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Abstract

For a field K and directed graph E, we analyze those elements of the Leavitt path
algebra LK(E) which lie in the commutator subspace [LK(E), LK(E)]. This analysis
allows us to give easily computable necessary and sufficient conditions to determine
which Lie algebras of the form [LK(E), LK(E)] are simple, when E is row-finite and
LK(E) is simple.
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Within the past few years, the Leavitt path algebra LK(E) of a graph E with coefficients
in the field K has received much attention throughout both the algebra and analysis commu-
nities. As it turns out, quite often the algebraic properties of LK(E) (for example: simplicity,
chain conditions, primeness, primitivity, stable rank) depend solely on the structure of the
graph E, and not at all on the structure of the field K (to wit, neither on the cardinality of
K, nor on the characteristic of K).

With each associative K-algebra R one may construct the Lie K-algebra (or commutator

K-algebra) [R,R] of R, consisting of all K-linear combinations of elements of the form
xy − yx where x, y ∈ R. Then [R,R] becomes a (non-associative) Lie algebra under the
operation [x, y] = xy − yx for x, y ∈ R. In particular, when R = LK(E), one may construct
and subsequently investigate the Lie algebra [LK(E), LK(E)]. Such an analysis was carried
out in [1] in the case where E is a graph having one vertex and n ≥ 2 loops. In [1, Theorem
3.4] necessary and sufficient conditions on n and the characteristic of K are given which
determine the simplicity of the Lie algebra [LK(E), LK(E)] in this situation. In light of the
comments made above, it is of interest to note that the characteristic of K does indeed play
a role in this result.

There are two main contributions made in the current article. First, we analyze various
elements of LK(E) which lie in the subspace [LK(E), LK(E)], and in particular give in
Theorem 14 necessary and sufficient conditions for when an arbitrary linear combination
of vertices of E (for instance, 1LK(E)) is such. Second, we extend [1, Theorem 3.4] to all
simple Leavitt path algebras arising from row-finite graphs by giving, in Corollary 21 and
Theorem 23, necessary and sufficient conditions on E and K which determine the simplicity
of the Lie K-algebra [LK(E), LK(E)].

In addition, we achieve a number of supporting results which are of independent interest.
In Proposition 6 we give necessary and sufficient conditions which determine when a matrix
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ring over a simple unital algebra has a simple associated Lie algebra. In Example 30 we
present, for each prime p, an infinite class of nonisomorphic simple Leavitt path algebras
whose associated Lie algebras are simple. Moreover, these Leavitt path algebras are not
isomorphic to the examples presented in [1], showing that the current investigation does
indeed extend previously known results. In Theorem 36 we recast Theorem 23 in the context
of K-theory. As a result, we observe in Proposition 39 that for two purely infinite simple
Leavitt path algebras whose Grothendieck groups correspond appropriately, the Lie algebras
associated to these two algebras are either both simple or both non-simple.

1 Lie rings of associative rings

Throughout, the letters R and S will denote associative (but not necessarily unital) rings,
and K will denote a field. The center of the ring R will be denoted by Z(R). Given a ring R
and two elements x, y ∈ R, we let [x, y] denote the commutator xy−yx, and let [R,R] denote
the additive subgroup of R generated by the commutators. Then [R,R] is a (non-associative)
Lie ring, with operation x ∗ y = [x, y] = xy − yx, which we call the Lie ring associated to

R. If R is in addition an algebra over a field K, then [R,R] is a K-subspace of R (since
k[x, y] = [kx, y]), and in this way becomes a (non-associative) Lie K-algebra, which we call
the Lie K-algebra associated to R. Clearly [R,R] = {0} if and only if R is commutative.

For a d×d matrix A ∈ Md(R), trace(A) denotes as usual the sum of the diagonal entries
of A. We will utilize the following fact about traces.

Proposition 1 (Corollary 17 from [2]). Let R be a unital ring, d a positive integer, and

A ∈ Md(R). Then A ∈ [Md(R),Md(R)] if and only if trace(A) ∈ [R,R]. (In particular, any

A ∈ Md(R) of trace zero is necessarily in [Md(R),Md(R)].)

Let L denote a Lie ring (respectively, Lie K-algebra). A subset I of L is called a Lie

ideal if I is an additive subgroup (respectively, K-subspace) of L and [L, I] ⊆ I. The Lie
ring (respectively, Lie K-algebra) L is called simple if [L, L] 6= 0 and the only Lie ideals of
L are 0 and L.

While the following fact is well known, for completeness we include a proof, since we were
unable to find one in the literature.

Lemma 2 (see page 34 of [3]). Let K be a field and L a Lie K-algebra. Then L is simple

as a Lie ring if and only if L is simple as Lie K-algebra.

Proof. We only show that simplicity as a Lie K-algebra implies simplicity as a Lie ring, since
the other direction is trivial. So suppose that I is a nonzero ideal of L, in the Lie ring sense
(i.e., we do not assume that I is a K-subspace of L). We seek to show that I = L. Since
[L, I] ⊆ I, it is easy to see that the additive subgroup [L, I] of L is a Lie ideal (in the Lie
ring sense) of L. Since L is simple, the center of L is zero, which yields that [L, I] 6= {0}.
But for any k ∈ K, i ∈ I, and ℓ ∈ L we have k[ℓ, i] = [kℓ, i] ∈ [L, I], showing that [L, I] is
a K-subspace of L. By the simplicity of L as a Lie algebra, this gives [L, I] = L, and since
[L, I] ⊆ I, we have I = L, as desired.
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As a consequence of Lemma 2, throughout the article we will often use the concise phrase
“L is simple” to indicate that the Lie K-algebra L is simple either as a Lie ring or as a Lie
K-algebra. The following result of Herstein will play a pivotal role in our analysis.

Theorem 3 (Theorem 1.13 from [4]). Let S be a simple ring. Assume either that char(S) 6=
2, or that S is not 4-dimensional over Z(S), where Z(S) is a field. Then U ⊆ Z(S) for any
proper Lie ideal U of the Lie ring [S, S].

Corollary 4. Let R be a simple ring, d a positive integer, and S = Md(R). If Z(R) = 0,
then either the Lie ring [S, S] is simple, or [[S, S], [S, S]] = 0.

Proof. If R is a simple ring, then so is S. The result now follows from Theorem 3 upon
noting that if 0 = Z(R) = Z(S) (where we identify R with its diagonal embedding in S),
then S cannot be 4-dimensional over Z(S).

