Jordan higher all-derivable points in triangular algebras ${ }^{1}$

Jinping Zhao ${ }^{2}$, Jun zhu 3
Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China

Abstract

Let \mathcal{T} be a triangular algebra. We say that $D=\left\{D_{n}: n \in N\right\} \subseteq L(\mathcal{T})$ is a Jordan higher derivable mapping at G if $D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right)$ for any $S, T \in \mathcal{T}$ with $S T=G$. An element $G \in \mathcal{T}$ is called a Jordan higher all-derivable point of \mathcal{T} if every Jordan higher derivable linear mapping $D=\left\{D_{n}\right\}_{n \in N}$ at G is a higher derivation. In this paper, under some mild conditions on \mathcal{T}, we prove that some elements of \mathcal{T} are Jordan higher all-derivable points. This extends some results in [6] to the case of Jordan higher derivations.

AMS Classification:16W25, 47B47
Keywords : Jordan higher all-derivable point; triangular algebra; Jordan higher derivable linear mapping at G

1. Introduction and preliminaries

Let \mathcal{A} be a ring (or algebra) with the unit I. An additive linear mapping δ from \mathcal{A} into itself is called a derivation if $\delta(S T)=\delta(S) T+S \delta(T)$ for any $S, T \in \mathcal{A}$ and is said to be a Jordan derivation if $\delta(S T+T S)=\delta(S) T+S \delta(T)+\delta(T) S+T \delta(S)$ for any $S, T \in \mathcal{A}$. We say that a mapping δ is Jordan derivable at a given point $G \in \mathcal{A}$ if $\delta(S T+T S)=\delta(S) T+S \delta(T)+\delta(T) S+T \delta(S)$ for any $S, T \in \mathcal{A}$ with $S T=G$, and G is called a Jordan all-derivable point of \mathcal{A} if every Jordan derivable mapping at G is a derivation. We say that $D=\left\{D_{n}\right\} \subseteq L(\mathcal{A})$ is a Jordan higher derivable mapping at G if $D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right)$ for any $S, T \in \mathcal{A}$ with $S T=G$. An element $G \in \mathcal{A}$ is called a Jordan higher all-derivable point of \mathcal{A} if every Jordan higher derivable linear mapping $D=\left\{D_{n}\right\}$ at G is a higher derivation. There have been a number of papers on the study of conditions under which derivations of operator algebras can be completely determined by the action on some sets of operators. In [3], W. Jing showed that I is a Jordan all-derivable point of $\mathcal{B}(\mathcal{H})$ with \mathcal{H} is a Hilbert space. In [7], J. Zhu proved that every invertible operator in nest algebra is an all-derivable point in the strong operator topology. Also it was showed that every element in the algebra of all upper triangular matrices is a Jordan all-derivable point by Z. Sha and J. Zhu in [6].

With the development of derivation, higher derivation has attracted much attention of mathematicians as an active subject of research in algebras. In [4] Z. Xiao and F. Wei showed that any Jordan higher derivation on a triangular algebra is a higher derivation. In this paper we will extend the conclusion of [6] to the case of Jordan higher derivations.

Let \mathcal{A} and \mathcal{B} be two unital rings (or algebras) with the unit I_{1}, I_{2}, and \mathcal{M} be a unital $(\mathcal{A}$, \mathcal{B}-bimodule, which is faithfull as a left \mathcal{A}-module and as a right \mathcal{B}-module. The ring(or algebra)

[^0]\[

\mathcal{T}=\left\{\left[$$
\begin{array}{cc}
a & m \\
0 & b
\end{array}
$$\right]: a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\right\}
\]

under the usual matrix operations is said to be a triangular algebra. We mainly proved that 0 and $\left[\begin{array}{cc}I_{1} & X_{0} \\ 0 & I_{2}\end{array}\right]$ are Jordan higher all-derivable points for any given point $X_{0} \in \mathcal{M}$.

2. Jordan higher all-derivable points in ring algebras

In this section, we always assume that the characteristics of \mathcal{A} and \mathcal{B} are not 2 and 3 , and for any $X \in \mathcal{A}, Y \in \mathcal{B}$, there are some integers n_{1}, n_{2} such that $n_{1} I_{1}-X$ and $n_{2} I_{2}-Y$ are invertible. The following two theorems are the main results in this paper.

Theorem 2.1 Let $D=\left(D_{n}\right)_{n \in N}$ be a family of additive linear mappings on \mathcal{T} that $D_{0}=i D_{\mathcal{T}}$ (identical mapping on \mathcal{T}). If D is Jordan higher derivable at 0 , then D is a higher derivation.
Proof. For any $T=\left[\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right] \in \mathcal{T}$, we can write

$$
D_{n}\left(\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]\right)=\left[\begin{array}{cl}
\delta_{n}^{11}(X)+\varphi_{n}^{11}(Y)+\tau_{n}^{11}(Z) & \delta_{n}^{12}(X)+\varphi_{n}^{12}(Y)+\tau_{n}^{12}(Z) \\
0 & \delta_{n}^{22}(X)+\varphi_{n}^{22}(Y)+\tau_{n}^{22}(Z)
\end{array}\right],
$$

where $\delta_{n}^{i j}: \mathcal{A} \rightarrow \mathcal{A}_{i j}, \varphi_{n}^{i j}: \mathcal{M} \rightarrow \mathcal{A}_{i j}, \tau_{n}^{i j}: \mathcal{B} \rightarrow \mathcal{A}_{i j}, 1 \leq i \leq j \leq 2$ are additive maps with $\mathcal{A}_{11}=\mathcal{A}, \mathcal{A}_{12}=\mathcal{M}, \mathcal{A}_{22}=\mathcal{B}$. It follows from the fact $D_{0}=i D_{\mathcal{T}}$ that when $i=j=1, \delta_{0}^{i j}=i \delta_{\mathcal{A}}$, else $\delta_{0}^{i j}=0$; when $i=1, j=2, \varphi_{0}^{i j}=i \varphi_{\mathcal{M}}$, else $\varphi_{0}^{i j}=0$; when $i=j=2, \tau_{0}^{i j}=i \tau_{\mathcal{B}}$, else $\tau_{0}^{i j}=0$.

$$
\left.\begin{array}{rl}
\text { We set } S=\left[\begin{array}{ll}
0 & W \\
0 & 0
\end{array}\right] \text { and } T=\left[\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right] \text { for every } X \in \mathcal{A}, W \in \mathcal{M} \text {. Then } S T=0 \text { and } \\
T S= & {\left[\begin{array}{cc}
0 & X W \\
0 & 0
\end{array}\right] . \text { So }} \\
& {\left[\begin{array}{cc}
\varphi_{n}^{11}(X W) & \varphi_{n}^{12}(X W) \\
0 & \varphi_{n}^{22}(X W)
\end{array}\right]=D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right)} \\
= & \sum_{i+j=n}\left(\left[\begin{array}{cc}
\varphi_{i}^{11}(W) & \varphi_{i}^{12}(W) \\
0 & \varphi_{i}^{22}(W)
\end{array}\right]\left[\begin{array}{cc}
\delta_{j}^{11}(X) & \delta_{j}^{12}(X) \\
0 & \delta_{j}^{22}(X)
\end{array}\right]\right. \\
& \left.+\left[\begin{array}{cc}
\delta_{i}^{11}(X) & \delta_{i}^{12}(X) \\
0 & \delta_{i}^{22}(X)
\end{array}\right]\left[\begin{array}{cc}
\varphi_{j}^{11}(W) & \varphi_{j}^{12}(W) \\
0 & \varphi_{j}^{22}(W)
\end{array}\right]\right) \\
= & \sum_{i+j=n}\left[\begin{array}{c}
\varphi_{i}^{11}(W) \delta_{j}^{11}(X)+\delta_{i}^{11}(X) \varphi_{j}^{11}(W) \\
0
\end{array} \quad \varphi_{i}^{11}(W) \delta_{j}^{12}(X)+\delta_{i}^{11}(X) \varphi_{j}^{12}(W)\right. \\
+\varphi_{i}^{12}(W) \delta_{j}^{22}(X)+\delta_{i}^{12}(X) \varphi_{j}^{22}(W) \\
\varphi_{i}^{22}(W) \delta_{j}^{22}(X)+\delta_{i}^{22}(X) \varphi_{j}^{22}(W)
\end{array}\right] .
$$

