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Abstract

In this paper, influence of crowding by inert particles on the geminate reaction kinetics is theoreti-

cally investigated. Time evolution equations for the survival probability of a geminate pair are derived

from the master equation taking into account the correlation among all diffusing particles. The results

interpolate between low and high concentrations of the inert particles. Excluded volume interactions

by the inert particles hinder the diffusive motion of reactants. When the initial distribution of the

inert particles is uniform, the excluded volume interactions slow the decay of the survival probability

of a geminate pair in contrast to the acceleration of the decay found for the target problem under the

presence of the excluded volume interactions among reactants. We also obtain the escape probability

for a non-uniform initial distribution of the inert particles and show that reaction yield is increased

when the reaction proceeds in the presence of a positive density gradient of the inert particles which

inhibits the escape of reactants. The effect can be interpreted as a cage effect.
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I. INTRODUCTION

The importance of molecular crowding on chemical reactions has attracted great attention

in connection with biochemical reactions in living cells. [1–7] Living cells contain a high volume

fraction of macromolecules, in addition to reactants. Although these macromolecules are not

reactive, the excluded volume interactions between reactants and macromolecules significantly

affect transport properties of reactants, and therefore biochemical reactions.

The diffusion of reactants can be hindered in the presence of inert macromolecules. The

hindrance may reduce the diffusion coefficients of reactants compared to those in the absence

of inert molecules while the diffusion processes still remain normal; the mean square displace-

ments grow linear in time at long times. In some cases, subdiffusion is reported in crowded

environments. [8–16] Subdiffusion is characterized by the time evolution of the mean square dis-

placements, 〈r2(t)〉 ∼ tα, with the exponent being α < 1. Subdiffusion of molecules in crowded

environments is observed and theoretically studied when molecules diffuse in gels or other com-

partmentalized systems. [8–15] In such systems, subdiffusion is found only at a transient time

regime before a crossover to normal diffusion. Subdiffusion is also found even when the size of

inert molecules is comparable to that of reactants but the mechanism behind it is unclear. [16]

When the initial distribution of inert particles is uniform, the tracer exhibits essentially the

normal diffusion at long times with reduced diffusion coefficients. [17] The subdiffusion kinetics

can be caused by a nonuniform initial distribution of inert particles.

As a kind of reaction process, we consider reactions between a geminate pair of reactants

generated simultaneously. Geminate reactions are influenced by spatial diffusion of a pair and

the intrinsic recombination rates. The influence of many body interactions between inert species

and reactants on the geminate reaction kinetics can be very complicated and difficult to treat

theoretically. The simplest model could be to assume that the reactants and the inert particles

have the same size. Even under such simplification, the many body nature of the problem

remains since the migration of reactive species correlates with the time dependent positions of

inert species; the problem is still difficult to solve analytically.

In this paper, we study geminate reaction between a static species and a diffusive species on
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a lattice. Reaction takes place according to the distance between one of the pair of reactants

at the origin and the other. Inert particles perform random walks on a lattice. The transition

to neighboring lattice sites is constrained by prohibiting the double occupancy; each lattice site

can be occupied at most by a single diffusive particle regardless of whether it is reactive or

inert. Particles are assumed to move randomly on vacancy sites of a lattice.

The excluded volume interactions has been theoretically treated by applying Nakazato-

Kitahara’s theory on tracer diffusion in a lattice. [18] Nakazato-Kitahara’s formula of tracer

diffusion constant interpolates between low and high concentrations of host particles and its

accuracy is confirmed by comparison to the results of numerical simulations. [18–21] By apply-

ing Nakazato-Kitahara’s theory the survival probability of a geminate pair can be calculated

analytically, which interpolates between low and high concentrations of inert particles.

For target reactions where a static reactive particle (target) is surrounded by many reactive

counterparts (quenchers), Nakazato-Kitahara’s theory was successfully applied to calculate the

survival probability of a target with a constraint prohibiting the double occupancy of diffusing

reactants. [22, 23] It turned out that the decay of the target survival probability is accelerated

by prohibiting the double occupancy. [22, 23] Similar acceleration of the decay was obtained by

other numerical and analytical approaches. [24–35] The acceleration of the decay is understood

by noticing that the number of sites occupied by mobile reactants is generally larger at any

time under the constraint of prohibiting the double occupancy at each lattice site. [22, 23]

Accordingly, the probability of reaction between a target and a quencher is higher at any time

when multiple occupancy is not allowed. Contrary to the target reaction, only a pair of reactants

should be considered for geminate reaction. In other words, the number of sites occupied by

reactants is not affected by prohibiting the double occupancy. However, the site blocking effects

among diffusing particles should influence the kinetics of geminate reaction through different

mechanism from that in the case of target reactions. Indeed, numerical simulations show that

the reaction between a pair proceeds slowly by the crowding of inert particles and this result

is supported by phenomenological argument. [36]

In this paper, we derive equations for the survival probability of a pair of reactants perform-

ing diffusion under site blocking effects in the presence of inert particles. Both homogeneous
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and inhomogeneous initial distributions of inert particles are considered. On the basis of the

equation derived, the mechanism of site blocking effects by inert particles in the geminate

reactions is investigated in detail.

We formulate the problem and present the most simple mean field results in Sec. II. The

higher order corrections to the mean field results are given in Sec. III. In Sec. IV, we compare

the analytical results to simulation results. Continuous limit is taken in Sec. V and the influence

of non-uniform initial distribution of inert particles is investigated in Sec. VI. In Sec. VII, we

derive the escape probability when the initial distribution of the inert particles is non-uniform.

Section VIII is devoted for conclusions.

II. GEMINATE PAIR REACTION UNDER THE PRESENCE OF INERT PARTI-

CLES

For simplicity, we formulate the problem on a lattice where a reactive particle and inert

particles perform random walks. The particles are assumed to move randomly on the vacant

sites of a lattice. One of the reactants of the pair does not move and the origin of the coordinate

system is taken to be its position. The reactive particle undergoes reaction according to the

distance from the origin, r. We denote the intrinsic reaction rate by k(r).