Lemma 5. Let R be a ring, d ≥ 2 an integer, and S = Md(R). If Z(R) ∩ [R,R] 6= 0, then
the Lie ring [S, S] is not simple.

Proof. Let a ∈ Z(R) ∩ [R,R] be any nonzero element, and let A ∈ S be the matrix diag(a)
(having a as each entry on the main diagonal and zeros elsewhere). Write a =

∑n

i=1[bi, ci]
for some bi, ci ∈ R, and set Bi = diag(bi) and Ci = diag(ci). Then A =

∑n

i=1[Bi, Ci] is
a nonzero element of [S, S]. Since A ∈ Z(S), the additive subgroup generated by A is a
nonzero Lie ideal of [S, S]. This Lie ideal is proper, since it consists of diagonal matrices,
while by Proposition 1, [S, S] contains all matrices having trace zero, and since d ≥ 2, some
such matrices must be non-diagonal. Hence [S, S] is not simple.

Proposition 6. Let be R a simple unital ring, d ≥ 2 an integer, and S = Md(R). Then the

Lie ring [S, S] is simple if and only if the following conditions hold:

(1) 1 6∈ [R,R],
(2) char(R) does not divide d.

Proof. Suppose that [S, S] is simple as a Lie ring. By Lemma 5, we have Z(R)∩ [R,R] = 0,
and hence (1) holds. Now, suppose that char(R) divides d. Then I (the identity) is a
nonzero matrix in Z(S) with trace(I) = 0. By Proposition 1, I ∈ [S, S], and hence the
additive subgroup generated by I is a nonzero Lie ideal of [S, S], which is proper (as in
the proof of Lemma 5, this ideal consists of diagonal matrices, whereas [S, S] does not),
contradicting the simplicity of [S, S]. Thus, if [S, S] is simple, then (1) and (2) must hold.

For the converse, suppose that (1) and (2) hold. It is well-known that Z(R) is a field for
any simple unital ring R. We first note that it could not be the case that 2 = char(S) (=
char(R)), Z(S) is a field, and S has dimension 4 over Z(S). For in that case, since d ≥ 2,
we necessarily have d = 2 and R = Z(R) = Z(S) (where R is identified with its diagonal
embedding in S). But, this would violate (2). Thus, by Theorem 3, given a proper Lie ideal
U ⊆ [S, S], we have U ⊆ Z(S) = Z(R). Now, let A ∈ U be any matrix. Since, A ∈ Z(S),
we have A = diag(a) for some a ∈ Z(R). By Proposition 1, trace(A) = da ∈ [R,R] ∩ Z(R),
which, by (2), implies that a ∈ [R,R]∩Z(R) (since d is a nonzero element of the field Z(R)).
By (1), this can only happen if a = 0. Hence A = 0, and therefore also U = 0, showing that
[S, S] contains no nontrivial ideals. It remains only to show that [[S, S], [S, S]] 6= 0. But, by
Proposition 1, the matrix units e12 and e21 are elements of [S, S], and hence 0 6= e11 − e22 =
[e12, e21] ∈ [[S, S], [S, S]].
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2 Commutators in Leavitt path algebras

We now take up the first of our two main goals: to describe various elements of a Leavitt
path algebra LK(E) which may be written as sums of commutators. The main result of
this section is Theorem 14, where we give (among other things) necessary and sufficient
conditions for the specific element 1LK(E) to be so written.

We start by defining the relevant algebraic and graph-theoretic structures. A directed

graph E = (E0, E1, r, s) consists of two sets E0, E1 and functions r, s : E1 → E0. The
word graph will always mean directed graph. The elements of E0 are called vertices and the
elements of E1 edges. The sets E0 and E1 are allowed to be of arbitrary cardinality. A path

µ in E is a finite sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n−1;
in this case, s(µ) := s(e1) is the source of µ, r(µ) := r(en) is the range of µ, and n is the
length of µ. We view the elements of E0 as paths of length 0. We denote by Path(E) the
set of all paths in E (including paths of length 0). If µ = e1 . . . en is a path in E, and if
v = s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle based at v. A cycle
consisting of one edge is called a loop. A graph which contains no cycles is called acyclic; a
graph for which |s−1(v)| is finite for all v ∈ E0 is called row-finite; a graph for which both
E0 and E1 are finite sets is called a finite graph. A vertex v for which |s−1(v)| = 0 is called
a sink, while a vertex v for which 1 ≤ |s−1(v)| < ∞ is called a regular vertex. An edge e is
an exit for a path µ = e1 . . . en if there exists i (1 ≤ i ≤ n) such that s(e) = s(ei) and e 6= ei.
We say that a vertex v connects to a vertex w in case there is a path p ∈ Path(E) for which
s(p) = v and r(p) = w.

Of central focus in this article are Leavitt path algebras.

Definition 7. Let K be a field, and let E be a graph. The Leavitt path K-algebra LK(E)
of E with coefficients in K is the K-algebra generated by a set {v | v ∈ E0}, together with
a set of variables {e, e∗ | e ∈ E1}, which satisfy the following relations:

(V) vw = δv,wv for all v, w ∈ E0 (i.e., {v | v ∈ E0} is a set of orthogonal idempotents),
(E1) s(e)e = er(e) = e for all e ∈ E1,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,
(CK1) e∗e′ = δe,e′r(e) for all e, e

′ ∈ E1,
(CK2) v =

∑

{e∈E1|s(e)=v} ee
∗ for every regular vertex v ∈ E0. �

We let r(e∗) denote s(e), and we let s(e∗) denote r(e). If µ = e1 . . . en ∈ Path(E), then
we denote by µ∗ the element e∗n . . . e

∗
1 of LK(E). An expression of this form is called a ghost

path.
Many well-known algebras arise as the Leavitt path algebra of a graph. For example, the

classical Leavitt K-algebra LK(n) for n ≥ 2; the full d × d matrix algebra Md(K) over K;
and the Laurent polynomial algebra K[x, x−1] arise, respectively, as the Leavitt path algebra
of the “rose with n petals” graph Rn (n ≥ 2); the oriented line graph Ad having d vertices;
and the “one vertex, one loop” graph R1 pictured here.

Rn = •v e1hh

e2

ss

e3

��

en

RR... Ad = •v1
e1 // •v2 •vd−1

ed−1 // •vd R1 = •v xhh
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Along the way we will utilize the Cohn path algebra of a graph, defined here.