This implies that

$$
\begin{gather*}
\varphi_{n}^{11}(X W)=\sum_{i+j=n}\left(\varphi_{i}^{11}(W) \delta_{j}^{11}(X)+\delta_{i}^{11}(X) \varphi_{j}^{11}(W)\right) \tag{1}\\
\varphi_{n}^{12}(X W)=\sum_{i+j=n}\left(\varphi_{i}^{11}(W) \delta_{j}^{12}(X)+\delta_{i}^{11}(X) \varphi_{j}^{12}(W)+\varphi_{i}^{12}(W) \delta_{j}^{22}(X)+\delta_{i}^{12}(X) \varphi_{j}^{22}(W)\right), \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\varphi_{n}^{22}(X W)=\sum_{i+j=n}\left(\varphi_{i}^{22}(W) \delta_{j}^{22}(X)+\delta_{i}^{22}(X) \varphi_{j}^{22}(W)\right) \tag{3}
\end{equation*}
$$

for any $X \in \mathcal{A}, W \in \mathcal{M}$. One obtains that

$$
\begin{align*}
\varphi_{n}^{11}(W) & =\sum_{i+j=n}\left(\varphi_{i}^{11}(W) \delta_{j}^{11}\left(I_{1}\right)+\delta_{i}^{11}\left(I_{1}\right) \varphi_{j}^{11}(W)\right) \tag{4}\\
\varphi_{n}^{22}(W) & =\sum_{i+j=n}\left(\varphi_{i}^{22}(W) \delta_{j}^{22}\left(I_{1}\right)+\delta_{i}^{22}\left(I_{1}\right) \varphi_{j}^{22}(W)\right) \tag{5}
\end{align*}
$$

by taking $X=I_{1}$ in Eq. (1) and Eq. (3). Now we prove the fact that $\varphi_{n}^{11}(W)=0$ and $\varphi_{n}^{22}(W)=0$ by induction on n. When $n=0$, it is easily verified that $\varphi_{0}^{11}(W)=0$ and $\varphi_{0}^{22}(W)=0$ from the characterizations of φ_{0}^{11} and φ_{0}^{22}. When $n=1, \varphi_{1}^{11}(W)=0$ and $\varphi_{1}^{22}(W)=0$ can be obtained by the proof in [6, Theorem 2.1]. We assume that $\varphi_{m}^{11}(W)=0$ and $\varphi_{m}^{22}(W)=0$ for all $1 \leq m<n$. In fact, by the Eq. (4) and $\delta_{0}^{11}=i \delta_{\mathcal{A}}$, we have $\varphi_{n}^{11}(W)=\varphi_{n}^{11}(W)+\varphi_{n}^{11}(W)=2 \varphi_{n}^{11}(W)$. Thus $\varphi_{n}^{11}(W)=0$. Similarly combining Eq. (5) with the fact that $\delta_{0}^{22}=0$, we can get $\varphi_{n}^{22}(W)=0$ for any $W \in M$ and $n \in N$. For any $X \in \mathcal{A}, W \in \mathcal{M}$ and $Y \in \mathcal{B}$, setting $S=\left[\begin{array}{cc}0 & W \\ 0 & Y\end{array}\right]$ and $T=\left[\begin{array}{cc}X & 0 \\ 0 & 0\end{array}\right]$, then $S T=0, T S=\left[\begin{array}{cc}0 & X W \\ 0 & 0\end{array}\right]$. One gets

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & \varphi_{n}^{12}(X W) \\
0 & 0
\end{array}\right]=D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right) } \\
= & \sum_{i+j=n}\left(\left[\begin{array}{cc}
\tau_{i}^{11}(Y) & \varphi_{i}^{12}(W)+\tau_{i}^{12}(Y) \\
0 & \tau_{i}^{22}(Y)
\end{array}\right]\left[\begin{array}{cc}
\delta_{j}^{11}(X) & \delta_{j}^{12}(X) \\
0 & \delta_{j}^{22}(X)
\end{array}\right]\right. \\
& \left.+\left[\begin{array}{cc}
\delta_{i}^{11}(X) & \delta_{i}^{12}(X) \\
0 & \delta_{i}^{22}(X)
\end{array}\right]\left[\begin{array}{cc}
\tau_{j}^{11}(Y) & \varphi_{j}^{12}(W)+\tau_{j}^{12}(Y) \\
0 & \tau_{j}^{22}(Y)
\end{array}\right]\right) .
\end{aligned}
$$

Hence the following three equations hold

$$
\begin{gather*}
\sum_{i+j=n}\left(\tau_{i}^{11}(Y) \delta_{j}^{11}(X)+\delta_{i}^{11}(X) \tau_{j}^{11}(Y)\right)=0 \tag{6}\\
\sum_{i+j=n}\left(\tau_{i}^{22}(Y) \delta_{j}^{22}(X)+\delta_{i}^{22}(X) \tau_{j}^{22}(Y)\right)=0 \tag{7}\\
\varphi_{n}^{12}(X W)=\sum_{i+j=n}\left(\tau_{i}^{11}(Y) \delta_{j}^{12}(X)+\varphi_{i}^{12}(W) \delta_{j}^{22}(X)+\tau_{i}^{12}(Y) \delta_{j}^{22}(X)\right. \tag{8}\\
+\delta_{i}^{11}(X) \varphi_{j}^{12}(W)+\delta_{i}^{11}(X) \tau_{j}^{12}(Y)+\delta_{i}^{12}(X) \tau_{j}^{22}(Y)
\end{gather*}
$$

for any $X \in \mathcal{A}, W \in \mathcal{M}$. One can see that

$$
\begin{equation*}
\sum_{i+j=n}\left(\tau_{i}^{11}(Y) \delta_{j}^{11}\left(I_{1}\right)+\delta_{i}^{11}\left(I_{1}\right) \tau_{j}^{11}(Y)\right)=0 \tag{9}
\end{equation*}
$$

by taking $X=I_{1}$ in Eq. (6). Using Eq. (9) and induction, one has $\tau_{n}^{11}(Y)=0$ for every $n \in N$. Similarly taking $Y=I_{2}$ in Eq. (7), by inducting and using the fact that $\tau_{0}^{22}(Y)=0$, we get $\delta_{n}^{22}(X)=0$ for every $n \in N$ and $X \in \mathcal{A}$.

We can obtain that

$$
\begin{equation*}
\sum_{i+j=n}\left(\delta_{i}^{11}(X) \tau_{j}^{12}(Y)+\delta_{i}^{12}(X) \tau_{j}^{22}(Y)\right)=0 \tag{10}
\end{equation*}
$$

by $\delta_{i}^{22}(X)=0, \tau_{i}^{11}(Y)=0$ and taking $W=0$ in Eq. (8).
By Eq. (2) and the fact that $\delta_{n}^{22}(X)=0, \varphi_{n}^{11}(W)=0, \varphi_{n}^{22}(W)=0$ and $\varphi_{0}^{12}=i \varphi_{\mathcal{M}}$, we have

$$
\begin{equation*}
\varphi_{n}^{12}(X W)=\sum_{i+j=n} \delta_{i}^{11}(X) \varphi_{j}^{12}(W) \tag{11}
\end{equation*}
$$