The tracer-diffusion in concentrated lattices was studied by Nakazato and Kitahara in the

absence of reaction. [18] The diffusion of the tagged particle in the presence of site blocking

by other particles has been studied. [18–21] Following them, we introduce ket vectors to show

occupancy of a site by diffusing particles. The ket vector |~r, •〉 denotes the occupation of site ~r

by a reactive particle, the ket vector |~r, ◦〉 denotes the occupation of site ~r by a inert particle,

and |~r, φ〉 represents that site ~r is empty. The conditional probability of finding inert particles

at (~f1, ~f2, · · · , ~fN) and the reactant at ~n at time t when the initial configuration of inert particles
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is (~i1,~i2, · · · ,~iN) and that of the reactant is ~m is written as,

P (~f1, ~f2, · · · , ~fN , ~n, t;~i1,~i2, · · · ,~iN , ~m) =

(

N
∏

ℓ=1

〈~fℓ, ◦|

)(

M
∏

ℓ=N+1

〈~fℓ, φ|

)

〈~n, •| exp(Lt)

|~m, •〉

(

N
∏

ℓ=1

|~iℓ, ◦〉

)(

M
∏

ℓ=N+1

|~iℓ, φ〉

)

, (1)

where N and M denote the numbers of inert particles and lattice sites, respectively. L is given

by the sum of the term describing diffusion Lw and that describing reaction Lrc, L = Lw +Lrc.

Lw is explicitly expressed as, [18–20]

Lw =γB
∑

〈n,m〉

(|~rn, •〉〈~rn, φ| · |~rm, φ〉〈~rm, •| − |~rn, •〉〈~rn, •| · |~rm, φ〉〈~rm, φ|)+

γw
∑

〈n,m〉

(|~rn, ◦〉〈~rn, φ| · |~rm, φ〉〈~rm, ◦| − |~rn, ◦〉〈~rn, ◦| · |~rm, φ〉〈~rm, φ|) , (2)

where the sum is taken over all nearest neighbor pairs of the accessible lattice sites by the

diffusing particles. γB is given by γB = ΓB/(2d), where ΓB is the jump frequency of a reactive

particle and d denotes the lattice dimension. Similarly, we define γw = Γw/(2d) where Γw is

the jump frequency of inert particles. Lrc describes the reaction from an occupied site ~rn with

the rate k (~rn), [37–39]

Lrc = −
M
∑

n=1

k (~rn) |~rn, •〉〈~rn, •|. (3)

The conditional probability, PN (~n, t|~m, 0), that the reactant is at site ~n at time t when it

was initially at ~m under an assumption of random initial occupation of inert particles is ob-

tained from Eq. (1) by multiplying 1/ (MCN) and summing over all possible initial and final

configurations of the inert particles. By defining the characteristic function by,

φ(~n, t|~m, 0; x) ≡
M
∑

N=0

PN (~n, t|~m, 0)xN , (4)

it can be expressed as,

φ(~n, t|~m, 0; x) =
(1 + x)M

MCN

g (~n, t|~m, 0; x) , (5)
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where we define,

g (~n, t|~m, 0; x) ≡ 〈{φ} |〈~n, •| exp
(

L̃(θ)t
)

| {φ}〉|~m, •〉, (6)

L̃(θ) = exp (−θS)L exp (θS), S ≡
∑M

ℓ=1 (|~rℓ, ◦〉〈~rℓ, φ| − |~rℓ, φ〉〈~rℓ, ◦|), and x = tan2 θ. It is

convenient to introduce abbreviations,

〈{φ} |〈~rj, •| ≡

(

M ′

∏

ℓ=1

〈~rℓ, φ|

)

〈~rj, •|, (7)

| {φ}〉|~rj, •〉 ≡

(

M ′

∏

ℓ=1

|~rℓ, φ〉

)

|~rj, •〉, (8)

where M ′ denotes that the site ~rj is excluded in the product.

The inverse transformation is given by applying the Cauchy’s integral theorem,

PN (~n, t|~m, 0) =
1

2πi

∫

d x
1

xN+1
φ(~n, t|~m, 0; x), (9)

where the path of integration encircles the origin on the complex plane.

In the thermodynamic limit of M → ∞ with c = N/M being finite, the right hand side of

Eq. (9) can be calculated by applying the saddle point method, [18–20]

P (~n, t|~m, 0) = g (~n, t|~m, 0; c/(1− c)) . (10)

The survival probability of a pair at time t whose initial separation is given by ~m is defined by,

S (~m, t) =
∑

~n

P (~n, t|~m, 0) . (11)

From Eqs. (6) and (10) the Laplace transform of the survival probability, Ŝ (~m, s) =
∫∞

0
dt exp(−st)S (~m, t), is expressed as,

Ŝ (~m, s) =
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)
| {φ}〉|~m, •〉, (12)

where tan θ∗ =
√

c/(1− c). L̃(θ∗) can be expressed by the sum of the term describing diffusion

and that describing reaction, L̃(θ∗) = L̃rw + Lrc. Even after the transformation the term

describing reaction is not changed, while L̃rw is given by the sum, L̃rw = L̃rw0 + L̃rw1, where
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L̃rw0 describes the transition under the conservation constraint of the number of particles,

[18–20]

L̃rw0 =(1− c)γB
∑

〈n,m〉

(|~rn, •〉〈~rn, φ| · |~rm, φ〉〈~rm, •| − |~rn, •〉〈~rn, •| · |~rm, φ〉〈~rm, φ|)+

cγB
∑

〈n,m〉

(|~rn, •〉〈~rn, ◦| · |~rm, ◦〉〈~rm, •| − |~rn, •〉〈~rn, •| · |~rm, ◦〉〈~rm, ◦|)+

γw
∑

〈n,m〉

(|~rn, ◦〉〈~rn, φ| · |~rm, φ〉〈~rm, ◦| − |~rn, ◦〉〈~rn, ◦| · |~rm, φ〉〈~rm, φ|) , (13)

and L̃rw1 describes the transition where the number of particles is not conserved, [18–20]

L̃rw1 =
√

c(1− c) γB
∑

〈n,m〉

(|~rn, •〉〈~rn, •| · |~rm, φ〉〈~rm, ◦|+

~rn, •〉〈~rn, •| · |~rm, ◦〉〈~rm, φ| − |~rn, •〉〈~rn, φ| · |~rm, ◦〉〈~rm, •|−

|~rn, •〉〈~rn, ◦| · |~rm, φ〉〈~rm, •|) . (14)

By introducing the identity,

1

s− L̃(θ∗)
=

1

s

(

1 +
1

s− L̃(θ∗)
L̃(θ∗)

)

, (15)

Eq, (12) can be rewritten as,

sŜ (~m, s) = 1 +
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)
L̃(θ∗)| {φ}〉|~m, •〉. (16)

In the lowest order approximation, the perturbation term, L̃rw1, is ignored in the nominator

of Eq. (16) and we obtain,

sŜ (~m, s) = 1 +
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)