Definition 8. Let K be a field, and let E be a graph. The Cohn path K-algebra CK(E) of
E with coefficients in K is the K-algebra generated by a set {v | v ∈ E0}, together with a
set of variables {e, e∗ | e ∈ E1}, which satisfy the relations (V), (E1), (E2), and (CK1) of
Definition 7.

We let N ⊆ CK(E) denote the ideal of CK(E) generated by elements of the form
v −

∑

{e∈E1:s(e)=v} ee
∗, where v ∈ E0 is a regular vertex. �

In particular, we may view the Leavitt path algebra LK(E) as the quotient algebra

LK(E) ∼= CK(E)/N.

If E is a graph for which E0 is finite, then
∑

v∈E0 v is the multiplicative identity, viewed
either as an element of LK(E) or CK(E). If E0 is infinite, then both LK(E) and CK(E) are
nonunital. Identifying v with v∗ for each v ∈ E0, one can show that

{pq∗ | p, q ∈ Path(E) such that r(p) = r(q)}

is a basis for CK(E).

Lemma 9. Let K be a field, and let E be a graph. Let y = v −
∑

{e∈E1:s(e)=v} ee
∗ ∈ N ⊆

CK(E), where v ∈ E0 is a regular vertex.

(1) If p ∈ Path(E) \ E0, then yp = 0.
(2) If q ∈ Path(E) \ E0, then q∗y = 0.

Proof. (1) Write p = fp′ for some f ∈ E1 and p′ ∈ Path(E). If s(f) 6= v then yp = 0
immediately. On the other hand, if s(f) = v then f ∈ {e ∈ E1 : s(e) = v}, in which case,
by (CK1), we get

yp = (v −
∑

{e∈E1:s(e)=v}

ee∗)fp′ = fp′ − ff ∗fp′ = fp′ − fp′ = 0.

The proof of (2) is similar.

Definition 10. Let K be a field, let E be a graph, and write E0 = {vi | i ∈ I}. Let K(I)

denote the direct sum of copies of K indexed by I. For each i ∈ I, let ǫi ∈ K(I) denote the
element with 1 ∈ K as the i-th coordinate and zeros elsewhere. Let T : CK(E) → K(I) be
the K-linear map which acts as

T (pq∗) =

{

ǫi if q∗p = vi
0 otherwise

on the aforementioned basis of CK(E). �

We note that T (vi) = ǫi for all i ∈ I, and for any p ∈ Path(E) \ E0, T (p) = 0 = T (p∗).

Lemma 11. Let K be a field, let E be graph, and write E0 = {vi | i ∈ I}. Let T denote

the K-linear transformation given in Definition 10. Then for all x, y ∈ CK(E) we have

T (xy) = T (yx). In particular, T (z) = 0 for every z ∈ [CK(E), CK(E)].
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Proof. Since T is K-linear, it is enough to establish the result for x and y that are elements
of the basis for CK(E) described above. That is, we may assume that x = pq∗ and y = tz∗,
for some p, q, t, z ∈ Path(E) with r(p) = r(q) = vi ∈ E0 and r(t) = r(z) = vj ∈ E0. Now,
pq∗tz∗ = 0 unless either t = qh or q = th for some h ∈ Path(E). Also, tz∗pq∗ = 0 unless
either p = zg or z = pg for some g ∈ Path(E). Let us consider the various resulting cases
separately.

Suppose that t = qh for some h ∈ Path(E) but z 6= pg for all g ∈ Path(E). Then
pq∗tz∗ = pq∗qhz∗ = phz∗ and T (pq∗tz∗) = T (phz∗) = 0, since z 6= ph. Also, as mentioned
above, tz∗pq∗ = 0 unless p = zg for some g ∈ Path(E). If tz∗pq∗ = 0, then we have
T (tz∗pq∗) = 0 = T (pq∗tz∗). Therefore, let us suppose that p = zg for some g ∈ Path(E).
Then tz∗pq∗ = tz∗zgq∗ = tgq∗ = qhgq∗, and hence T (tz∗pq∗) = T (qhgq∗) = 0 unless
hg ∈ E0. But, hg ∈ E0 can happen only if h = g ∈ E0, in which case p = z (since
p 6= 0), contradicting our assumption. Therefore, p 6= zg for all g ∈ Path(E), and we have
T (pq∗tz∗) = 0 = T (tz∗pq∗).

Let us next suppose that t = qh and z = pg for some g, h ∈ Path(E). Then pq∗tz∗ =
pq∗qhg∗p∗ = phg∗p∗, and hence T (pq∗tz∗) = ǫj if g = h and 0 otherwise. Also, tz∗pq∗ =
qhg∗p∗pq∗ = qhg∗q∗, and so T (tz∗pq∗) = ǫj if g = h and 0 otherwise. Thus, in either case we
have T (pq∗tz∗) = T (tz∗pq∗).

Now suppose that t 6= qh for all h ∈ Path(E) but z = pg for some g ∈ Path(E). Then
pq∗tz∗ = pq∗tg∗p∗ 6= 0 only if q = th for some h ∈ Path(E). Hence T (pq∗tz∗) 6= 0 only if z = p
and q = t, which is not the case, by hypothesis. Similarly, tz∗pq∗ = tg∗p∗pq∗ = tg∗q∗, and
hence T (tz∗pq∗) 6= 0 only if t = qg, which is not the case. Thus, T (tz∗pq∗) = 0 = T (pq∗tz∗).

Finally, suppose that t 6= qh and z 6= pg for all g, h ∈ Path(E). Then pq∗tz∗ = 0 unless
q = th for some h ∈ Path(E), and T (pq∗tz∗) = 0 unless q = th and p = zh for some
h ∈ Path(E). Similarly, T (tz∗pq∗) = 0 unless q = th and p = zh for some h ∈ Path(E).
Thus, let us suppose that q = th and p = zh for some h ∈ Path(E). In this case,

T (pq∗tz∗) = T (zhh∗t∗tz∗) = T (zhh∗z∗) = vi = T (thh∗t∗) = T (tz∗zhh∗t∗) = T (tz∗pq∗),

as desired.
Therefore, in all cases T (pq∗tz∗) = T (tz∗pq∗), proving the first claim of the lemma. The

second follows trivially.

Definition 12. Let E be a graph, and write E0 = {vi | i ∈ I}. If vi is a regular vertex, for
all j ∈ I let aij denote the number of edges e ∈ E1 such that s(e) = vi and r(e) = vj . In
this situation, define

Bi = (aij)j∈I − ǫi ∈ Z(I).