We claim that $\delta=\left\{\delta_{n}^{11}: n \in N\right\}$ is a higher derivation on \mathcal{A}. In fact, we know that δ_{1} is a derivation by Theorem 2.1 in [6]. It follows that $\delta_{1}^{11}\left(X_{1} X_{2}\right)=\delta_{1}^{11}\left(X_{1}\right) X_{2}+X_{1} \delta_{1}^{11}\left(X_{2}\right)$ for any X_{1}, X_{2} in \mathcal{A}. Now we assume that $\delta_{m}^{11}\left(X_{1} X_{2}\right)=\sum_{i+j=m} \delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{11}\left(X_{2}\right)$ for any $1 \leq m<n$ with $m \in N$. Summing up Eq. (11) and $\varphi_{0}^{12}=i \varphi_{M}$, we get

$$
\begin{align*}
& \varphi_{n}^{12}\left(X_{1}\left(X_{2} W\right)\right)=\sum_{i+j=n} \delta_{i}^{11}\left(X_{1}\right) \varphi_{j}^{12}\left(X_{2} W\right) \\
= & \sum_{i+e=n} \delta_{i}^{11}\left(X_{1}\right) \delta_{e}^{11}\left(X_{2}\right) W+\sum_{i+e+k=n, k>0} \delta_{i}^{11}\left(X_{1}\right) \delta_{e}^{11}\left(X_{2}\right) \varphi_{k}^{12}(W) \tag{12}
\end{align*}
$$

for any $X_{1}, X_{2} \in \mathcal{A}$ and $W \in \mathcal{M}$. On the other hand

$$
\begin{align*}
& \varphi_{n}^{12}\left(\left(X_{1} X_{2}\right) W\right)=\sum_{i+j=n, j>0} \delta_{i}^{11}\left(X_{1} X_{2}\right) \varphi_{j}^{12}(W)+\delta_{n}^{11}\left(X_{1} X_{2}\right) W \\
= & \sum_{e+k+j=n, j>0} \delta_{e}^{11}\left(X_{1}\right) \delta_{k}^{11}\left(X_{2}\right) \varphi_{j}^{12}(W)+\delta_{n}^{11}\left(X_{1} X_{2}\right) W \tag{13}
\end{align*}
$$

for any $X_{1}, X_{2} \in \mathcal{A}$ and $W \in \mathcal{M}$. Combining Eq. (12) with Eq. (13), we get $\left[\delta_{n}^{11}\left(X_{1} X_{2}\right)-\right.$ $\left.\sum_{e+i=n} \delta_{i}^{11}\left(X_{1}\right) \delta_{e}^{11}\left(X_{2}\right)\right] W=0$. Since M is faithful, we get $\delta_{n}^{11}\left(X_{1} X_{2}\right)=\sum_{i+j=n} \delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{11}\left(X_{2}\right)$, i.e. $\delta=\left\{\delta_{n}^{11}: n \in N\right\}$ is a higher derivation.

Letting $S=\left[\begin{array}{cc}0 & -X^{-1} W Y \\ 0 & Y\end{array}\right]$ and $T=\left[\begin{array}{cc}X & W \\ 0 & 0\end{array}\right]$ for any $Y \in \mathcal{B}, W \in \mathcal{M}$, and invertible $X \in \mathcal{A}$. Then $S T=T S=0$. So we get

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right) } \\
= & \sum_{i+j=n}\left(\left[\begin{array}{cc}
0 & -\varphi_{i}^{12}\left(X^{-1} W Y\right)+\tau_{i}^{12}(Y) \\
0 & \tau_{i}^{22}(Y)
\end{array}\right]\left[\begin{array}{cc}
\delta_{j}^{11}(X) & \delta_{j}^{12}(X)+\varphi_{j}^{12}(W) \\
0 & 0
\end{array}\right]\right. \\
& \left.+\left[\begin{array}{cc}
\delta_{i}^{11}(X) & \delta_{i}^{12}(X)+\varphi_{i}^{12}(W) \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -\varphi_{j}^{12}\left(X^{-1} W Y\right)+\tau_{j}^{12}(Y) \\
0 & \tau_{j}^{22}(Y)
\end{array}\right]\right)
\end{aligned}
$$

The above equation implies that

$$
\begin{equation*}
0=\sum_{i+j=n}\left[\delta_{i}^{11}(X)\left(-\varphi_{j}^{12}\left(X^{-1} W Y\right)+\tau_{j}^{12}(Y)\right)+\left(\delta_{i}^{12}(X)+\varphi_{i}^{12}(W)\right) \tau_{j}^{22}(Y)\right] \tag{14}
\end{equation*}
$$

By replacing W by λW in the above equation, dividing the equation by λ and letting $\lambda \rightarrow+\infty$, we obtain that

$$
\begin{equation*}
0=\sum_{i+j=n}\left[-\delta_{i}^{11}(X) \varphi_{j}^{12}\left(X^{-1} W Y\right)+\varphi_{i}^{12}(W) \tau_{j}^{22}(Y)\right] \tag{15}
\end{equation*}
$$

So we can get

$$
\begin{equation*}
0=\sum_{i+j=n}\left[-\delta_{i}^{11}\left(I_{1}\right) \varphi_{j}^{12}(W Y)+\varphi_{i}^{12}(W) \tau_{j}^{22}(Y)\right] \tag{16}
\end{equation*}
$$

by setting $X=I_{1}$ in the above equation. Since $\delta=\left\{\delta_{n}^{11}: n \in N\right\}$ is a higher derivation, $\delta_{n}^{11}\left(I_{1}\right)=0$ when $n \geq 1$. It follows from Eq. (16) that

$$
\begin{equation*}
\varphi_{n}^{12}(W Y)=\sum_{i+j=n} \varphi_{i}^{12}(W) \tau_{j}^{22}(Y) \tag{17}
\end{equation*}
$$

We claim that $\tau=\left\{\tau_{n}^{22}: n \in N\right\}$ is a higher derivation on \mathcal{B}. In fact, by the proof of [6, Theorem 2.1] we know that τ_{1} is a higher derivation. This implies that $\tau_{1}^{22}\left(Y_{1} Y_{2}\right)=\tau_{1}^{22}\left(Y_{1}\right) Y_{2}+$ $Y_{1} \tau_{1}^{22}\left(Y_{2}\right)$ for any $Y_{1}, Y_{2} \in \mathcal{B}$. We now assume that $\tau_{m}^{22}\left(Y_{1} Y_{2}\right)=\sum_{i+j=m} \tau_{i}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)$ for all $1 \leq m<n$ with $m \in N$. It follows from Eq. (17) that

$$
\begin{align*}
& \varphi_{n}^{12}\left(W Y_{1} Y_{2}\right)=\varphi_{n}^{12}\left(W\left(Y_{1} Y_{2}\right)\right) \\
= & W \tau_{n}^{22}\left(Y_{1} Y_{2}\right)+\sum_{i+j=n, j<n} \varphi_{i}^{12}(W) \tau_{j}^{22}\left(Y_{1} Y_{2}\right) \tag{18}\\
= & W \tau_{n}^{22}\left(Y_{1} Y_{2}\right)+\sum_{i+e+k=n, i>0} \varphi_{i}^{12}(W) \tau_{e}^{22}\left(Y_{1}\right) \tau_{k}^{22}\left(Y_{2}\right)
\end{align*}
$$

for any $Y_{1}, Y_{2} \in \mathcal{B}$ and $W \in \mathcal{M}$. On the other hand by Eq. (17) and the fact that \mathcal{M} is a $(\mathcal{A}$, \mathcal{B})-bimodule, we have

$$
\begin{align*}
& \varphi_{n}^{12}\left(W Y_{1} Y_{2}\right)=\varphi_{n}^{12}\left(\left(W Y_{1}\right) Y_{2}\right) \\
= & \sum_{i+j=n} \varphi_{i}^{12}\left(W Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)=\sum_{e+k+j=n} \varphi_{e}^{12}(W) \tau_{k}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right) \tag{19}\\
= & W \sum_{k+j=n} \tau_{e}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)+\sum_{e+k+j=n, e>0} \varphi_{e}^{12}(W) \tau_{k}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right) .
\end{align*}
$$

Combining Eq. (18) with Eq. (19), we get $W\left[\tau_{n}^{22}\left(Y_{1} Y_{2}\right)-\sum_{k+j=n} \tau_{e}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right] W=0$. Since M is faithful, we get $\tau_{n}^{22}\left(Y_{1} Y_{2}\right)=\sum_{i+j=n} \tau_{i}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)$.

