy operators, we get that this is equal
to

ξλΨL,d(s)ESETΨ
∗
Ld(t)ξλ

But ESET = 0 and the Lemma follows. �

5. Specht modules and Jucys-Murphy operators.

In this section we give a new realization of the Specht modules, using
Jucys-Murphy operators.

An essential ingredient of our construction is the use of what we denote
the Gelfand-Zetlin subalgebra of An as a kind of Cartan subalgebra of a
semisimple Lie algebra. This is in accordance with ideas promoted by Ok-
ounkov and Vershik in the article “A new approach to the representation
theory of the symmetric group”, [OV]. Their approach also applies to a
wider class of algebras than the group algebra of the symmetric group, but
relies heavily on the algebras being semisimple. Moreover, the very Specht
modules have in their approach apparently so far only been treated from the
“old” point of view. In this section we realize the Specht module as induced
modules from the Gelfand-Zetlin subalgebra, at least over R and Q and thus
partially remedy these deficiencies. It would be interesting to investigate to
what extent they hold in positive characteristic.

Define GZn ⊆ An to be the Gelfand-Zetlin algebra, the R-subalgebra of
An generated by the Jucys-Murphy operators:

GZn := 〈Li | i = 1, . . . , n〉.

This definition is not quite equivalent to the one used by for example Ok-
ounkov and Vershik in [OV]. They first of all work over a field of character-
istic zero and even in that case, our definition of the Gelfand-Zetlin algebra
is actually a Theorem in [OV] that characterizes the subalgebra.

GZn is a commutative subalgebra of An and it contains the center Z(An)
of An – indeed by Theorem 1.9 of [Mu82] we know that Z(An) consists of
the symmetric polynomials in the Lk.

We aim at defining an induction functor from GZn-modules toAn-modules.
For this we first need to state a few categorical generalities on R-modules.

For an R-moduleM we defineM∗ := HomR(M,R). IfM is also a left An-
module,M∗ becomes a rightAn-module and vice-versa. Let R -modfg denote
the category of finitely generated R-modules and let An -modfg denote the
subcategory whose objects are also left An-modules.

Since R is Euclidean, we have for M ∈ R -modfg that M = F (M) ⊕
T (M) where F (M) is the free part of M and T (M) the torsion part. Then
M 7→ T (M) is a left exact functor on R -modfg whereas M 7→ F (M) is
an exact functor. Indeed, we may define it as F (M) := M∗∗ which shows
that it is a covariant functor. But for M ∈ R -modfg the canonical map
M →M∗∗ induces an isomorphism M/T (M) → F (M). It induces a natural
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transformation from M 7→ M/T (M) to F and hence, since M 7→ M/T (M)
is right exact, we get that F is right exact as well, whereas left exactness
follows directly from the definitions.

From this we get that F induces an exact functor on An -modfg. Indeed,
if M is a left An-module then also F (M) = M∗∗ is a left An-module and
exactness follows from exactness at R -modfg level.

We let GZn -modfg denote the subcategory of R -modfg whose objects are
also GZn-modules. Finally, we define R -modfr as the category of finitely
generated free R-modules and An -modfr as the subcategory whose objects
are also left An-modules.

After these preparations we are in position to define the induction functor.
For M ∈ GZn -modfg we define

Ind(M) := F (An ⊗GZn M).

Then F (An⊗GZn
M) ∈ An -modfr. Furthermore, by the above considerations

we have that M 7→ Ind(M) is a right exact functor from GZn -modfg to
An -modfr.

An important property of Ind is the following Frobenius reciprocity rule

HomGZn(M,N) ∼= HomAn(Ind(M), N)

for M ∈ GZn -modfg and N ∈ GZn -modfr. It follows from

HomR(M,N) ∼= HomR(F (M), N)

for M ∈ R -modfg, N ∈ R -modfr and the usual Frobenius reciprocity for
induction.

For us the most important case of the above construction is the following.
Let λ be a partition of n and let Iλ be the ideal of GZn generated by Li−rλ(i)
for i = 1, . . . , n. Set

1λ := GZn /Iλ.

Then we may consider 1λ as a left GZn-module and define

Ind(λ) := Ind(1λ).

We aim at studying Ind(λ) at some depth. It is true, but possibly not
completely clear from the definitions that Ind(λ) 6= 0. In fact we shall prove
that Ind(λ) ∼= C(λ). The following Lemma is a first step towards this.