On the other hand, let
Bi = (0)j∈I ∈ Z(I),

if vi is not a regular vertex. �

Lemma 13. Let K be a field, let E be a graph, and write E0 = {vi | i ∈ I}. Then for all

w ∈ N ⊆ CK(E) we have T (w) ∈ spanK{Bi | i ∈ I} ⊆ K(I).
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Proof. It is sufficient to show that for any generator

yi = vi −
∑

{e∈E1:s(e)=vi}

ee∗

of N and any two elements c, c′ of CK(E), we have T (cyic
′) ∈ spanK{Bi | i ∈ I} ⊆ K(I).

But, by Lemma 11, T (cyic
′) = T (c′cyi), and hence we only need to show that T (cyi) ∈

spanK{Bi | i ∈ I} for any c ∈ CK(E). Further, since T is K-linear, we may assume that
c = pq∗ belongs to the basis for CK(E) described above; in particular, p, q ∈ Path(E). Again
using Lemma 11, we have T (cyi) = T (pq∗yi) = T (q∗yip). But, by Lemma 9, the expression
q∗yip is zero unless q∗ = vi = p. So the only nonzero term of the form T (cyi) is

T (cyi) = T (yi) = T (vi −
∑

{e∈E1:s(e)=vi}

ee∗) = ǫi − (aij)j∈I = −Bi,

since for each e ∈ E1 with s(e) = vi and r(e) = vj , we have T (ee∗) = ǫj . Clearly −Bi ∈
spanK{Bi | i ∈ I}, and we are done.

Here now is our first goal, achieved.

Theorem 14. Let K be a field, let E be a graph, and write E0 = {vi | i ∈ I}. For each

i ∈ I let Bi denote the element of K(I) given in Definition 12, and let {ki | i ∈ I} ⊆ K be a

set of scalars where ki = 0 for all but finitely many i ∈ I. Then

∑

i∈I

kivi ∈ [LK(E), LK(E)] if and only if (ki)i∈I ∈ spanK{Bi | i ∈ I}.

In particular, if E0 is finite (so that LK(E) is unital), then

1LK(E) ∈ [LK(E), LK(E)] if and only if (1, . . . , 1) ∈ spanK{Bi | i ∈ I} ⊆ K(I).

Proof. First, suppose that (ki)i∈I ∈ spanK{Bi | i ∈ I}. For all i, j ∈ I such that vi is regular,
let eij1 , . . . , e

ij
aij

be all the edges e ∈ E1 satisfying s(e) = vi and r(e) = vj . (We note that
there are only finitely many such elements.) Then for each regular vi we have

∑

j∈I

aij
∑

l=1

[eijl , (e
ij

l )
∗] =

∑

j∈I

aij
∑

l=1

eijl (e
ij

l )
∗ −

∑

j∈I

aij
∑

l=1

(eijl )
∗eijl

=
∑

{e∈E1:s(e)=vi}

ee∗ −
∑

j∈I

aij
∑

l=1

(eijl )
∗eijl = vi −

∑

j∈I

aijvj .

By hypothesis we can write (ki)i∈I =
∑

i∈I tiBi for some ti ∈ K (all but finitely many of
which are 0). We may assume that ti = 0 whenever vi is not regular, since in that case Bi

is zero. Thus,
∑

i∈I

kivi = −
∑

i∈I

ti(vi −
∑

j∈I

aijvj),

which is an element of [LK(E), LK(E)], by the above computation.
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For the converse, viewing LK(E) as CK(E)/N , we shall show that if
∑

i∈I kivi + N ∈
[LK(E), LK(E)] for vi ∈ E0 and ki ∈ K satisfying the hypotheses in the statement, then
(ki)i∈I ∈ spanK{Bi | i ∈ I}. Now, if

∑

i∈I kivi + N ∈ [LK(E), LK(E)], then there are
elements xj , yj ∈ CK(E) such that

∑

i∈I kivi =
∑

j [xj , yj] + w for some w ∈ N . Using
Lemma 11 we get

(ki)i∈I = T (
∑

i∈I

kivi) = T (
∑

j

[xj , yj]) + T (w) = 0 + T (w) = T (w).

Lemma 13 then gives the desired result.
To prove the final claim, write E0 = {v1, . . . , vm} and use the previously noted fact that

1LK(E) = v1 + · · ·+ vm.

We conclude this section by identifying additional elements of [LK(E), LK(E)].

Lemma 15. Let K be a field, E a graph, and p, q ∈ Path(E) \ E0 any paths.

(1) If s(p) 6= r(p), then p, p∗ ∈ [LK(E), LK(E)].
(2) If p 6= qx and q 6= px for all x ∈ Path(E) with s(x) = r(x), then pq∗ ∈ [LK(E), LK(E)].
(3) We have pp∗ ∈ [LK(E), LK(E)] if and only if r(p) ∈ [LK(E), LK(E)].

Proof. (1) If s(p) 6= r(p), then r(p)p = 0 = p∗r(p), and hence p = [p, r(p)] and p∗ = [r(p), p∗].
(2) We have [p, q∗] = pq∗ − q∗p. If p 6= qx and q 6= px for all x ∈ Path(E), then q∗p = 0,

and hence pq∗ ∈ [LK(E), LK(E)]. Let us therefore suppose that either p = qx or q = px
for some x ∈ Path(E) such that s(x) 6= r(x). Thus [p, q∗] = pq∗ − x in the first case, and
[p, q∗] = pq∗ − x∗ in the second. In either situation, (1) implies that pq∗ ∈ [LK(E), LK(E)].

(3) We note that [p, p∗] = pp∗ − p∗p = pp∗ − r(p), from which the desired conclusion
follows.

Question 16. Do there exist a graph E, a field K, and a cycle p ∈ Path(E) for which

p ∈ [LK(E), LK(E)]?

3 Simple Leavitt path algebras and associated Lie

algebras

In this section we apply the results proved in Section 2 together with Herstein’s result
(Theorem 3) in order to achieve our second main goal, namely, to identify the fields K and
row-finite graphs E for which the simple Leavitt path algebra LK(E) yields a simple Lie
algebra [LK(E), LK(E)]. We begin by recording two basic facts about Leavitt path algebras
and recalling two previously known results.

Lemma 17. (1) There is up to isomorphism exactly one simple commutative Leavitt path

algebra, specifically the algebra K ∼= LK(•).
(2) The only K-division algebra of the form LK(E) for some graph E is K ∼= LK(•).