Now we prove that $\left(D_{n}\right)_{n \in N}$ is a higher derivation. For any $S=\left[\begin{array}{cc}X_{1} & W_{1} \\ 0 & Y_{1}\end{array}\right], T=$ $\left[\begin{array}{cc}X_{2} & W_{2} \\ 0 & Y_{2}\end{array}\right] \in \mathcal{T}$, where $X_{1}, X_{2} \in \mathcal{A}, W_{1}, W_{2} \in \mathcal{M}$ and $Y_{1}, Y_{2} \in \mathcal{B}$. Summing up the above results and using the definition of D_{n}, we obtain that

$$
\begin{aligned}
D_{n}(S T) & =D_{n}\left(\left[\begin{array}{cc}
X_{1} X_{2} & X_{1} W_{2}+W_{1} Y_{2} \\
0 & Y_{1} Y_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\delta_{n}^{11}\left(X_{1} X_{2}\right) & \delta_{n}^{12}\left(X_{1} X_{2}\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right)+\tau_{n}^{12}\left(Y_{1} Y_{2}\right) \\
0 & \tau_{n}^{22}\left(Y_{1} Y_{2}\right)
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
& \sum_{i+j=n} D_{i}(S) D_{j}(T)=\sum_{i+j=n}\left(\left[\begin{array}{cc}
\delta_{i}^{11}\left(X_{1}\right) & \delta_{i}^{12}\left(X_{1}\right)+\varphi_{i}^{12}\left(W_{1}\right)+\tau_{i}^{12}\left(Y_{1}\right) \\
0
\end{array}\right]\right. \\
= & {\left[\begin{array}{cc}
\tau_{i}^{22}\left(Y_{1}\right)
\end{array}\right]} \\
\left.\left.\begin{array}{cc}
\delta_{j}^{11}\left(X_{2}\right) & \delta_{j}^{12}\left(X_{2}\right)+\varphi_{j}^{12}\left(W_{2}\right)+\tau_{j}^{12}\left(Y_{2}\right) \\
0 & \tau_{j}^{22}\left(Y_{2}\right)
\end{array}\right]\right) \\
0 & \sum_{i+j=n}\left(\delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{12}\left(X_{2}\right)+\delta_{i}^{11}\left(X_{1}\right) \tau_{j}^{12}\left(Y_{2}\right)+\delta_{i}^{12}\left(X_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right. \\
\left.+\tau_{i}^{12}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right) \\
0 & \tau_{n}^{22}\left(Y_{1} Y_{2}\right)
\end{array}\right] .
$$

by Eq. (17) and the fact that both δ and τ are higher derivations. So D is a higher derivations if and only if the equation

$$
\begin{aligned}
& \delta_{n}^{12}\left(X_{1} X_{2}\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right)+\tau_{n}^{12}\left(Y_{1} Y_{2}\right) \\
&= \sum_{\substack{i+j=n}}\left(\delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{12}\left(X_{2}\right)+\delta_{i}^{11}\left(X_{1}\right) \tau_{j}^{12}\left(Y_{2}\right)\right. \\
&\left.+\delta_{i}^{12}\left(X_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)+\tau_{i}^{12}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right)
\end{aligned}
$$

holds.
We get that $\tau_{n}^{22}\left(I_{2}\right)=0(n \geq 1)$ from [4, lemma 2.2]. So we can write

$$
\delta_{n}^{12}(X)=-\sum_{i+j=n} \delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)
$$

by setting $Y=I_{2}$ in Eq. (10). Letting $X=I_{1}$ in the above equation, one gets $\delta_{n}^{12}\left(I_{1}\right)=-\tau_{n}^{12}\left(I_{2}\right)$. So

$$
\begin{equation*}
\delta_{n}^{12}(X)=\sum_{i+j=n} \delta_{i}^{11}(X) \delta_{j}^{12}\left(I_{1}\right) . \tag{20}
\end{equation*}
$$

Similarly by taking $X=I_{1}$ in Eq. (10) and noting the fact $\delta_{n}^{11}\left(I_{1}\right)=0(n \geq 1)$, we have

$$
\begin{equation*}
\tau_{n}^{12}(Y)=-\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y) . \tag{21}
\end{equation*}
$$

Thus it follows from Eq. (20) and Eq. (21) that

$$
\begin{align*}
& \delta_{n}^{12}\left(X_{1} X_{2}\right)+\tau_{n}^{12}\left(Y_{1} Y_{2}\right)=\sum_{i+j=n} \delta_{i}^{11}\left(X_{1} X_{2}\right) \delta_{j}^{12}\left(I_{1}\right)-\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y_{1} Y_{2}\right) \\
= & \sum_{k+l+j=n} \delta_{k}^{11}\left(X_{1}\right) \delta_{l}^{11}\left(X_{2}\right) \delta_{j}^{12}\left(I_{1}\right)-\sum_{i+k+l=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{k}^{22}\left(Y_{1}\right) \tau_{l}^{22}\left(Y_{2}\right) . \tag{22}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& \sum_{i+j=n}\left(\delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{12}\left(X_{2}\right)+\delta_{i}^{11}\left(X_{1}\right) \tau_{j}^{12}\left(Y_{2}\right)+\delta_{i}^{12}\left(X_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)+\tau_{i}^{12}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right) \\
= & \sum_{i+j=n} \sum_{k+l=j} \delta_{i}^{11}\left(X_{1}\right) \delta_{k}^{11}\left(X_{2}\right) \delta_{l}^{12}\left(I_{1}\right)-\sum_{i+j=n} \sum_{k+l=j} \delta_{i}^{11}\left(X_{1}\right) \delta_{k}^{12}\left(I_{1}\right) \tau_{l}^{22}\left(Y_{2}\right) \\
& +\sum_{i+j=n} \sum_{k+l=i} \delta_{k}^{11}\left(X_{1}\right) \delta_{l}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)-\sum_{i+j=n} \sum_{k+l=i} \delta_{k}^{11}\left(I_{1}\right) \tau_{l}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right) \tag{23}\\
= & \sum_{i+k+l=n} \delta_{i}^{11}\left(X_{k}\right) \delta_{k}^{11}\left(X_{2}\right) \delta_{l}^{12}\left(I_{1}\right)-\sum_{j+k+l=n} \delta_{k}^{12}\left(I_{1}\right) \tau_{l}^{22}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right) .
\end{align*}
$$

Thus combining Eq. (22) with Eq. (23), we arrive at

$$
\begin{aligned}
& \delta_{n}^{12}\left(X_{1} X_{2}\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right)+\tau_{n}^{12}\left(Y_{1} Y_{2}\right) \\
= & \sum_{i+j=n}\left(\delta_{i}^{11}\left(X_{1}\right) \delta_{j}^{12}\left(X_{2}\right)+\delta_{i}^{11}\left(X_{1}\right) \tau_{j}^{12}\left(Y_{2}\right)+\delta_{i}^{12}\left(X_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right. \\
& \left.\tau_{i}^{12}\left(Y_{1}\right) \tau_{j}^{22}\left(Y_{2}\right)\right)+\varphi_{n}^{12}\left(X_{1} W_{2}+W_{1} Y_{2}\right) .
\end{aligned}
$$

Finally we obtain the desired result.
Theorem 2.2 Let $D=\left\{D_{n}\right\}$ be a family of additive mappings on \mathcal{T} that $D_{0}=i D_{\mathcal{T}}$. If D is Jordan higher derivable at $G=\left[\begin{array}{cc}I_{1} & X_{0} \\ 0 & I_{2}\end{array}\right]$, then D is a higher derivation.
Proof. We set $S=\left[\begin{array}{cc}X & 0 \\ 0 & Y\end{array}\right]$ and $T=\left[\begin{array}{cc}X^{-1} & X^{-1} X_{0} \\ 0 & Y^{-1}\end{array}\right]$ for every invertible element $X \in \mathcal{A}$ and $Y \in \mathcal{B}$. Then $S T=G$ and $T S=\left[\begin{array}{cc}I_{1} & X^{-1} X_{0} Y \\ 0 & I_{2}\end{array}\right]$, so we obtain