(

L̃rw0 + L̃rc

)

| {φ}〉|~m, •〉. (17)

By using Eq. (12) and the fact that the number of particles is conserved for both L̃rw0 and L̃rc,

Eq. (17) leads to

sŜ (~m, s)− 1 = γB(1− c)
∑

j

(

Ŝ
(

~m+~bj , s
)

− Ŝ (~m, s)
)

− k (~m) Ŝ (~m, s) , (18)
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where ~m +~bj denotes a nearest neighbor of the site ~m and the sum is taken over all nearest

neighbor sites. By the inverse Laplace transform, the equation for the survival probability of a

pair with initial separation ~m at time t is obtained,

∂

∂t
S (~m, t) = γB(1− c)

∑

j

(

S
(

~m+~bj , t
)

− S (~m, t)
)

− k (~m)S (~m, t) . (19)

In the lowest order approximation, the site blocking effects by inert particles reduces the tran-

sition rate. The transition rate is reduced since jump to a neighboring site is allowed only

when the neighboring site is empty. The vacant probability is 1 − c in the mean field picture.

Equation (19) is a mean-field result in the sense that the reduction factor is given by 1 − c.

The transition rate of the reactant particle decreases linearly with increasing the concentration

of inert particles.

For localized reactions, k (~m) = k0δ~m,~0, the general solution after the Laplace transformation

is obtained as,

Ŝ (~m, s) =
1

s

(

1−
Ĝ0(~m, s)k0

1 + Ĝ0(~0, s)k0

)

, (20)

where the Green’s function,

Ĝ0(~j, s) =
1− ψ̂B(s)

s
U(~j, s), (21)

is given in terms of the lattice Green’s function, [40]

U(~j, s) =
1

(2π)d

∫

· · ·

∫ π

−π

dd~k
exp

(

−i~k ·~j
)

1− ψ̂B(s)λ(~k)
, (22)

where ψ̂B(s) is given by ψ̂B(s) = ΓB(1− c)/(s+ ΓB(1 − c)), the structure factor is defined by

λ(~k) ≡ 1
2d

∑2d
j=1 cos

(

~k ·~bj/b
)

and b denotes the lattice spacing.

The recombination probability of a particle starting from ~m, κ (~m) = 1− limt→∞ S (~m, t), is

obtained as

κ (~m) =
U(~m, 0)

ΓB(1− c)

k0
+ U(~0, 0)

. (23)
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Note that U(~m, 0) for any ~m is independent of the concentration of the inert particles, c,

in the mean-field result. In the limit of perfectly absorbing boundary condition (k0 → ∞),

the recombination probability is independent of the concentration of inert particles. For par-

tially absorbing boundary conditions the recombination probability increases by increasing the

concentration of the inert particles. The escape probability, limt→∞ S (~m, t), which is the prob-

ability of a pair with initial separation ~m surviving at infinite time, is given by,

ϕ (~m) = 1− κ (~m) . (24)

We have derived the simplest results on the survival probability of a geminate pair by ignoring

correlations higher than the two-point correlation between the initial position and the position

at an arbitrary time. In the reaction-diffusion equation thus derived, the presence of the inert

particles only reduces the diffusion coefficient linearly with increasing the concentration of the

inert particles and the diffusion and the reaction do not interfere. In the subsequent section,

we show that the diffusion and the reaction interfere in the presence of inert particles if we

consider higher order correlations. The magnitude of the interference is assessed by comparison

to simulations when the initial distribution of inert particles is uniform. We also examine the

effect of nonuniform initial distribution of inert particles on the escape probability of a geminate

pair.

III. CORRECTION TO THE MEAN FIELD EQUATION

If we ignore correlations higher than two-point correlations, the Bardeen-Herring back cor-

relation is not taken into account. [41] The Bardeen-Herring back correlation takes place when

the reactant and the vacancy sites are exchanged by hopping; after the hopping the transi-

tion probability of the reactant back to the previously occupied site is higher than other sites.

Suppose that a reactant occupies a reactive site after a hopping exchange by a vacant site.

The rate of hopping back to the previous site competes with that of reaction. In this way,

the reaction interferes the correlated diffusion. Interference means that the reaction process

and the diffusion are not statistically independent. In this section, we study the interference
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between the reaction and the correlated diffusion by taking into account the Bardeen-Herring

back correlation. As in the previous section, we assume the initial uniform distribution for the

inert particles.

In mathematical terms, we study the correction to the simple diffusion-reaction equation,

Eq. (19), which is the inverse Laplace transform of Eq. (17). The exact relation, Eq. (16), can

be rewritten as,

sŜ (~m, s) = 1 +
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)

(

L̃rw0 + L̃rc

)

| {φ}〉|~m, •〉+ R̂(~m, s), (25)

where R̂(~m, s) represents the correction to Eq. (17) and is given by,

R̂(~m, s) =
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)
L̃rw1| {φ}〉|~m, •〉. (26)

By noticing L̃rw1 = L̃(θ∗)− L̃rw0 − L̃rc, we can prove the operator identity,

1

s− L̃(θ∗)
=

1

s− L̃(θ∗)
L̃rw1

1

s− L̃rw0 − L̃rc

+
1

s− L̃rw0 − L̃rc

. (27)

Since L̃rw0 and L̃rc conserve the number of • in the bra and ket notations while L̃rw1 does not,

we have

〈{φ} |〈~n, •|
1

s− L̃rw0 − L̃rc

L̃rw1| {φ}〉|~m, •〉 = 0. (28)

When we substitute Eq. (27) into Eq. (26), we note Eq. (28) and the similar relations for the

other terms. By using the relations, Eq. (26) can be expressed as,

R̂(~m, s) =
∑

~n

〈{φ} |〈~n, •|
1

s− L̃(θ∗)
L̃rw1

1

s− L̃rw0 − L̃rc

L̃rw1| {φ}〉|~m, •〉 (29)

=
∑

~n

Ŝ (~n, s) 〈{φ} |〈~n, •|L̃rw1
1

s− L̃rw0 − L̃rc

L̃rw1| {φ}〉|~m, •〉, (30)

where the definition of Ŝ (~n, s) given by Eq. (12) is substituted. By introducing the explicit

expression of L̃rw1 given by Eq. (14), we obtain,

〈{φ} |〈~n, •|L̃rw1
1

s− L̃rw0 − L̃rc

L̃rw1| {φ}〉|~m, •〉 =

γ2Bc(1− c)
∑

r

∑

q

[

G
(

~n•, ~n+~br ◦ |~m•, ~m+~bq◦, s
)