Proof. (1) We establish the contrapositive: we show that a simple Leavitt path algebra
LK(E) corresponding to any graph E other than • is not commutative, by showing that
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[LK(E), LK(E)] 6= {0}. If E were to contain no edges then E would consist of (at least
two) isolated vertices, and thus would not be simple. So we may assume E contains at
least one edge. If E contains an edge e for which s(e) 6= r(e) then by Lemma 15(1) 0 6=
e ∈ [LK(E), LK(E)]. On the other hand, if E contains no such edges, then all edges in E
are loops. In this situation, by the simplicity of LK(E), there can only be one vertex v in
E. If there are at least two distinct loops p, q based at v then by Lemma 15(2) 0 6= pq∗ ∈
[LK(E), LK(E)]. In case there is only one loop p at v, we have LK(E) ∼= K[x, x−1], which is
not simple, completing the proof.

(2) Since a division algebra has no zero divisors, in order for LK(E) to be such a ring,
the graph E must have exactly one vertex and at most one loop at that vertex. But as noted
previously, the Leavitt path algebra of the graph with one vertex and one loop is isomorphic
to K[x, x−1], and thus is not a division ring. The result follows.

We call a simple Leavitt path algebra LK(E) nontrivial in case LK(E) 6∼= K.

Lemma 18. Let K be a field, E a graph, and R = LK(E) a Leavitt path algebra. If

[R,R] 6= 0, then [[R,R], [R,R]] 6= 0. In particular, if R is a nontrivial simple Leavitt path

algebra, then [[R,R], [R,R]] 6= 0.

Proof. First, suppose there is an edge e ∈ E1 that is not a loop. Then r(e) 6= s(e), implying
that e∗r(e) = 0 and r(e)e = 0. Thus

[[r(e), e∗], [e, r(e)]] = [e∗, e] = r(e)− ee∗ ∈ [[R,R], [R,R]]

is nonzero, since (r(e)− ee∗)r(e) = r(e) 6= 0. Next, suppose that v is a vertex at which two
distinct loops e and f are based. Then

[[e, e∗], [e, f ]] = [ee∗ − v, ef − fe] = ef − efee∗ + fe2e∗ ∈ [[R,R], [R,R]]

is nonzero, since multiplying this element on the left by f ∗ and on the right by e yields the
nonzero element e2. Thus the only remaining configuration for E not covered by these two
cases is that E is a disjoint union of isolated vertices together with vertices at which there
is exactly one loop. But in this case LK(E) is a direct sum of copies of K with copies of
K[x, x−1], so is commutative, and hence [R,R] = 0.

The second statement follows immediately from Lemma 17(1).

We note that the first statement of Lemma 18 does not hold for an arbitrary ring R.
For instance, let R be the associative (unital or otherwise) ring generated by the following
generators and relations

〈x, y : x3 = y3 = xy2 = yx2 = x2y = y2x = xyx = yxy = 0〉.

Then [x, y] 6= 0, and hence [R,R] 6= 0. But, all the nonzero commutators in R are integer
multiples of [x, y], and hence [[R,R], [R,R]] = 0.

A description of the row-finite graphs E and fields K for which LK(E) is simple is given
in [5, Theorem 3.11]. Using [6, Lemma 2.8] to streamline the statement of this result, we
have
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Theorem 19 (The Simplicity Theorem). Let K be a field and E a row-finite graph. Then

LK(E) is simple if and only if E has the following two properties.

(1) Every vertex v of E connects to every sink and every cycle of E.

(2) Every cycle of E has an exit.

Specifically, we note that the simplicity of the algebra LK(E) is independent of K. (This
is intriguing, especially in light of the fact that we will show below that the simplicity of the
corresponding Lie algebra [LK(E), LK(E)] does indeed depend on K.) The following is due
to Aranda Pino and Crow.

Theorem 20 (Theorem 4.2 from [7]). Let K be a field, and let E be a row-finite graph for

which LK(E) is a simple Leavitt path algebra.

(1) If LK(E) is unital, then Z(LK(E)) = K.

(2) If LK(E) is not unital, then Z(LK(E)) = 0.

This result immediately allows us to identify simple Lie algebras arising from graphs
having infinitely many vertices.

Corollary 21. Let K be a field, and let E be a row-finite graph, having infinitely many

vertices, for which LK(E) is a simple Leavitt path algebra. Then [LK(E), LK(E)] is a simple

Lie K-algebra.

Proof. This follows by combining Theorem 20(2) with Corollary 4 and Lemma 18, since if
E has infinitely many vertices, then LK(E) is not unital.

On the other hand, we get the following result for graphs having finitely many vertices.

Corollary 22. Let K be a field, and let E be a finite graph for which LK(E) is a nontrivial

simple Leavitt path algebra. Then the Lie K-algebra [LK(E), LK(E)] is simple if and only if

1 = 1LK(E) /∈ [LK(E), LK(E)].

Proof. If 1 ∈ [LK(E), LK(E)], then the K-subspace 〈1〉 it generates is a nonzero Lie ideal of
[LK(E), LK(E)]. Since 〈1〉 is a commutative subalgebra of LK(E), by Lemma 18 we have
that 〈1〉 is proper. Thus, [LK(E), LK(E)] is not simple.

Conversely, if 1 /∈ [LK(E), LK(E)], then we have Z(LK(E)) ∩ [LK(E), LK(E)] = 0, by
Theorem 20(1). Since LK(E) is nontrivial simple, [[LK(E), LK(E)], [LK(E), LK(E)]] 6= 0,
by Lemma 18. Further, it cannot be the case that char(K) = 2 and LK(E) is 4-dimensional
over Z(LK(E)) = K, for then we would have LK(E) ∼= M2(K) (it is well-known that a
4-dimensional central simple K-algebra that is not a division ring must be of this form,
and LK(E) is not a division ring by Lemma 17(2)). But, if char(K) = 2, then 1 ∈
[M2(K),M2(K)] by Proposition 1, contradicting our assumption. Thus, the desired con-
clusion now follows from Theorem 3.

Now combining Theorem 14 with Corollary 22, we have achieved our second main goal.

Theorem 23. Let K be a field, and let E be a finite graph for which LK(E) is a nontrivial

simple Leavitt path algebra. Write E0 = {v1, . . . , vm}, and for each 1 ≤ i ≤ m let Bi

be as in Definition 12. Then the Lie K-algebra [LK(E), LK(E)] is simple if and only if

(1, . . . , 1) 6∈ spanK{B1, . . . , Bm}.
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Here is the first of many consequences of Theorem 23.