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{cc}
2 \delta_{n}^{11}\left(I_{1}\right)+2 \tau_{n}^{11}\left(I_{2}\right) & 2 \delta_{n}^{12}\left(I_{1}\right)+2 \tau_{n}^{12}\left(I_{2}\right)+ \\
+\varphi_{n}^{11}\left(X_{0}+X^{-1} X_{0} Y\right) & +\varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0} Y\right) \\
0 & 2 \delta_{n}^{22}\left(I_{1}\right)+\varphi_{n}^{22}\left(X_{0}+X^{-1} X_{0} Y\right)+2 \tau_{n}^{22}\left(I_{2}\right)
\end{array}\right]} \\
= & D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right) \\
= & \sum_{i+j=n}\left(\left[\begin{array}{cc}
\delta_{i}^{11}(X)+\tau_{i}^{11}(Y) & \delta_{i}^{12}(X)+\tau_{i}^{12}(Y) \\
0 & \delta_{i}^{22}(X)+\tau_{i}^{22}(Y)
\end{array}\right]\right. \\
& +\left[\begin{array}{cc}
\begin{array}{cc}
\delta_{j}^{11}\left(X^{-1}\right)+\varphi_{j}^{11}\left(X^{-1} X_{0}\right) & \delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}\right) \\
+\tau_{j}^{11}\left(Y^{-1}\right) & +\tau_{j}^{12}\left(Y^{-1}\right)
\end{array} \\
0 & \delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\tau_{j}^{22}\left(Y^{-1}\right)
\end{array}\right] \\
+\tau_{i}^{11}\left(Y^{-1}\right) & \delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}\right) \\
0 & +\tau_{i}^{12}\left(Y^{-1}\right)
\end{array}\right] .
$$

So according to the above matrix equation, we get

$$
\begin{align*}
& 2 \delta_{n}^{11}\left(I_{1}\right)+2 \tau_{n}^{11}\left(I_{2}\right)+\varphi_{n}^{11}\left(X_{0}+X^{-1} X_{0} Y\right) \\
= & \sum_{i+j=n}\left[\left(\delta_{i}^{11}(X)+\tau_{i}^{11}(Y)\right)\left(\delta_{j}^{11}\left(X^{-1}\right)+\varphi_{j}^{11}\left(X^{-1} X_{0}\right)+\tau_{j}^{11}\left(Y^{-1}\right)\right)\right. \tag{24}\\
& \left.+\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)+\tau_{i}^{11}\left(Y^{-1}\right)\right)\left(\delta_{j}^{11}(X)+\tau_{j}^{11}(Y)\right)\right],
\end{align*}
$$

$$
\begin{align*}
& 2 \delta_{n}^{12}\left(I_{1}\right)+2 \tau_{n}^{12}\left(I_{2}\right)+\varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0} Y\right) \\
&= \sum_{i+j=n}\left[\left(\delta_{i}^{11}(X)+\tau_{i}^{11}(Y)\right)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}\right)+\tau_{j}^{12}\left(Y^{-1}\right)\right)\right. \\
&+\left(\delta_{i}^{12}(X)+\tau_{i}^{12}(Y)\right)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\tau_{j}^{22}\left(Y^{-1}\right)\right) \tag{25}\\
&+\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)+\tau_{i}^{11}\left(Y^{-1}\right)\right)\left(\delta_{j}^{12}(X)+\tau_{j}^{12}(Y)\right) \\
&\left.+\left(\delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}\right)+\tau_{i}^{12}\left(Y^{-1}\right)\right)\left(\delta_{j}^{22}(X)+\tau_{j}^{22}(Y)\right)\right], \\
&=\quad \sum_{i+j=n}\left[\left(\delta_{i}^{22}(X)+\tau_{i}^{22}(Y)\right)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\tau_{j}^{22}\left(Y^{-1}\right)\right)\right. \\
& 2 \delta_{n}^{22}\left(I_{1}\right)+2 \tau_{n}^{22}\left(I_{2}\right)+\varphi_{n}^{22}\left(X_{0}+X^{-1} X_{0} Y\right) \tag{26}\\
&\left.+\left(\delta_{i}^{22}\left(X^{-1}\right)+\varphi_{i}^{22}\left(X^{-1} X_{0}\right)+\tau_{i}^{22}\left(Y^{-1}\right)\right)\left(\delta_{j}^{22}(X)+\tau_{j}^{22}(Y)\right)\right] .
\end{align*}
$$

We claim that $\delta_{n}^{11}\left(I_{1}\right)=\tau_{n}^{11}\left(I_{2}\right)=\varphi_{n}^{11}\left(X_{0}\right)=0$ when $n \geq 1$. In fact, we could obtain

$$
\begin{align*}
& 2 \delta_{n}^{11}\left(I_{1}\right)+2 \tau_{n}^{11}\left(I_{2}\right)+\varphi_{n}^{11}\left(X_{0}+X_{0}\right) \\
= & \sum_{i+j=n}\left[\left(\delta_{i}^{11}\left(I_{1}\right)+\tau_{i}^{11}\left(I_{2}\right)\right)\left(\delta_{j}^{11}\left(I_{1}\right)+\varphi_{j}^{11}\left(X_{0}\right)+\tau_{j}^{11}\left(I_{2}\right)\right)\right. \tag{27}\\
& \left.+\left(\delta_{i}^{11}\left(I_{1}\right)+\varphi_{i}^{11}\left(X_{0}\right)+\tau_{i}^{11}\left(I_{2}\right)\right)\left(\delta_{j}^{11}\left(I_{1}\right)+\tau_{j}^{11}\left(I_{2}\right)\right)\right]
\end{align*}
$$

by setting $X=I_{1}$ and $Y=I_{2}$ in Eq. (24). When $n=1$, the result that $\delta_{1}^{11}\left(I_{1}\right)=\tau_{1}^{11}\left(I_{2}\right)=$ $\varphi_{1}^{11}\left(X_{0}\right)=0$ holds according to the [6, Theorem 2.2]. So we assume that $\delta_{m}^{11}\left(I_{1}\right)=\tau_{m}^{11}\left(I_{2}\right)=$ $\varphi_{m}^{11}\left(X_{0}\right)=0$ for all $1 \leq m<n, m \in N$. Combining Eq. (27) with the fact $\delta_{0}^{11}\left(I_{1}\right)=I_{1}, \tau_{0}^{11}\left(I_{2}\right)=0$ and using the induction hypothesis, we have

$$
\begin{aligned}
& 2 \delta_{n}^{11}\left(I_{1}\right)+2 \tau_{n}^{11}\left(I_{2}\right)+2 \varphi_{n}^{11}\left(X_{0}\right)=\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)+\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right) \\
& +2 \delta_{n}^{11}\left(I_{1}\right)+2 \tau_{n}^{11}\left(I_{2}\right)+2 \varphi_{n}^{11}\left(X_{0}\right)
\end{aligned}
$$

Hence $\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)=0(n \geq 1)$. Similarly we also can set that $X=I_{1}$ and $Y=-I_{2}$ in Eq. (24). Using the induction hypothesis, we get $\delta_{n}^{11}\left(I_{1}\right)-\tau_{n}^{11}\left(I_{2}\right)=-\varphi_{n}^{11}\left(X_{0}\right)$. Summing up the above equations we get $2 \delta_{n}^{11}\left(I_{1}\right)=-2 \tau_{n}^{11}\left(I_{2}\right)=\varphi_{n}^{11}\left(X_{0}\right)$.