−G
(

~n+~br•, ~n ◦ |~m•, ~m+~bq◦, s
)

−G
(

~n•, ~n+~br ◦ |~m+~bq•, ~m◦, s
)

+G
(

~n +~br•, ~n ◦ |~m+~bq•, ~m◦, s
)]

, (31)
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where we define the four-point correlation function,

G (~ri•, ~rj ◦ |~rk•, ~rℓ◦, s) = 〈{φ} |〈~ri, •|〈~rj, ◦|
1

s− L̃rw0 − L̃rc

| {φ}〉|~rk, •〉|~rℓ, ◦〉 (32)

using the abbreviation,

〈{φ} |〈~ri, •|〈~rj, ◦| ≡

(

M ′′

∏

ℓ=1

〈~rℓ, φ|

)

〈~ri, •|〈~rj, ◦|, (33)

| {φ}〉|~ri, •〉|~rj, ◦〉 ≡

(

M ′′

∏

ℓ=1

|~rℓ, φ〉

)

|~ri, •〉|~rj, ◦〉, (34)

where M ′′ denotes that the site ~ri and the site ~rj are excluded in the product. Eqs. (33)-(34)

represent the state that all sites are vacant except at the site ~ri occupied by the reactant and the

site ~rj occupied by an inert particle. By substituting Eq. (31) and rearranging the summation,

Eq. (25) with Eq. (30) can be expressed as,

sŜ (~m, s)− 1 = γB(1− c)
∑

~n

∑

r

Fc(~n, ~m,~br, s)
(

Ŝ
(

~n+~br, s
)

− Ŝ (~n, s)
)

− k (~m) Ŝ (~m, s) ,

(35)

where the kernel F̂c(~n, ~m,~br, s) is given by

F̂c(~n, ~m,~br, s) = δ~n,~m − γBc
∑

q

[

G
(

~n•, ~n+~br ◦ |~m•, ~m+~bq◦, s
)

−G
(

~n•, ~n+~br ◦ |~m+~bq•, ~m◦, s
)]

.

(36)

By the inverse Laplace transform, the survival probability is shown to satisfy the diffusion-

reaction equation in which the diffusion term is expressed by the time convolution to the

nonlocal kernel, Fc(~n, ~m, t).

The time convolution represents the memory effect originated from the correlation between

the mobile reactant and the inert particles. Reactant motion is correlated with the time depen-

dent arrangements of the inert particles by prohibiting the double occupancy of the lattice sites.

In particular, the site occupied by the reactant is empty just after the hopping of the reactant

and the chance of back transition to the previously occupied site is high. The back transition

probability of the reactant decreases as time proceeds because the empty site appeared by the
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exchange of the reactant with a vacancy can be occupied by another inert particle. The time

dependence of back-jump correlation is the origin of the memory effect.

In principle, the back-jump correlation competes with reaction. Suppose that the reactant

hops to the reactive site. The probability of jump back to the previously occupied site decreases

as the reaction rate increases. Judging from the fact that Eq. (32) includes the operator

describing reaction, L̃rc, the diffusion memory kernel, F̂c(~n, ~m, s), depends on the reaction rate.

In Appendix A, we show that the equation for G
(

~n•, ~n+~br ◦ |~m•, ~m+~bq◦, s
)

includes the

reactive sink term. The interference between reaction and correlated diffusion is taken into

account by the four-point correlation function. In the simplest theory given by the two-point

function, Eq. (19), the interference between reaction and correlated diffusion cannot be taken

into account.

When the reactive sink strength changes according to the distance from the origin, the

diffusion term given in terms of the four-point correlation function depends on the distance from

the origin accordingly. In addition, the presence of the inert particles gives rise to correlation

over distances as a result of the excluded volume interactions between the inert particles and the

reactant. Interference between reaction and the correlated diffusion violates the translational

invariance and the resultant equation is hard to solve as shown in Appendix A. In the next

section, we use numerical simulations to study the interference effect.

When we ignore the interference between reaction and correlated diffusion, the translation

invariance is satisfied for the four-point correlation functions. We introduce the notation that

explicitly shows the translational invariance,

G~br
(~n− ~m,~r, s) = G~n,~br

(~m,~r, s) . (37)

In this case, the time evolution equation for the survival probability is expressed after the

spatial Fourier transform as,

∂

∂t
S
(

~k, t
)

=

∫ t

0

dt1M(k, t− t1)S (k, t1)−
∑

~m

exp
(

i~k · ~m
)

k (~m)S (~m, t) . (38)

In the Laplace domain, M̂(k, s) can be regarded as a self-energy or memory function and is
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expressed as,

M̂(~k, s) = −ΓB(1− c)
(

1− λ(~k)
)

+ γ2Bc(1− c)Tc

(

~k, s
)

, (39)

where the correlations among the inert particles and the reactant as a result of the excluded

volume interactions are included in,

T̂c(~k, s) =
∑

q

∑

r

(

1− exp
(

−i~k ·~br

))

G~br

(

~k,~bq, s
)(

1− exp
(

i~k ·~bq

))

, (40)

G~br

(

~k,~r, s
)

=
∑

~ℓ

exp
(

i~k · ~ℓ
)

G~br

(

~ℓ, ~r, s
)

. (41)

The same form of memory function expressed in terms of the four-point correlation function

was derived by a different method. [42] Here, Eq. (41) is derived for G~br

(

~k,~r, s
)

and the

equation for G~br

(

~k,~r, s
)

is explicitly shown in Appendix B.

In the limit of small wavelength, k → 0, Eq. (39) leads to diffusion equation with a memory

kernel and Eq. (38) can be expressed after the inverse Laplace transformation as,

∂

∂t
S (~m, t) = ΓB(1− c)

∑

j

∫ t

0

dt1fc (t− t1)∇
2S (~m, t1)− k (~m)S (~m, t) , (42)

where the correlation factor in the Laplace domain is given for the hypercubic lattices by,

f̂c(s) = 1− γBc
∑

r

[

G
(a)
~br

(

~br, s
)

−G
(a)
~br

(

−~br, s
)]

, (43)

and the initial condition is S (~m, t = 0) = 1. G
(a)
~br

(

~bq, s
)

is defined by,

G
(a)
~br

(

~bq, s
)

=
∑

~m

〈{φ} |〈~n, •|〈~n+~br, ◦|
1

s− L̃rw0

| {φ}〉|~m, •〉|~m+~bq, ◦〉, (44)

which is independent of the choice of ~n as shown in Appendix C. The equation for G
(a)
~br