Corollary 24. Let K be a field, let E be a finite graph for which LK(E) is a nontrivial simple

Leavitt path algebra, and let d be a positive integer. Write E0 = {v1, . . . , vm}, and for each

1 ≤ i ≤ m let Bi be as in Definition 12. Then the Lie K-algebra [Md(LK(E)),Md(LK(E))]
is simple if and only if (1, . . . , 1) 6∈ span{B1, . . . , Bm} and char(K) does not divide d.

Proof. The d = 1 case is precisely Theorem 23 (noting of course that char(K) never divides
1), while the d ≥ 2 case follows by applying Proposition 6 (and Lemma 2) to Theorem 14.

Since for any positive integer d and any graph E, theK-algebraMd(LK(E)) is isomorphic
to a Leavitt path algebra with coefficients in K (see e.g. [8, Proposition 9.3]), the result of
previous corollary can in fact be established using Theorem 23 directly. In particular, we
get as a consequence of Corollary 24 a second, more efficient proof of the aforementioned
previously-established result for matrix rings over Leavitt algebras.

Corollary 25 (Theorem 3.4 from [1]). Let K be a field, let n ≥ 2 and d ≥ 1 be integers,

and let LK(n) be the Leavitt K-algebra. Then the Lie K-algebra [Md(LK(n)),Md(LK(n))]
is simple if and only if char(K) divides n− 1 and does not divide d.

Proof. Let E be the graph having one vertex v1 and n loops. Then LK(n) ∼= LK(E). We
have B1 = n − 1 ∈ K, and hence 1 6∈ span{B1} = (n − 1)K if and only if char(K) divides
n− 1. The result now follows from Corollary 24.

Throughout the remainder of the article, in a standard pictorial description of a directed
graph E, a (n) written on an edge connecting two vertices indicates that there are n edges
connecting those two vertices in E. We now recall (the germane portion of) [9, Lemma 5.1].

Lemma 26. For integers d ≥ 2 and n ≥ 2 we denote by Ed
n the following graph.

•v1
(d−1) // •v2 (n)jj

Then for any field K, we have Md(LK(n)) ∼= LK(E
d
n).

We now present a number of examples which highlight the computational nature of
Theorem 23. We start by offering an additional proof of the d ≥ 2 case of Corollary 25, one
which makes direct use of the Leavitt path algebra structure of Md(LK(n)).

Additional proof of the d ≥ 2 case of Corollary 25: We establish the contrapositive.
Using the isomorphism LK(E

d
n)

∼= Md(LK(n)) of Lemma 26, it is clear that the graph Ed
n

yields B1 = (−1, d − 1) and B2 = (0, n − 1). So by Theorem 23 we seek properties of
the integers n, d and field K for which (1, 1) ∈ span{B1, B2}, i.e., for which the equation
k1(−1, d− 1) + k2(0, n− 1) = (1, 1) has solutions in K ×K. Equating coordinates, we seek
to solve

−k1 = 1
(d− 1)k1 + (n− 1)k2 = 1

with k1, k2 ∈ K. So k1 = −1, which gives −(d− 1) + k2(n− 1) = 1, and thus d = k2(n− 1).
In case n − 1 6= 0 in K (i.e., char(K) does not divide n− 1), this obviously has a solution,
while in case n − 1 = 0 in K, the equation has a solution precisely when d = 0 in K, i.e.,
when char(K) divides d. �
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Remark 27. The following observations follow directly from Corollary 25.
(1) The Lie K-algebra [Md(LK(n)),Md(LK(n))] is not simple when char(K) = 0.
(2) Let P = {p1, p2, . . . , pt} be a finite set of primes, and let q = p1p2 · · · pt ∈ N. Then

the Lie K-algebra [LK(q + 1), LK(q + 1)] is simple if and only if char(K) ∈ P.
(3) The Lie K-algebra [LK(2), LK(2)] is not simple for all fields K. �

The observations made in Remark 27 naturally suggest the following question: are there
graphs E for which [LK(E), LK(E)] is a simple Lie K-algebra for all fields K? We construct
such an example now.

Example 28. Let E be the graph pictured below.

•v1
** **

•v2oo

��
•v3

**

==
z

z
z

z
z

z
z

z

•v4oo

By Theorem 19, we see that LK(E) is simple for any field K.

For this graph E we have B1 = (0, 1, 0, 0), B2 = (1,−1, 0, 1), B3 = (0, 1, 0, 0), and B4 =
(0, 0, 1,−1). We determine whether or not (1, 1, 1, 1) is in spanK{B1, B2, B3, B4}. Upon
building the appropriate augmented matrix of the resulting linear system, and using one
row-swap and two add-an-integer-multiple-of-one-row-to-another operations, we are led to
the matrix















1 −1 1 0
... 1

0 1 0 0
... 1

0 0 0 1
... 1

0 0 0 0
... 1















.

Clearly the final row indicates that the system has no solution, regardless of the characteristic
of K. So by Theorem 23, the Lie algebra [LK(E), LK(E)] is simple for any field K. �

In particular, Example 28 together with Remark 27(1) show that Theorem 23 indeed
enlarges the previously-known class of Leavitt path algebras for which the associated Lie
algebra is simple.

We consider a complementary question arising from Remark 27(2). Specifically, for a
given set of primes we produce a graph for which the Lie algebras corresponding to the
associated Leavitt path algebras over specified fields are not simple.

Example 29. Let P = {p1, p2, . . . , pt} be a finite set of primes, let q = p1p2 · · ·pt ∈ N, and
let Eq be the graph pictured below.

•v1
** **

•v2oo

��
•v3

**

==
z

z
z

z
z

z
z

z

•v4oo (q+1)
tt

By Theorem 19, we see that LK(Eq) is simple for any integer q and any field K.
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For this graph Eq we have B1 = (0, 1, 0, 0), B2 = (1,−1, 0, 1), B3 = (0, 1, 0, 0), and
B4 = (0, 0, 1, q). We determine whether or not (1, 1, 1, 1) is in spanK{B1, B2, B3, B4}. Upon
building the appropriate augmented matrix of the resulting linear system, and using a se-
quence of row-operations analogous to the sequence used in Example 28, we are led to the
matrix















1 −1 1 0
... 1

0 1 0 0
... 1

0 0 0 1
... 1

0 0 0 0
... −q















.