Setting $X=\frac{1}{2} I_{1}$ and $Y=I_{2}$ in Eq. (24) and using $\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)=0$, we have

$$
\begin{aligned}
& 3 \varphi_{n}^{11}\left(X_{0}\right)=\sum_{i+j=n}\left[\left(\frac{1}{2} \delta_{i}^{11}\left(I_{1}\right)+\tau_{i}^{11}\left(I_{2}\right)\right)\left(2 \delta_{j}^{11}\left(I_{1}\right)+\tau_{j}^{11}\left(I_{2}\right)+2 \varphi_{j}^{11}\left(X_{0}\right)\right)\right. \\
& \left.+\left(2 \delta_{i}^{11}\left(I_{1}\right)+\tau_{i}^{11}\left(I_{2}\right)+2 \varphi_{i}^{11}\left(X_{0}\right)\right)\left(\frac{1}{2} \delta_{j}^{11}\left(I_{1}\right)+\tau_{j}^{11}\left(I_{2}\right)\right)\right]
\end{aligned}
$$

Thus combining $2 \delta_{n}^{11}\left(I_{1}\right)=-2 \tau_{n}^{11}\left(I_{2}\right)=\varphi_{n}^{11}\left(X_{0}\right)$ with the assumption and using $\delta_{0}^{11}\left(I_{1}\right)=I_{1}$, one obtains

$$
\begin{aligned}
& 3 \varphi_{n}^{11}\left(X_{0}\right)=\frac{1}{2}\left(2 \delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)+2 \varphi_{n}^{11}\left(X_{0}\right)\right) \\
& +2\left(\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)\right)+2\left(\delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)\right) \\
& +\frac{1}{2}\left(2 \delta_{n}^{11}\left(I_{1}\right)+\tau_{n}^{11}\left(I_{2}\right)+2 \varphi_{n}^{11}\left(X_{0}\right)\right)
\end{aligned}
$$

So $\varphi_{n}^{11}\left(X_{0}\right)=4 \delta_{n}^{11}\left(I_{1}\right)+5 \tau_{n}^{11}\left(I_{2}\right)$. We can claim that $\delta_{n}^{11}\left(I_{1}\right)=\tau_{n}^{11}\left(I_{2}\right)=\varphi_{n}^{11}\left(X_{0}\right)=0$. Hence the Eq. (24) can be rewritten into

$$
\begin{align*}
& \varphi_{n}^{11}\left(X^{-1} X_{0} Y\right)=\sum_{i+j=n}\left[\left(\delta_{i}^{11}(X)+\tau_{i}^{11}(Y)\right)\left(\varphi_{j}^{11}\left(X^{-1} X_{0}\right)+\tau_{j}^{11}\left(Y^{-1}\right)+\delta_{j}^{11}\left(X^{-1}\right)\right)\right. \tag{28}\\
& \left.+\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)+\tau_{i}^{11}\left(Y^{-1}\right)\right)\left(\delta_{j}^{11}(X)+\tau_{j}^{11}(Y)\right)\right]
\end{align*}
$$

Similarly by setting $X=I_{1}$ and $Y=I_{2}$ in Eq. (26) and using the induction, we can get $\delta_{n}^{22}\left(I_{1}\right)+\tau_{n}^{22}\left(I_{2}\right)=0$. We also can obtain $\delta_{n}^{22}\left(I_{1}\right)=\tau_{n}^{22}\left(I_{2}\right)=\varphi_{n}^{22}\left(X_{0}\right)=0$ if we take $X=I_{1}$ and $Y=\frac{1}{2} I_{2}$ in Eq. (27). Thus

$$
\begin{align*}
& \varphi_{n}^{22}\left(X^{-1} X_{0} Y\right)=\sum_{i+j=n}\left[\left(\delta_{i}^{22}(X)+\tau_{i}^{22}(Y)\right)\left(\varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\tau_{j}^{22}\left(Y^{-1}\right)+\delta_{j}^{22}\left(X^{-1}\right)\right)\right. \tag{29}\\
& \left.+\left(\delta_{i}^{22}\left(X^{-1}\right)+\varphi_{i}^{22}\left(X^{-1} X_{0}\right)+\tau_{i}^{22}\left(Y^{-1}\right)\right)\left(\delta_{j}^{22}(X)+\tau_{j}^{22}(Y)\right)\right]
\end{align*}
$$

We take $X=I_{1}$ and $Y=I_{2}$ in Eq. (25), then we can get $\delta_{n}^{12}\left(I_{1}\right)+\tau_{n}^{12}\left(I_{2}\right)=0$. Letting respectively $Y=I_{2}$ and $Y=\frac{1}{2} I_{2}$ in Eq. (25) and using the above equation we have

$$
\begin{align*}
& \varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{11}(X)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}\right)+\tau_{j}^{12}\left(I_{2}\right)\right)\right. \\
& +\left(\delta_{i}^{12}(X)+\tau_{i}^{12}\left(I_{2}\right)\right)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)\right) \\
& +\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)\right)\left(\delta_{j}^{12}(X)+\tau_{j}^{12}\left(I_{2}\right)\right) \tag{30}\\
& \left.+\left(\delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}\right)+\tau_{i}^{12}\left(I_{2}\right)\right) \delta_{j}^{22}(X)\right] \\
& +\delta_{n}^{12}(X)+\tau_{n}^{12}\left(I_{2}\right)+\delta_{n}^{12}\left(X^{-1}\right)+\varphi_{n}^{12}\left(X^{-1} X_{0}\right)+\tau_{n}^{12}\left(I_{2}\right) \\
& \varphi_{n}^{12}\left(X_{0}+\frac{1}{2} X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{11}(X)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}\right)+2 \tau_{j}^{12}\left(I_{2}\right)\right)\right. \\
& +\left(\delta_{i}^{12}(X)+\frac{1}{2} \tau_{i}^{12}\left(I_{2}\right)\right)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)\right) \\
& +\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)\right)\left(\delta_{j}^{12}(X)+\frac{1}{2} \tau_{j}^{12}\left(I_{2}\right)\right) \tag{31}\\
& \left.+\left(\delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}\right)+2 \tau_{i}^{12}\left(I_{2}\right)\right) \delta_{j}^{22}\left(X^{2}\right)\right] \\
& +2 \delta_{n}^{12}(X)+\tau_{n}^{12}\left(I_{2}\right)+\frac{1}{2} \delta_{n}^{12}\left(X^{-1}\right)+\frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}\right)+\tau_{n}^{12}\left(I_{2}\right)
\end{align*}
$$

which implies that

$$
\begin{aligned}
& \frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}\right)=\sum_{i+j=n}\left[-\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right. \\
& +\frac{1}{2} \tau_{i}^{12}\left(I_{2}\right)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)\right)+\frac{1}{2}\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right)\right) \tau_{j}^{12}\left(I_{2}\right) \\
& \left.-\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)\right]-\delta_{n}^{12}(X)+\frac{1}{2} \delta_{n}^{12}\left(X^{-1}\right)+\frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}\right) .
\end{aligned}
$$

So

$$
\begin{align*}
& \frac{1}{2} \sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}\left(X^{-1}\right)+\delta_{i}^{11}\left(X^{-1}\right) \tau_{j}^{12}\left(I_{2}\right)\right. \\
& \left.+\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right]+\frac{1}{2} \delta_{n}^{12}\left(X^{-1}\right) \tag{32}\\
= & \sum_{i+j=n}\left[\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)+\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)\right]+\delta_{n}^{12}(X) .
\end{align*}
$$

Thus we get

$$
\begin{align*}
& \frac{1}{2} \sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)+\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right. \\
& \left.+\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X X_{0}\right)+\varphi_{i}^{11}\left(X X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right]+\frac{1}{2} \delta_{n}^{12}(X) \tag{33}\\
= & \sum_{i+j=n}\left[\delta_{i}^{11}\left(X^{-1}\right) \tau_{j}^{12}\left(I_{2}\right)+\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}\left(X^{-1}\right)\right]+\delta_{n}^{12}\left(X^{-1}\right)
\end{align*}
$$

for any invertible $X \in \mathcal{A}$ by replacing X^{-1} by X in Eq.(32). It follows that

$$
\begin{aligned}
& \frac{1}{2}\left[\frac { 1 } { 2 } \sum _ { i + j = n } \left[\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)+\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right.\right. \\
& \left.\left.+\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X X_{0}\right)+\varphi_{i}^{11}\left(X X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right]+\frac{1}{2} \delta_{n}^{12}(X)\right] \\
& +\frac{1}{2} \sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right] \\
& =\sum_{i+j=n}\left[\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)+\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)\right]+\delta_{n}^{12}(X)
\end{aligned}
$$