Let tλ be the lowest λ-tableau having 1, 2 . . . , n filled in along columns
and define sλ := d(tλ) ∈ Sn. Set

zλ := xλsλyλ′ = xλs
−1
λ′ yλ′ ∈ An. (20)

Then zλAn is the right Specht module for An studied in [J] and xλAn is the
right permutation module, containing zλAn. For s a λ-tableau we set

zλs := xλsλyλ′d(s′)

and get that {zλs | s ∈ Std(λ)} is a basis for zλAn.

Lemma 10. With the above notation we have

{x ∈ An |Lix = rλ(i)x for all i} = zλAn.
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Proof. Let λLA denote the left hand side of the Lemma. We first prove that

λLA ⊃ zλAn. Now λLA certainly is a right submodule of An and it is known
from [Mu92] that

xabsλyλ′ = 0 unless µ ≤ λ (21)

where µ = Shape(s) = Shape(b). Combining this with the fact that Li acts
upper triangularly on the {xst}-basis, as is seen by applying ∗ to (18), we
find that zλ belongs to λLA, from which the inclusion ⊃ follows.

Setting t = tλ we know from [Mu92] page 511 that

Eλ = h−1
λ zλtΨ

∗
t (22)

and hence λLA⊗R Q = zλAn,Q. From this we find that

λLA = zλAQ ∩ An = zλAn,Q ∩ xλAn

where the last equality follows from the facts that {xst} is an R-basis of An

and that SQ(λ) ⊂ xλAn,Q. Using Corollary 8.9 of [J], which is based on the
Garnir relations, we now get that

zλAn,Q ∩ xλAn ⊂ zλAn

and the Lemma is proved. �

Recall that An is equipped with a symmetric nondegenerate bilinear form
〈·, ·〉, given by

〈a, b〉 := coeff1(ab)

where coeff1(x) is the coefficient of 1 when x ∈ An is expanded in the
canonical basis of An. It is associative in the following sense

〈ab, c〉 = 〈a, bc〉 for all a, b, c ∈ An.

The form induces an An-bimodule isomorphism An
∼= A∗ = HomR(An, R)

where the An-bimodule structure on A∗ is given as follows

af(x)b := f(bxa) for all a, b, x ∈ An and f ∈ A∗.

We can now prove the promised result on Ind(λ).

Theorem 3. For λ any partition of n there is an isomorphism of An-
modules

Ind(λ) ∼= C(λ).

Especially, we have Ind(λ) 6= 0.

Proof. Define LGZλ :=
∑

iAn(Li − rλ(i)). Then LGZλ is a left ideal of An

and by the definitions we have that

Ind(λ) = F (An/LGZλ) = (An/LGZλ)
∗∗. (23)

But 〈·, ·〉 is nondegenerate, and therefore it induces an isomorphism of the
right An-modules

(An/LGZλ)
∗ ∼= (LGZλ)

⊥

where (LGZλ)
⊥ := {x ∈ An | 〈x,LGZλ〉 = 0 }. On the other hand, using the

symmetry, associativity and nondegeneracy of 〈·, ·〉 we find that x ∈ (LGZλ)
⊥

iff (Li− rλ(i))x = 0 for all i. We then deduce from the previous lemma that

(LGZλ)
⊥ = zλAn
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Thus, we are reduced to showing that (zλAn)
∗ ∼= C(λ). This is a little

variation of a well-known fact, that normally is presented using either two
left or two right modules. In our setting, with one left and one right module,
the pairing zλAn×C(λ) 7→ R is given by the rule (zλt, xsλ) 7→ coeffλ(zλtxsλ)
where for any u ∈ An we define coeffλ(u) as the coefficient of xλ when u is
expanded in the xst-basis.

�

We now deduce the following universal property of C(λ). We consider
it analogous to the universal property for the Weyl module of an algebraic
group, which is a consequence of the Kempf’s vanishing Theorem of the
cohomology of the line bundle on the flag manifold given by a dominant
weight, see eg. [A2], [RH3].

Theorem 4. Let M ∈ An -modfr. Let

λM := {m ∈M |Lim = rλ(i)m for all i}.

Then HomAn(C(λ),M) = λM .