(

~bq, s
)

was known and has been studied to obtain the tracer-diffusion coefficient. [18–20] It is shown

in Appendix C. The solution is known and the correlation factor can be expressed as,

f̂c(s) =
1− µ(s)

1− µ(s)
γw + γB(1− 3c)

γw + γB(1− c)

, (45)
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where µ(s) is given by,

µ(s) =
1

(2π)d

∫

· · ·

∫ π

−π

dd~k
2 sin2 k1

(s/γt) + 2d[1− λ(~k)]
, (46)

and γt = γw + γB(1 − c). The equation can be further simplified by ignoring the memory

in the diffusion kernel. In this approximation, the survival probability and the recombination

probability for localized reactions can be obtained respectively from Eq. (20) and Eq. (23) by

introducing the correlation factor into the hopping frequency,

γB → γBfc, (47)

where the correlation factor fc = f̂c(s = 0) is given by

fc =
1− µ

1− µ
γw + γB(1− 3c)

γw + γB(1− c)

, (48)

and µ = µ(s = 0) is known for some lattices. When the hopping frequency are the same for

the inert particles and the reactant, γw = γB, the value of µ is 0.20984 and 1 − (2/π) = 0.363

for the cubic and the square lattice, respectively.

In summary of this section, we study the influence of back-jump correlations on the survival

probability of a geminate pair when the initial distribution of inert particles is uniform. When

the mobile reactant exchanges its position to vacancy, the reactant tends to jump back to its

previously occupied empty site, which is called the Bardeen-Herring back correlation. In this

way, the reactant motion is highly correlated with the time dependent arrangements of the inert

particles. The back-jump correlations interfere with reaction. In principle, the interference can

be taken into account by Eqs. (35)-(36) and Eq. (A3). However, in practice these equations

are hard to solve. If the interference is ignored, the influence of back-jump correlations is taken

into account by Eqs. (38)-(41) and Eq. (B9). By introducing further simplification of ignoring

the memory effect, we obtain Eq. (19) with substitution shown by Eq. (47). In the below,

these results will be compared with those obtained by numerical simulations.
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IV. COMPARISON TO SIMULATION RESULTS

A. Simulation method

In order to see the interference of reaction with the correlated diffusion, we perform Monte-

Carlo numerical simulations. We numerically obtain the probability of geminate reaction in

the presence of site-blocking effects using a kinetic Monte Carlo method. The simulation is

carried out on the simple cubic lattice. One reactant is placed at the lattice site (0, 0, 0)

and assumed to be immobile. The other reactant is initially placed at (j, 0, 0), where j is an

integer and the lattice constant is unity. Inert particles are randomly generated at lattice sites

within the box (0, L − 1)3, where L is the box length. The number of inert particles, N , is

related to their concentration by c = N/L3. Each lattice site may accommodate only one

inert particle or the mobile reactant. We assume that the inert particles belonging to the box

(0, L − 1)3 are periodically replicated in three dimensions, so that the simulation volume is

effectively unlimited. What should be noted is that the spatial periodicity is assumed only for

the distribution of inert particles, and not for the reactants themselves. During the simulation,

both the inert particles and the mobile reactant may perform hops to neighboring lattice sites.

A hop is allowed only when the destination site is not occupied by another inert particle or the

mobile reactant. However, it is allowed for both types of simulated particles to jump to (0, 0, 0).

If the mobile reactant is staying at (0, 0, 0), its reaction with the other reactant is possible. The

procedure of selecting the event that actually takes place at a given simulation step is as follows.

First, we determine all possible hops for the mobile reactant and inert particles. Denote the

numbers of such hops asK and Kin, respectively. If the mobile reactant is staying at a site other

than (0, 0, 0), the total rate of all possible events is calculated as ktot = KγB+Kinγw. Otherwise,

the total rate includes the rate of reaction and is calculated as ktot = KγB +Kinγw + k0. Now,

we determine which event will actually take place. This is decided at random, taking the ratio

of the rate of each possible event to the total rate ktot as the event probability. The above

procedure is repeated as long as either a reaction occurs or the mobile reactant separates to

a large distance rmax from (0, 0, 0). By repeating the simulation for a large number (at least
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2 × 104) of independent runs, we can obtain the reaction probability. The accuracy of the

simulation results depends on two parameters: L and rmax. They should be taken as large as

possible within the practical limits imposed by the available computational time (the demand

on computer time is especially high at large concentrations of inert particles). In the production

runs of the simulation, we assumed L = 10 and rmax = 30. From test calculations carried out

also for other values of these parameters, we found no significant effect of L on the obtained

results. However, a weak dependence of the reaction probability on the value of rmax could be

observed. For example, the reaction probability obtained for j = 3 and c = 0 with rmax = 60

was about 2% higher than that calculated with rmax = 30.

B. Simulation results
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0.3
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k0/ B=106

j=1

j=2

j=3

FIG. 1: Recombination probability of a geminate pair against concentration of inert particles, c, for

k0 → ∞ (In the simulation, k0/γB = 106) and γw/γB = 1. j indicates the initial separation of the

geminate pair. Circles indicate the simulation results. Squares represent the solution of Eqs. (37)-(41)

with Eq. (B9). Dashed lines indicate the mean field results of Eq. (23). The results of Eq. (23) with

the substitution shown by Eq. (47) can be indicated by the same dashed lines.

We investigate quantitatively the factors ignored in deriving simple result, Eq. (19), by

comparison to the more rigorous theoretical results and the simulation results.

16



0.0 0.5 1.0
0.0

0.1

0.2

0.3

 

 

c

k0/ B=1
j=1

j=2

j=3

(a)

0.0 0.5 1.0
0.0

0.1

0.2

0.3

 

 

c

k0/ B=0.5 j=1

j=2

j=3

(b)

FIG. 2: Recombination probability of a geminate pair against the concentration of the inert particles,

c, when γw/γB = 1. (a) k0/γB = 1.0 and (b) k0/γB = 0.5. j indicates the initial separation of the

geminate pair. Circles indicate the simulation results. Squares represent the solution of Eqs. (37)-(41)

with Eq. (B9). The results of Eq. (23) with the substitution shown by Eq. (47) are indicated by the

solid lines. Dashed lines indicate the mean field results of Eq. (23).