So

$$
\begin{align*}
& \quad \frac{1}{4}\left[\sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)+\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right]+\delta_{n}^{12}(X)\right] \\
& +\frac{1}{4} \sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X X_{0}\right)+\varphi_{i}^{11}\left(X X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right] \\
& \quad+\frac{1}{2} \sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \varphi_{j}^{22}\left(X^{-1} X_{0}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}\right) \tau_{j}^{12}\left(I_{2}\right)\right] \tag{34}\\
& =\sum_{i+j=n}\left[\tau_{i}^{12}\left(I_{2}\right) \delta_{j}^{22}(X)+\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right]+\delta_{n}^{12}(X)
\end{align*}
$$

for any invertible $X \in \mathcal{A}$.
Similarly by letting $X=I_{1}$ and $X=2 I_{1}$ in Eq. (25), it is easily checked that

$$
\begin{align*}
& \varphi_{n}^{12}\left(X_{0}+X_{0} Y\right)=\sum_{i+j=n}\left[\tau_{i}^{11}(Y)\left(\varphi_{j}^{12}\left(X_{0}\right)+\tau_{j}^{12}\left(Y^{-1}\right)+\delta_{j}^{12}\left(I_{1}\right)\right)\right. \\
& +\left(\delta_{i}^{12}\left(I_{1}\right)+\tau_{i}^{12}(Y)\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{i}^{11}\left(Y^{-1}\right)\left(\delta_{j}^{12}\left(I_{1}\right)+\tau_{j}^{12}(Y)\right) \tag{35}\\
& \left.+\left(\varphi_{i}^{12}\left(X_{0}\right)+\tau_{i}^{12}\left(Y^{-1}\right)+\delta_{i}^{12}\left(I_{1}\right)\right) \tau_{j}^{22}(Y)\right] \\
& +\varphi_{n}^{12}\left(X_{0}\right)+\tau_{n}^{12}\left(Y^{-1}\right)+2 \delta_{n}^{12}\left(I_{1}\right)+\tau_{n}^{12}(Y)
\end{align*}
$$

$$
\begin{align*}
& \varphi_{n}^{12}\left(X_{0}+\frac{1}{2} X_{0} Y\right)=\sum_{i+j=n}\left[\tau_{i}^{11}(Y)\left(\frac{1}{2} \varphi_{j}^{12}\left(X_{0}\right)+\tau_{j}^{12}\left(Y^{-1}\right)+\frac{1}{2} \delta_{j}^{12}\left(I_{1}\right)\right)\right. \\
& +\left(2 \delta_{i}^{12}\left(I_{1}\right)+\tau_{i}^{12}(Y)\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{i}^{11}\left(Y^{-1}\right)\left(2 \delta_{j}^{12}\left(I_{1}\right)+\tau_{j}^{12}(Y)\right) \tag{36}\\
& \left.+\left(\frac{1}{2} \varphi_{i}^{12}\left(X_{0}\right)+\tau_{i}^{12}\left(Y^{-1}\right)+\frac{1}{2} \delta_{i}^{12}\left(I_{1}\right)\right) \tau_{j}^{22}(Y)\right] \\
& +\varphi_{n}^{12}\left(X_{0}\right)+2 \tau_{n}^{12}\left(Y^{-1}\right)+2 \delta_{n}^{12}\left(I_{1}\right)+\frac{1}{2} \tau_{n}^{12}(Y),
\end{align*}
$$

which implies that

$$
\begin{align*}
& \frac{1}{2} \varphi_{n}^{12}\left(X_{0} Y\right)=\sum_{i+j=n}\left[\frac{1}{2} \tau_{i}^{11}(Y)\left(\varphi_{j}^{12}\left(X_{0}\right)+\delta_{j}^{12}\left(I_{1}\right)\right)-\delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)\right. \tag{37}\\
& \left.-\tau_{i}^{11}\left(Y^{-1}\right) \delta_{j}^{12}\left(I_{1}\right)+\frac{1}{2}\left(\varphi_{i}^{12}\left(X_{0}\right)+\delta_{i}^{12}\left(I_{1}\right)\right) \tau_{j}^{22}(Y)\right]+\frac{1}{2} \tau_{n}^{12}(Y)-\tau_{n}^{12}\left(Y^{-1}\right) .
\end{align*}
$$

By considering Eq. (28) and $\varphi_{n}^{11}\left(X_{0}\right)=0$ and letting $X=I_{1}$ and $X=2 I_{1}$ respectively, it is easily verified that

$$
\begin{align*}
& \varphi_{n}^{11}\left(X_{0} Y\right)=\sum_{i+j=n}\left[\tau_{i}^{11}(Y) \tau_{j}^{11}\left(Y^{-1}\right)+\tau_{i}^{11}\left(Y^{-1}\right) \tau_{j}^{11}(Y)\right]+2 \tau_{n}^{11}\left(Y^{-1}\right)+2 \tau_{n}^{11}(Y), \tag{38}\\
& \frac{1}{2} \varphi_{n}^{11}\left(X_{0} Y\right)=\sum_{i+j=n}\left[\tau_{i}^{11}(Y) \tau_{j}^{11}\left(Y^{-1}\right)+\tau_{i}^{11}\left(Y^{-1}\right) \tau_{j}^{11}(Y)\right]+4 \tau_{n}^{11}\left(Y^{-1}\right)+\tau_{n}^{11}(Y) . \tag{39}
\end{align*}
$$

When $n=0, \tau_{0}^{11}(Y)=0$. When $n=1, \tau_{1}^{11}(Y)=0$ according to [6, Theorem 2.2]. We assume that $\tau_{m}^{11}(Y)=0$ for any $Y \in \mathcal{B}$ and $1 \leq m<n$. So combining Eq. (38) with Eq. (39) and using the induction hypothesis, we have

$$
\begin{align*}
& \varphi_{n}^{11}\left(X_{0} Y\right)=2 \tau_{n}^{11}\left(Y^{-1}\right)+2 \tau_{n}^{11}(Y), \tag{40}\\
& \frac{1}{2} \varphi_{n}^{11}\left(X_{0} Y\right)=4 \tau_{n}^{11}\left(Y^{-1}\right)+\tau_{n}^{11}(Y) . \tag{41}
\end{align*}
$$

By direct computation, one can verify that $\tau_{n}^{11}\left(Y^{-1}\right)=0$. There exists $n \in N$ such that $n I_{2}-Y$ is invertible for any $Y \in \mathcal{B}$ and $\tau_{n}^{11}\left(I_{2}\right)=0$, so $\tau_{n}^{11}(Y)=0$ for any $Y \in \mathcal{B}$.

When $n=0, \delta_{0}^{22}(X)=0$ for any $X \in \mathcal{A}$. By [6, Theorem 2.2], we can claim that When $n=1, \delta_{1}^{22}(X)=0$. So now we assume that $\delta_{m}^{22}(X)=0$ for all $1 \leq m<n$ and $X \in \mathcal{A}$. Taking respectively $Y=I_{2}$ and $Y=2 I_{2}$ in Eq. (29) and using $\tau_{n}^{22}\left(I_{2}\right)=0, n \geq 1, \tau_{0}^{22}=i \tau_{\mathcal{B}}$ we have

$$
\begin{align*}
& \varphi_{n}^{22}\left(X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{22}(X)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)\right)\right. \\
& \left.+\left(\varphi_{i}^{22}\left(X^{-1} X_{0}\right)+\delta_{i}^{22}\left(X^{-1}\right)\right) \delta_{j}^{22}(X)\right] \tag{42}\\
& +2 \delta_{n}^{22}(X)+2 \varphi_{n}^{22}\left(X^{-1} X_{0}\right)+2 \delta_{n}^{22}\left(X^{-1}\right),
\end{align*}
$$

and

$$
\begin{align*}
& 2 \varphi_{n}^{22}\left(X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{22}(X)\left(\delta_{j}^{22}\left(X^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}\right)\right)\right. \\
& \left.+\left(\varphi_{i}^{22}\left(X^{-1} X_{0}\right)+\delta_{i}^{22}\left(X^{-1}\right)\right) \delta_{j}^{22}(X)\right] \tag{43}\\
& +\delta_{n}^{22}(X)+4 \varphi_{n}^{22}\left(X^{-1} X_{0}\right)+4 \delta_{n}^{22}\left(X^{-1}\right) .
\end{align*}
$$

Combining the assumption and the above equations, we have the following equations:

$$
\begin{aligned}
& -\varphi_{n}^{22}\left(X^{-1} X_{0}\right)=2 \delta_{n}^{22}(X)+2 \delta_{n}^{22}\left(X^{-1}\right) \\
& -2 \varphi_{n}^{22}\left(X^{-1} X_{0}\right)=\delta_{n}^{22}(X)+4 \delta_{n}^{22}\left(X^{-1}\right)
\end{aligned}
$$

By direct computation, one can verify that $\delta_{n}^{22}(X)=0$ for any invertible $X \in \mathcal{A}$ and $n \in N$. Because there is some integer n such that $n I_{1}-X$ is invertible for every $X \in \mathcal{A}$, the conclusion of $\delta_{n}^{22}(X)=0$ holds for every $X \in \mathcal{A}$.