Clearly the final row indicates that the system has solutions precisely when char(K) divides
q, i.e., when char(K) ∈ P. So by Theorem 23, the Lie K-algebra [LK(Eq), LK(Eq)] is not
simple if and only if char(K) ∈ P. �

We finish this section by presenting, for each prime p, an infinite collection of graphs E
for which the Lie K-algebra [LK(E), LK(E)] is simple, where K is any field of characteristic
p.

Example 30. For any prime p, and any pair of integers u ≥ 2, v ≥ 2, consider the graph
E = Eu,v,p pictured below.

•(puv+1)
%%

(u)
((
• (1+u)ee

(pu)

hh

By Theorem 19, LK(E) is a simple algebra for any field K. Here we have B1 = (puv, u) and
B2 = (pu, u). Then (1, 1) ∈ span{B1, B2} precisely when we can solve the system

puvk1 + puk2 = 1
uk1 + uk2 = 1

for k1, k2 ∈ K. But clearly the first equation has no solutions in any field of characteristic
p. Thus, by Theorem 23, the Lie algebra [LK(E), LK(E)] is simple when char(K) = p, as
desired. �

In the next section we will show that the Leavitt path algebras associated to the graphs
in Example 30 are pairwise non-isomorphic, as well as show that none of these algebras is
isomorphic to an algebra of the form Md(LK(n)).

4 Lie algebras arising from purely infinite simple

Leavitt path algebras

We begin this final section by recasting Theorem 14 in terms of matrix transformations.
For a finite graph E having m vertices {v1, ..., vm} we let AE denote the adjacency matrix

of E; this is the m × m matrix whose (i, j) entry is ai,j, the number of edges e for which
s(e) = vi and r(e) = vj. Let 1

m
denote the m × 1 column vector (1, 1, ..., 1)t (t denotes
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‘transpose’). Let BE denote the matrix At
E − Im. In case E has no sinks, BE is the matrix

whose i-th column is the element Bi ofK
m, as in Definition 12. Let BKm

E denote the K-linear
transformation Km → Km induced by left multiplication by BE . (For the remainder of the
article we view elements of Km as columns.) Then, using the notation of Theorem 14, it is
clear that (1, 1, ..., 1) ∈ span{B1, ..., Bm} if and only if 1

m
∈ Im(BKm

E ).

Definition 31. For a finite graph E having m vertices we define the matrix ME by setting

ME = Im −At
E .

(In particular, if E has no sinks, then ME = −BE .) For any field K we let MKm

E denote the
K-linear transformation Km → Km induced by left multiplication by ME . �

Remark 32. Trivially, when E has no sinks, 1
m
∈ Im(BKm

E ) if and only if 1
m
∈ Im(MKm

E ).
�

Remark 33. Let E be a finite graph without sinks, and write E0 = {v1, . . . , vm}. Also,
let K be a field with prime subfield k. Then (1, . . . , 1) ∈ spanK{B1, . . . , Bm} if and only if
(1, . . . , 1) ∈ spank{B1, . . . , Bm} if and only if (1, . . . , 1)t is in the image of Mkm

E : km → km.
This is because solving MEx = (1, . . . , 1)t for x ∈ Km amounts to putting into row-echelon
form, via row operations, the matrix resulting from adjoining (1, . . . , 1)t as a column to ME .
Since the original matrix ME is integer-valued, all of the entries in the resulting row-echelon
form matrix will come from the prime subfield. Thus in all germane computations we may
work over the prime subfield k of K. �

The graphs E for which LK(E) is a purely infinite simple algebra have played a central
role in the development of the subject of Leavitt path algebras. (See e.g. [9] for the germane
definitions, as well as an overview of the main properties of these algebras.) The key result
here is

Theorem 34 (The Purely Infinite Simplicity Theorem). Let K be a field, and let E be a

finite graph. Then LK(E) is purely infinite simple if and only if E has the following three

properties.

(1) Every vertex v of E connects to every cycle of E.

(2) Every cycle of E has an exit.

(3) E has no sinks.

In other words, using Theorem 19, LK(E) is purely infinite simple if and only if LK(E) is

simple and E has no sinks.

As the Leavitt algebras LK(n) (and matrices over them) provide the basic examples
of purely infinite simple algebras, it is natural in light of Corollary 25 to investigate the
Lie algebras associated to purely infinite simple Leavitt path algebras. We do so for the
remainder of this article, and in the process provide a broader context for the results of
Section 3. We start with the following interpretation of Theorem 23, which follows from
Remark 32.

Corollary 35. Let K be a field, and let E be a finite graph for which LK(E) is purely infinite

simple. Then the Lie K-algebra [LK(E), LK(E)] simple if and only if 1
m
6∈ Im(MKm

E ).
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For any positive integer j we denote the cyclic group of order j by Zj , while for any prime
p we denote the field of p elements by Fp.

We assume from now on that E is a finite graph with m vertices, and we often denote ME

simply byM for notational convenience. The matrixME has historically played an important
role in the structure of purely infinite simple Leavitt path algebras (see [9, Section 3] for more
information). For instance, since M is integer-valued, we may view left multiplication by M
as a linear transformation from Zm to Zm (we denote this by MZm

). Then the Grothendieck
group of LK(E) is given by

K0(LK(E)) ∼= Coker(MZm

) = Zm/Im(MZm

).

(It is of interest to note that the Grothendieck group of LK(E) is independent of the field
K.) Moreover, under this isomorphism,

[1LK(E)] in K0(LK(E)) corresponds to 1
m
+ Im(MZm

) in Coker(MZm

).

For an abelian group G (written additively), an element g ∈ G, and positive integer j
we say g is j-divisible in case there exists g′ ∈ G for which g = g′ + · · ·+ g′ (j summands).
We use the previous discussion to give another interpretation of Theorem 23 in the case of
purely infinite simple Leavitt path algebras. We thank Christopher Smith for pointing out
this connection.

Theorem 36. Let K be a field, let E be a finite graph for which LK(E) is purely infinite

simple, and let M = ME denote the matrix of Definition 31.

(1) Suppose that char(K) = 0. Then the Lie K-algebra [LK(E), LK(E)] is simple if and

only if 1
m
+ Im(MZm

E ) has infinite order in Coker(MZm

E ); that is, if and only if [1LK(E)] has
infinite order in K0(LK(E)).