One of factors is the Bardeen-Herring back correlation. The Bardeen-Herring back cor-

relation is described by the four-point correlation function given in the Appendix B. The

Bardeen-Herring back correlation is taken into account fully by Eqs. (37)-(41) and partly by

Eq.(48). Equation (48) is obtained from Eqs. (37)-(41) by taking the limit of small wave length,
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k → 0 and ignoring the memory effect. Equation (48) is much simpler than Eqs. (37)-(41) and

the result can be easily obtained from that of Eq. (19) by the substitution shown by Eq. (47).

The numerical way to solve Eqs. (37)-(41) with the additional set of equations are given in the

Appendix B.

The other factor is the effect of the interference between reaction and the Bardeen-Herring

back correlation. The interference is taken into account in the results of numerical simulations

but is ignored in any theoretical results including the most sophisticated one given by the

solution of Eqs. (37)-(41).

The recombination probability in the completely diffusion controlled limit, k0 → ∞, is shown

in Fig. 1. The simulation results are compared to those obtained by the numerical evaluation

of the analytical results based on Eqs. (37)-(41). In the theoretical results the influence of

reaction on the four-point correlation function is ignored. As shown in Fig. 1, the influence

of reaction on the four-point correlation function is very small for all concentrations of inert

particles. In the completely diffusion controlled limit, k0 → ∞, the recombination probability

obtained by the substitution shown by Eq. (48) is independent of the concentration of the

inert particles. This is not a rigorous relation which is obtained by the oversimplification by

taking the limit of small wave length, k → 0, and ignoring the memory effect. However, the

difference between the result of the simplified equation, Eq. (48), and that obtained without

taking the limit of long-wave length, Eqs. (37)-(41), is also very small. Judging from Fig. 1,

such approach is justified for the calculation of the recombination probability.

The presence of interference between reaction and the four-point correlation function is not

restricted in the limit of k0 → ∞. Figure 2 shows the results when the reactivity is finite.

The influence of reaction on the four-point correlation function can be shown as the difference

between the simulation results and those based on Eqs. (37)-(41) and is very small for all

concentrations of the inert particles regardless of the initial distance of a geminate pair. The

difference between the simplified results obtained by the substitution shown by Eq. (48) and

the results of Eqs. (37)-(41) is again negligibly small.

In conclusion of this section, the mean field results of Eq. (19) reproduce the simulation

results regardless of reaction strength and the concentration of the inert particles when the
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density of the inert particles is uniform. The result can be improved by introducing substitution

shown by Eq. (47) into Eq. (19) to take into account the Bardeen-Herring back correlation.

Generalization of Eq. (19) to the case of continuous diffusion and non-uniform distribution of

inert particles is shown in the subsequent sections.

V. CONTINUOUS DIFFUSION

By taking the limit of zero lattice spacing, b → 0, and introducing the volume fraction of

inert particles, cv, Eq. (19) can be expressed as,

∂

∂t
S (r, t) = ~∇ ·DB(1− cv)~∇S (r, t)− k (r)S (r, t) , (49)

where the diffusion constant is defined by, DB = b2ΓB. If the reactants cannot penetrate each

other, the perfectly reflecting boundary condition,

∂

∂r
S (r, t)

∣

∣

∣

∣

r=R

= 0. (50)

is imposed at the contact distance R. For a localized reaction with the intrinsic rate k0 given

by,

k(r) = k0
δ(r −R)

4πR2
, (51)

the recombination probability is obtained as,

κ (r) =
ℓR
r
, (52)

where the radius characterizing the escape of reactant is given by,

ℓR =
R

1 + (4πRDB(1− cv)/k0)
. (53)

For perfectly absorbing boundary conditions, ℓR, and accordingly the recombination probability

become independent of the concentration of the inert particles. For finite reactivity, ℓR and the

recombination probability increase as the concentration of the inert particles increases. The

asymptotic decay of the survival probability is obtained as,

S (r, t) ∼ ϕ(r)

(

1 +
ℓR

√

πDB(1− cv)t

)

, (54)
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where the escape probability ϕ(r) is given by ϕ(r) = 1 − κ(r) as defined in the case of lattice

random walks. The exponent of the power law asymptotic decay of survival probability is not

influenced by the presence of the inert particles whose initial distribution is uniform in space.

VI. INHOMOGENEOUS DISTRIBUTION OF THE INERT PARTICLES

So far, we have assumed the homogeneous distribution of inert particles. Recently, the

influence of inhomogeneous distributions of inert particles on catalytic reactions is taken into

account by applying the theory of nonequilibrium thermodynamics. [43] In this chapter, we

modify it to study geminate reactions in the sea of inert particles. The concentration of inert

particles is denoted by cv. In order to facilitate the thermodynamic argument, we introduce

the pair distribution p(r, t) of finding a pair of reactants at the separation distance r at time t

instead of the survival probability of a pair of reactants at time t whose initial separation is r,

S (r, t). First, we rewrite Eq. (49) in terms of the current ~j,

∂

∂t
p (r, t) + div ·~j = −k (r) p (r, t) , (55)

where the current is expressed by the chemical potential µ, the temperature T and the Onsager

coefficient, L,

~j = −L~∇
µ

T
. (56)

The chemical potential is defined by,

µ =
δF

δp (r, t)
, (57)

where the free energy is related to the entropy by the relation F = −TS and the entropy is

given by,

S = kB

∫

d~r {−p (~r, t) ln p (~r, t)− cv ln cv − (1− p (r, t)− cv) ln (1− p (r, t)− cv)} , (58)

where kB is the Boltzman’s constant. By introducing Eq. (58) into Eq. (57), the chemical

potential can be represented by,

µ = kBT ln {p (~r, t) / (1− p (r, t)− cv)} . (59)
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By substituting Eq. (59) into Eq. (56), Eq. (55) is consistent with Eq. (49) if and only if the

Onsager coefficient is given by,

L =
DB

kB
p (~r, t) (1− p (r, t)− cv) . (60)

In general, the density of the inert particles depends on the position; the volume fraction of

inert particles can be represented by cv(~r, t). The entropy given by Eq. (58) is generalized by

substituting cv by cv(~r, t). By the substitution, the chemical potential can be expressed by,

µ = kBT ln {p (~r, t) / [1− p (r, t)− cv (~r, t)]} . (61)

If the Onsager coefficient is defined in the same way as that defined for the homogeneous density

of the inert particles, it can be written as

L =
DB

kB
p (~r, t) [1− p (r, t)− cv (~r, t)] . (62)

By including the Onsager coefficient into Eq. (56) with the chemical potential, Eq. (61), Eq.