Proof. Any m ∈ λM induces a map in HomGZn(1λ,M) and then by Frobe-
nius reciprocity a map in HomAn(C(λ),M) = HomAn(Ind(λ),M). On the
other hand, any element of f ∈ HomGZn(1λ,M) gives rise to an element of

λM , namely the image f(1). �

Remark. Let IndQ(λ) be the An,Q-module induced from the Gelfand-Zetlin
algebra GZn,Q defined over Q. Then the same series of arguments as the
one used above, even with some simplifications in Lemma 8, leads to the
isomorphism

IndQ(λ) ∼= CQ(λ).

But in this case the result could actually also have been obtained as follows.
From (2) we have that

GZn,Q = 〈Et | t ∈ Std(n)〉. (24)

On the other hand, since Eλξλ = γλEλ as is proved on page 508 of [Mu92],
we get that the basis for An,Q constructed in the previous section in this
case takes the form

{Ψ∗
sEλΦt | s, t ∈ Std(λ), λ ∈ Parn}.

Let evλ : GZQ → 1λ be the quotient map. Then one checks easily that

evλ(Et) =

{

1 if t = tλ

0 otherwise

and it follows now from EλΦt = ΨtEt that IndQ(λ) has basis

{Ψ∗
sEλ | s ∈ Std(λ), λ ∈ Parn}

and the result follows.

Remark. In general An is not free over GZn. Indeed, if An were free over
GZn thenAn,Q would be free over GZn,Q. But using (24) we get that {Et | t ∈
Std(n)} is a basis of GZn,Q and hence we can determine the dimension of
GZn,Q. For instance, for n = 3 we find dimGZn,Q = 4 which does not divide
dimAn,Q = 6.
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6. Simples.

Let G be an algebraic group over an algebraically closed field k of char-
acteristic p. Let B be a Borel subgroup of G with maximal torus T ⊂ B
and let X(T ) (resp. X(T )+) be the set of weights (resp. dominant weights)
with respect to B and T . For λ ∈ X(T )+ there is an associated Weyl mod-
ule ∆(λ) with unique simple quotient L(λ). It arises as the reduction of a
Z-form of a module of the corresponding complex group. The finite dimen-
sional simple modules for G are classified by L(λ) where λ ∈ X(T )+. We
write ∇(λ) := ∆(λ)∗ where ∗ is the contravariant duality functor on finite
dimensional G-modules. We may realize ∇(λ) as the G-module H0(λ) of
global sections of the line bundle on G/B associated with λ.

Let 〈·, ·〉λ be a nonzero contravariant form on ∆(λ). It induces a G-linear
map cλ : ∆(λ) → ∇(λ). As a matter of fact, since 〈·, ·〉λ is unique up to mul-
tiplication by a nonzero scalar, we have that cλ generates HomG(∆(λ),∇(λ))
and that im cλ is isomorphic to L(λ). In this sense, ∆(λ) and ∇(λ) give rise
to a realization of L(λ).

In this section we try to carry over this realization of the simple G-modules
to the case of the symmetric group. As we shall see, the results of the
previous section provide a suitable solution to this problem.

Let M be a left An-module. The contragredient dual M⊛ of M is defined
to be M∗ := HomR(M,R) with An-action given by (σf)(x) := f(σ−1x) for
σ ∈ Sn, x ∈M and f ∈M∗. It is a left An-module as well.

Using Theorem 5.3 of [Mu95], with a small modification since we are
working with left modules, we have that the contragredient dual of C(λ) is

C(λ)⊛ = An yλ′s−1
λ xλ = An yλ′sλ′xλ. (25)

This isomorphism is also valid in the specialized situation

C(λ)
⊛
= An yλ′sλ′xλ. (26)

Let (·, ·)λ be the bilinear form on C(λ) associated with Murphy’s standard
basis, following [Mu95] or the general cellular algebra theory, see [GL]. It is
given by

(xsλ, xtλ)λ = coeffλ(xλs xtλ)

where once again coeffλ(u) is the coefficient of xλ when u is expanded in the
xst-basis. It induces an An-homomorphism cλ : C(λ) → C(λ)⊛, or setting
z′λ := yλ′sλ′xλ and using (26) and Theorem 3

cλ : Ind(λ) = F (An ⊗GZn 1λ) → Anz
′
λ.

In general cλ is injective since (·, ·)λ is non-degenerate over R, but not sur-
jective. We can now state and prove our main result.