(2) Suppose that char(K) = p 6= 0. Then the Lie K-algebra [LK(E), LK(E)] is simple if

and only if 1
m

+ Im(MZm

E ) is not p-divisible in Coker(MZm

E ); that is, if and only if [1LK(E)]
is not p-divisible in K0(LK(E)).

Proof. (1) We show that 1
m
∈ Im(MKm

E ) if and only if 1
m

+ Im(MZm

E ) has finite order in
Coker(MZm

E ), from which the statement follows by Corollary 35. By Remark 33, we need
only show that 1

m
∈ Im(MQm

E ) if and only if 1
m
+Im(MZm

E ) has finite order in Coker(MZm

E ).
If 1

m
+ Im(MZm

E ) has finite order in Coker(MZm

E ), then there exists a positive integer n for
which (n, n, . . . , n)t ∈ Im(MZm

E ), i.e., there exists z = (z1, z2, . . . , zm)
t ∈ Zm for which MEz =

(n, n . . . , n)t. But then q = ( z1
n
, z2
n
, . . . , zm

n
)t ∈ Qm satisfies MEq = 1

m
. Conversely, if 1

m
∈

Im(MQm

E ) then there exists ( z1
n1
, z2
n2
, . . . , zm

nm
)t ∈ Qm with 1

m
= ME(

z1
n1
, z2
n2
, . . . , zm

nm
)t. If n =

n1n2 · · ·nm, then (n, n, · · · , n)t = ME(
z1n
n1

, z2n
n2

, . . . , zmn
nm

)t ∈ Im(MZm

E ), so that (1, 1, · · · , 1)t+

Im(MZm

E ) has finite order (indeed, order at most n) in Coker(MZm

E ).
(2) Analogously to the proof of part (1), we show that 1

m
∈ Im(MKm

E ) if and only if
1
m

+ Im(MZm

E ) is p-divisible in Coker(MZm

E ). By Remark 33, we need only show that 1
m
∈

Im(M
Fm
p

E ) if and only if 1
m
+ Im(MZm

E ) is p-divisible in Coker(MZm

E ). If 1
m
+ Im(MZm

E ) is p-
divisible in Coker(MZm

E ), then there exists z ∈ Zm for which pz+Im(MZm

E ) = 1
m
+Im(MZm

E ),
i.e., 1

m
− pz ∈ Im(MZm

E ). Reducing this integer-valued system of equations mod p yields

1
m
∈ Im(M

Fm
p

E ). The converse can be proved by reversing this argument.
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Remark 37. Let K be a field such that char(K) = p 6= 0. For Leavitt path algebras of
the form R = Md(LK(n)), we have that K0(R) ∼= Zn−1. Moreover, under this isomorphism
the element [1R] in K0(R) corresponds to the element d in Zn−1. Thus the p-divisibility of
[1R] in K0(R) is equivalent to the p-divisibility of d in Zn−1, which in turn is equivalent to
determining whether or not the linear equation px ≡ d (mod n − 1) has solutions. It is
elementary number theory that this equation has solutions precisely when g.c.d.(p, n − 1)
divides d. So by Theorem 36(2), we see that [Md(LK(n)),Md(LK(n))] is simple precisely
when g.c.d.(p, n − 1) does not divide d, which is clearly equivalent to the statement “p
divides n− 1 and p does not divide d”. This observation provides a broader framework for
Corollary 25. �

Now continuing our description of various connections between the matrix M = ME and
the Grothendieck group of LK(E), we recall from [9, Section 3] that the matrix M can be
utilized to determine the specific structure of K0(LK(E)) in case LK(E) is purely infinite
simple, as follows. Given any integer-valued d × d matrix C, we say that a matrix C ′ is
equivalent to C in case C ′ = PCQ for some matrices P,Q which are invertible in Md(Z).
Computationally, this means C ′ can be produced from C by a sequence of row swaps and
column swaps, by multiplying any row or column by −1, and by using the operation of
adding a Z-multiple of one row (respectively, column) to another row (respectively, column).
The Smith normal form of an integer-valued d× d matrix C is the diagonal matrix which is
equivalent to C, having diagonal entries α1, ..., αd, such that, for all nonzero αi (1 ≤ i < d),
αi divides αi+1. (The Smith normal form of a matrix always exists. Also, if we agree to
write any zero entries last, and to make all αi nonnegative, then the Smith normal form of a
matrix is unique.) By the discussion in [9, Section 3], for a graph E satisfying the properties
of Theorem 34, if α1, ..., αd are the diagonal entries of the Smith normal form of ME , then

K0(LK(E)) ∼= Zα1
⊕ · · · ⊕ Zαd

.

With this observation, we have the tools to justify a statement made in the previous section.

Example 38. Consider again the graphs E = Eu,v,p arising in Example 30. Then

AE =

(

puv + 1 u
pu 1 + u

)

, so that ME = I2 − At
E =

(

−puv −pu
−u −u

)

.

The Smith normal form of ME is easily computed to be

(

u 0
0 pu(v − 1)

)

,

implying that K0(LK(E)) ∼= Zu ⊕ Zpu(v−1). Thus for any choices of u, u′ and v, v′ where
u 6= u′ we have that LK(Eu,v,p) 6∼= LK(Eu′,v′,p). Furthermore, since u ≥ 2 and v ≥ 2, none of
these algebras has cyclic K0, so that none of these algebras is isomorphic to an algebra of
the form Md(LK(n)), as claimed. �

We conclude the article with an observation about the K-theory of Leavitt path algebras
in the context of their associated Lie algebras. An open question in the theory of Leavitt
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path algebras is the Algebraic Kirchberg Phillips Question: If E and F are finite graphs
with the property that LK(E) and LK(F ) are purely infinite simple, and K0(LK(E)) ∼=
K0(LK(F )) via an isomorphism which takes [1LK(E)] to [1LK(F )], are LK(E) and LK(F )
necessarily isomorphic? (See [10] for more details.) Since the property “the Lie K-algebra
[R,R] is simple” is an isomorphism invariant of a K-algebra R, one might look for a possible
negative answer to the Algebraic Kirchberg Phillips Question in this context. However, by
Theorem 36, we get immediately the following result.

Proposition 39. Let E and F be finite graphs, and K any field. Suppose that LK(E) and
LK(F ) are purely infinite simple, and that K0(LK(E)) ∼= K0(LK(F )) via an isomorphism

which takes [1LK(E)] to [1LK(F )]. Then the Lie K-algebra [LK(E), LK(E)] is simple if and

only if the Lie K-algebra [LK(F ), LK(F )] is simple.
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