(55) leads to

∂

∂t
p (r, t) = ~∇ ·DB

[

(1− cv (~r, t))~∇p (r, t) + p (r, t) ~∇cv (~r, t)
]

− k (r) p (r, t) , (63)

where the perfectly reflecting boundary condition at R is imposed to express that the reactants

cannot penetrate each other. Equation (63) includes the term which can be interpreted as the

spurious drift. The drift is induced by the spurious potential defined by,

U = −kBT ln [1− cv (r, t)] , (64)

and Eq. (63) can be rewritten in terms of the potential as

∂

∂t
p (r, t) = ~∇ ·DB(1− cv (~r, t))

[

~∇p (r, t) + p (r, t)
~∇U

kBT

]

− k (r) p (r, t) . (65)

As an illustrative example of inhomogeneous distribution of the inert particles, we consider

a steady state where the inert particles are dilute in the vicinity of the immobile reactant.

The degree of hindrance increases by increasing the distance from the immobile reactant. The

simplest density profile of the inert particles may be given by, cv(r, t) = 1 − (R/r). In the
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absence of the reaction term, Eq. (65) becomes formally equivalent to the diffusion equation

for the fractal systems whose fractal dimension and spectral dimension are given by df = 4 and

ds = 8/3, respectively. [44–46] The mean square distance between a pair exhibits subdiffusion,

〈r2(t)〉 ∼ t2/3. [44–46] The subdiffusion kinetics is induced by the excluded volume interactions

among the mobile reactant and the inert particles under the density gradient of the inert

particles. Unfortunately, in the presence of the boundary conditions and the reaction terms,

Eq. (65) is hard to solve analytically. In the following, we obtain the escape probability through

the equation for the survival probability derived from that for the pair distribution p(r, t).

VII. ESCAPE PROBABILITY UNDER THE NON-UNIFORM DENSITY OF THE

INERT PARTICLES

We consider the case that the density of the inert particles is in the steady state and inhomo-

geneous. Both the intrinsic reaction rate and the density of the inert particles are assumed to

be isotropic. The equation for the survival probability is obtained from Eq. (65) by introducing

the adjoint operator as, [47–49]

∂

∂t
S (r, t) = ~∇ ·DB(1− cv (r))~∇S (r, t)−DB

[

~∇cv (r)
]

· ~∇S (r, t)− k (r)S (r, t) , (66)

where ~∇ in the square brackets operates only on cv (r). The perfectly reflecting boundary

condition at r = R is represented by,

∂

∂r
S (r, t)

∣

∣

∣

∣

r=R

= 0. (67)

When the reaction takes place at the reaction radius, R, with the intrinsic rate, k0, [50] the

equation for the escape probability defined by ϕ(r) = limt→∞ S (r, t) in d-dimension is expressed

as,

1

rd−1
exp

(

U

kBT

)

∂

∂r
DB(1− cv (r))r

d−1 exp

(

−
U

kBT

)

∂

∂r
ϕ(r) = 0, (68)
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using the potential defined by Eq. (64). The boundary conditions are given by limr→∞ ϕ(r) = 1

and

SdDB(1− cv (R))
∂

∂r
ϕ (r)

∣

∣

∣

∣

r=R

= k0ϕ(R), (69)

where the surface area of the d-dimensional sphere is given by Sd = dπd/2/Γ((d/2) + 1). Sd

reproduces S2 = 2πR and S3 = 4πR2. The solution of Eq. (68) subject to the above mentioned

boundary conditions is obtained as,

ϕ(r) =

∫ r

R

dr1
1

DB(1− cv (r1))2r
d−1
1

+
Sd

k0

1

(1− cv (R))Rd−1

∫ ∞

R

dr1
1

DB(1− cv (r1))2r
d−1
1

+
Sd

k0

1

(1− cv (R))Rd−1

. (70)

In the limit of perfectly absorbing boundary condition, the escape probability simplifies into,

ϕ(r) =

∫ r

R

dr1
1

(1− cv (r1))2r
d−1
1

/

∫ ∞

R

dr1
1

(1− cv (r1))2r
d−1
1

. (71)

According to Eq. (71), the escape probability is independent of the density of the inert particles

when the density is homogeneous. The result is consistent with that obtained in the lattice

system in Sec. IV. While, when the density of the inert particles is inhomogeneous, the escape

probability in general depends on the density of the inert particles. The escape probability is

lower than that for the homogeneous density of inert particles if cv (r) has a positive slope. The

recombination reaction can be assisted by a positive density gradient of the inert particles. On

the other hand, the recombination can be hindered by a negative density gradient of the inert

particles.

VIII. CONCLUSIONS

In this paper, the time evolution equations for the survival probability of a geminate pair

under the presence of many inert particles are derived and the results are compared to the

simulation results. If we ignore correlations higher than two-point correlations, Eq. (19) is

derived. In this lowest order approximation, the influence of inert particles is taken into account
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by using the mean field expression of the tracer-diffusion constant in the reaction-diffusion

equation.

In the lowest order approximation, the so-called Bardeen-Herring back correlation is not

taken into account. The Bardeen-Herring back correlation is the tendency of the immediate

jump of the diffusing particle back to the previously occupied empty site. We have shown that

the Bardeen-Herring back correlation competes with reaction in deriving a reaction-diffusion

equation. In the reaction-diffusion equation, the transition operator describing random walks

is influenced by the reaction strength while leaving the reaction term unaltered. The reaction-

diffusion equation is very complicated and cannot be solved analytically. By ignoring the

interference between reaction and the Bardeen-Herring back correlation, we obtain the reaction-

diffusion equation given in terms of the improved expression of the tracer-diffusion constant by

taking into account the Bardeen-Herring back correlation. The influence of the excluded volume

interactions is taken into account solely by the tracer-diffusion constant. By comparison of the

theoretical results with the results of numerical simulations the interference between reaction

and the Bardeen-Herring back correlation is shown to be small. The tracer-diffusion constant

decreases by increasing the concentration of the inert particles since the diffusive motion of

reactive species is hindered by the presence of the inert particles. Site blocking effects slow the

decay of the survival probability of a geminate pair in contrast to the acceleration of the decay

found for the target problem under the presence of the excluded volume interactions among

reactants. [22, 23]

Recently, the reaction in microfluid is investigated by the Monte-Carlo simulation. [36]

The simulation results are well approximated by the survival probability of a pair of reactants

obtained from the reaction-diffusion equation similar to Eq. (19): it is suggested to use the

reaction-diffusion equation in which the mutual diffusion coefficient is substituted by the self-

diffusion coefficient of a tagged particle in a see of inert particles. [36] We have shown that

the substitution is an approximation where the interference between reaction and the Bardeen-

Herring back correlation is ignored. Although the slightly different expression of the self-

diffusion coefficient is used in their equation and they study the mean first passage time instead

of the survival probability, the use of the tracer-diffusion constant in the reaction-diffusion
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equation of a geminate pair can be a good and a practical approximation to take into account

the excluded volume interactions among the inert particles and the reactant.