Theorem 5. a) There is aλ ∈ Q such that aλEλ ∈ An and such that cλ
corresponds to 1 7→ aλEλ under Frobenius reciprocity.
b) The simple An-module D(λ) associated with λ is given by D(λ) = aλAnEλ.

Proof. Using (23) and the fact that C(λ)⊛ is free over R we get that

HomAn(Ind(λ), C(λ)⊛) = HomAn(An/LGZn, C(λ)⊛)
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and hence, under Frobenius reciprocity, cλ is given by 1 7→ mλ where mλ ∈

λ(Anz
′
λ) or, using Lemma 10,

mλ ∈ Anz
′
λ ∩ zλAn = Ansλz

′
λ ∩ zλs

−1
λ An.

But the Young preidempotent e := zλs
−1
λ satisfies e2 = γλγλ′ e and hence

mλ =
1

γλγλ′

zλs
−1
λ msλz

′
λ =

1

γλγλ′

xλsλyλ′s−1
λ msλyλ′s−1

λ xλ

for some m ∈ An. On the other hand, it is known that the R-module
xλAn yλ′ is free of rank one, generated by xλsλyλ′ , see for example [Mu92]
page 498, and so we may rewrite mλ as follows

mλ = aλxλsλyλ′s−1
λ xλ

for some aλ ∈ Q. We now recall the expression for zλt given on page 511 of
loc. cit. which in our notation becomes

xλsλyλ′s−1
λ = bλEλsλEt

where bλ ∈ Q and t is the lowest λ-tableau. Applying ∗ to it we get

sλyλ′s−1
λ xλ = bλEts

−1
λ Eλ.

Combining these expressions and using that yλ′ is a preidempotent, we find
the following formula for mλ, up to a scalar in Q

mλ = EλsλEts
−1
λ Eλ.

We then finally use the version of Young’s seminormal form that is developed
on page 152 of [RH1] and obtain

mλ = aλEλ

where aλ is a (new) scalar in ∈ Q. This finishes the proof of a).

We next show b). For this we first observe that

An/LGZλ = Ind(λ)⊕ T (An/LGZλ)

and so by a) we have that cλ : Ind(λ) → C(λ)⊛ is given by w ∈ An 7→ aλwEλ

since C(λ)⊛ is torsion-free. Reducing cλ modulo p we get cλ given by

C(λ) = Ind(λ)⊗R Fp
cλ−→ C(λ)⊛ ⊗R Fp = C(λ)

⊛

given by w ⊗ 1 7→ aλwEλ ⊗ 1 for w ∈ An. We deduce from this that the

image of cλ is the submodule of C(λ)
⊛

generated by aλEλ. But from the
general principles explained above, this is equal to D(λ). The Theorem is
proved. �

Remark. So far we do not have an exact formula for aλ. On the other hand,
since cλ is unique up to multiplication by an element of R, and since cλ is
nonzero iff λ is p-restricted, we may simply choose for aλ the least common
multiple of the denominators of the coefficients of Eλ when expanded in the
canonical basis of An. The case where λ is not p-restricted is not relevant
for us, of course.

Remark. The Theorem gives rise to an algorithm for calculating dimD(λ)
that goes as follows. Let D(λ) be the dimS(λ) × n! matrix over Fp that

has aλEλ in the first row and d(t)−1 aλEλ for t ∈ Std(λ) \ {tλ} in the other
rows. Then dimD(λ) = rankD(λ). Note that Eλ is can be calculated using
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formula (22). We have implemented this algorithm in the GAP system. We
have checked n < 8 for all relevant primes and found complete match with
the known dimensions for D(λ), as given by Mathas’s Specht-package.

Remark. As was pointed out to us by A. Mathas, a generator for D(λ) is
given on page 41 in [J]. In our terminology it is xλsλyλ′s−1

λ xλ and hence, by
the arguments of the Theorem, it coincides with our generator. Our final
expression of it is somewhat shorter, but still does not permit calculations
much beyond the ones already indicated.

Remark. It is known from [Mu92] that coeff1(Eλ) = 1
hλ

where hλ is the

hook-product as above. In fact, it was observed in [RH1] that this fact also
holds for Et when t ∈ Std(λ). Based on GAP calculations we conjecture
that the coefficient of any w ∈ Sn in Eλ is either zero or on the form 1

kwhλ

for some nonzero integer kw. According to our GAP-calculations, a similar
statement does not hold for the general Et.
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