The above conclusions are obtained by assuming the homogeneous distribution of the inert

particles. We also formulate a way to obtain the survival probability of a geminate pair when

the initial distribution of inert particles is inhomogeneous. The reaction yield is increased when

the reaction proceeds in the presence of a positive density gradient of the inert particles which

inhibits the escape of reactants. The effect can be interpreted as a cage effect. Incidentally, the

positive density gradient of the inert particles induces subdiffusion for the particular case we

have studied. Although we need further investigation for the kinetics of the survival probability

in the presence of the density gradient of the inert particles, we show by the escape probabil-

ity that the crowding promotes reactions when the density of the inert particles increases by

increasing the distance from the location of the immobile reactant.

Appendix A: Diffusion kernel

In order to obtain Fc(~n, ~m, t) we need to solve an equation for

G~n,~br
(~m, ~m+ ~r, s) = G

(

~n•, ~n+~br ◦ |~m•, ~m+ ~r◦, s
)

. (A1)

By applying the operator identity,

1

s− L̃rw0 − L̃rc

=
1

s

(

1 +
1

s− L̃rw0 − L̃rc

(

L̃rw0 + L̃rc

)

)

, (A2)

and using the definition given by Eq. (32), we derive,

sG~n,~br
(~m,~r, s)− δ~r,~brδ~n,~m =

∑

α

[

γwG~n,~br

(

~m,~r +~bα, s
)

+ γB(1− c)G~n,~br

(

~m−~bα, ~r +~bα, s
)

−γtG~n,~br
(~m,~r, s)

]

− δ~r,~0
∑

α

[

γwG~n,~br

(

~m,~bα, s
)

+ γB(1− c)G~n,~br

(

~m−~bα,~bα, s
)]

+
∑

α

δ~r,~bα

[

γBcG~n,~br

(

~m+~bα,−~bα, s
)

+ (γt − γBc)G~n,~br

(

~m,~bα, s
)]

− k (~m)G~n,~br
(~m,~r, s)

(A3)
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where

γt = γw + γB(1− c). (A4)

In the presence of k (~m), G~n,~br
(~m,~r, s) does not satisfy the condition of translational invariance

of ~m against ~n.

Appendix B: An equation for G~br

(

~ℓ,~r, s
)

If we ignore k (~m) in the above equation, the translational invariance is satisfied. The

equation for G~br

(

~ℓ, ~r, s
)

is given by,

sG~br

(

~ℓ, ~r, s
)

− δ~r,~brδ~ℓ,~0 =
∑

α

[

γwG~br

(

~ℓ, ~r +~bα, s
)

+ γB(1− c)G~br

(

~ℓ−~bα, ~r +~bα, s
)

−γtG~br

(

~ℓ, ~r, s
)]

− δ~r,~0
∑

α

[

γwG~br

(

~ℓ,~bα, s
)

+ γB(1− c)G~br

(

~ℓ−~bα,~bα, s
)]

+
∑

α

δ~r,~bα

[

γBcG~br

(

~ℓ+~bα,−~bα, s
)

+ (γt − γBc)G~br

(

~ℓ,~bα, s
)]

. (B1)

By applying Fourier transformation,

g~br

(

~k,~h, s
)

=
∑

~ℓ

∑

~r

exp
[

i
(

~k · ~ℓ+ ~h · ~r
)]

G~br

(

~ℓ, ~r, s
)

(B2)

G̃~br

(

~k,~r, s
)

=
∑

~ℓ

exp
[

i~k · ~ℓ
]

G~br

(

~ℓ, ~r, s
)

(B3)

we obtain,

sg~br

(

~k,~h, s
)

= exp
(

i~h ·~br

)

+
∑

α

[

ωt

(

~bα

)

exp
(

−i~h ·~bα

)

− γt

]

g~br

(

~k,~h, s
)

+
∑

α

[

exp
(

−i~h ·~bα

)

ωB

(

~bα

)

c+ γs exp
(

i~h ·~bα

)

− ωt

(

~bα

)]

G̃~br

(

~k,~bα, s
)

, (B4)

where we define,

γs = γt − γBc, (B5)

ωB (~r) = γB exp
(

i~k · ~r
)

, and ωt (~r) = γw + γB(1− c) exp
(

i~k · ~r
)

. (B6)
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It is convenient to introduce the function,

Q(~k,~r, s) =
1

(2π)d

∫

· · ·

∫ π

−π

dd~h
exp

(

−i~h · ~r
)

s+ Γt − Ωt(~k,~h)
, (B7)

where Γt = 2dγt and Ωt(~k,~h) is defined by,

Ωt(~k,~h) = 2d
[

γwλ(~h) + γB(1− c)λ(~k −~h)
]

. (B8)

A closed set of equations can be obtained from,

G̃~br

(

~k,~bq, s
)

= Q(~k,~bq −~br, s) +
∑

α

[

γsQ(~k,~bq −~bα, s) + ωB

(

~bα

)

cQ(~k,~bq +~bα, s)−

ωt

(

~bα

)

Q(~k,~bq, s)
]

G̃~br

(

~k,~bα, s
)

. (B9)

The solution is independent of the position of the reactive sink in this approximation. By

introducing the solution of Eq. (B9) into Eq. (40) and using Eq. (38) and Eq. (39) the

survival probability is obtained after numerical inverse Laplace transformation and inverse

Fourier transformation.

Appendix C: An equation for G
(a)
~br

(~r, s)

An equation for G
(a)
~br

(~r, s) is obtained by applying the operator identity,

1

s− L̃rw0

=
1

s

(

1 +
1

s− L̃rw0

L̃rw0

)

, (C1)

as [18–20]

sG
(a)
~br

(~r, s)− δ~r,~br =
∑

α

γt

[

G
(a)
~br

(

~r +~bα, s
)

−G
(a)
~br

(~r, s)
]

− δ~r,~0
∑

α

γtG
(a)
~br

(

~bα, s
)

+

∑

α

δ~r,~bα

[

γBcG
(a)
~br

(

−~bα, s
)

+ (γt − γBc)G
(a)
~br

(

~bα, s
)]

. (C2)

The solution depends on a position of an inert particle through its relative vector against the

initial position of a mobile reactant.
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