We set $S=\left[\begin{array}{cc}X & X W \\ 0 & Y\end{array}\right]$ and $T=\left[\begin{array}{cc}X^{-1} & X^{-1} X_{0}-W Y^{-1} \\ 0 & Y^{-1}\end{array}\right]$ for any $Y \in \mathcal{B}, W \in$ \mathcal{M}, and for any invertible $X \in \mathcal{A}$, then $S T=G$ and $T S=\left[\begin{array}{cc}I_{1} & X^{-1} X_{0} Y \\ 0 & I_{2}\end{array}\right]$. So combining $\delta_{n}^{12}\left(I_{1}\right)+\tau_{n}^{12}\left(I_{2}\right)=0$ with the characterization of D, we obtain the following when $n \geq 1$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\varphi_{n}^{11}\left(X^{-1} X_{0} Y\right) & \varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0} Y\right) \\
0 & \varphi_{n}^{22}\left(X^{-1} X_{0} Y\right)
\end{array}\right] } \\
= & D_{n}(S T+T S)=\sum_{i+j=n}\left(D_{i}(S) D_{j}(T)+D_{i}(T) D_{j}(S)\right) \\
= & \sum_{i+j=n}\left(\left[\begin{array}{cc}
\delta_{i}^{11}(X)+\varphi_{i}^{11}(X W) & \delta_{i}^{12}(X)+\varphi_{i}^{12}(X W)+\tau_{i}^{12}(Y) \\
0 & \tau_{i}^{22}(Y)+\varphi_{i}^{22}(X W)
\end{array}\right]\right. \\
& {\left[\begin{array}{cc}
\delta_{j}^{11}\left(X^{-1}\right)+\varphi_{j}^{11}\left(X^{-1} X_{0}-W Y^{-1}\right) & \delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}-W Y^{-1}\right)+\tau_{j}^{12}(Y) \\
0 & \tau_{j}^{22}\left(Y^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}-W Y^{-1}\right)
\end{array}\right] } \\
& +\left[\begin{array}{cc}
\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}-W Y^{-1}\right) & \delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}-W Y^{-1}\right)+\tau_{i}^{12}(Y) \\
0 & \tau_{i}^{22}\left(Y^{-1}\right)+\varphi_{i}^{22}\left(X^{-1} X_{0}-W Y^{-1}\right)
\end{array}\right] \\
& {\left[\begin{array}{cc}
\delta_{j}^{11}(X)+\varphi_{j}^{11}(X W) & \delta_{j}^{12}(X)+\varphi_{j}^{12}(X W)+\tau_{j}^{12}(Y) \\
0 & \tau_{j}^{22}(Y)+\varphi_{j}^{22}(X W)
\end{array}\right], }
\end{aligned}
$$

which implies the following three equations

$$
\begin{align*}
& \quad \varphi_{n}^{11}\left(X^{-1} X_{0} Y\right)=\sum_{i+j=n}\left[\left(\delta_{i}^{11}(X)+\varphi_{i}^{11}(X W)\right)\left(\delta_{j}^{11}\left(X^{-1}\right)+\varphi_{j}^{11}\left(X^{-1} X_{0}-W Y^{-1}\right)\right)\right. \tag{44}\\
& \left.\quad\left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}-W Y^{-1}\right)\right)\left(\delta_{j}^{11}(X)+\varphi_{j}^{11}(X W)\right)\right] \\
& \varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0} Y\right)=\sum_{i+j=n}\left[\left(\delta_{i}^{11}(X)+\varphi_{i}^{11}(X W)\right)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}-W Y^{-1}\right)+\tau_{j}^{12}\left(Y^{-1}\right)\right)\right. \\
& + \\
& +\left(\delta_{i}^{12}(X)+\varphi_{i}^{12}(X W)+\tau_{i}^{12}(Y)\right)\left(\tau_{j}^{22}\left(Y^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}-W Y^{-1}\right)\right) \\
& + \tag{45}\\
& \left(\delta_{i}^{11}\left(X^{-1}\right)+\varphi_{i}^{11}\left(X^{-1} X_{0}-W Y^{-1}\right)\right)\left(\delta_{j}^{12}(X)+\varphi_{j}^{12}(X W)+\tau_{j}^{12}(Y)\right) \\
& + \\
& \left.\left(\delta_{i}^{12}\left(X^{-1}\right)+\varphi_{i}^{12}\left(X^{-1} X_{0}-W Y^{-1}\right)+\tau_{i}^{12}\left(Y^{-1}\right)\right)\left(\tau_{j}^{22}(Y)+\varphi_{j}^{22}(X W)\right)\right]
\end{align*}
$$

$$
\begin{align*}
& \varphi_{n}^{22}\left(X^{-1} X_{0} Y\right)=\sum_{i+j=n}\left[\left(\tau_{i}^{22}(Y)+\varphi_{i}^{22}(X W)\right)\left(\tau_{j}^{22}\left(Y^{-1}\right)+\varphi_{j}^{22}\left(X^{-1} X_{0}-W Y^{-1}\right)\right)\right. \tag{46}\\
& \left.+\left(\tau_{i}^{22}\left(Y^{-1}\right)+\varphi_{i}^{22}\left(X^{-1} X_{0}-W Y^{-1}\right)\right)\left(\tau_{j}^{22}(Y)+\varphi_{j}^{22}(X W)\right)\right]
\end{align*}
$$

Now we take $X=2 I_{1}$ and $Y=I_{2}$ in Eq. (44) and Eq. (46), it is checked that

$$
\begin{aligned}
& \frac{1}{2} \varphi_{n}^{11}\left(X_{0}\right)=\sum_{i+j=n}\left[\left(2 \delta_{i}^{11}\left(I_{1}\right)+2 \varphi_{i}^{11}(W)\right)\left(\frac{1}{2} \delta_{j}^{11}\left(I_{1}\right)+\varphi_{j}^{11}\left(\frac{1}{2} X_{0}-W\right)\right)\right. \\
& \left.\left(\frac{1}{2} \delta_{i}^{11}\left(I_{1}\right)+\varphi_{i}^{11}\left(\frac{1}{2} X_{0}-W\right)\right)\left(2 \delta_{j}^{11}\left(I_{1}\right)+2 \varphi_{j}^{11}(W)\right)\right] \\
& \frac{1}{2} \varphi_{n}^{22}\left(X_{0}\right)=\sum_{i+j=n}\left[\left(\tau_{i}^{22}\left(I_{2}\right)+2 \varphi_{i}^{22}(W)\right)\left(\tau_{j}^{22}\left(I_{2}\right)+\varphi_{j}^{22}\left(\frac{1}{2} X_{0}-W\right)\right)\right. \\
& \left.\quad+\left(\tau_{i}^{22}\left(I_{2}\right)+\varphi_{i}^{22}\left(\frac{1}{2} X_{0}-W\right)\right)\left(\tau_{j}^{22}\left(I_{2}\right)+2 \varphi_{j}^{22}(W)\right)\right]
\end{aligned}
$$

By the fact that $\delta_{n}^{11}\left(I_{1}\right)=0(n \geq 1), \tau_{n}^{22}\left(I_{2}\right)=0(n \geq 1)$ and $\varphi_{n}^{11}\left(X_{0}\right)=0, \varphi_{n}^{22}\left(X_{0}\right)=0$ for any $n \geq 0$, it follows that

$$
\begin{aligned}
& 0=2 \varphi_{n}^{11}(W)+4 \sum_{i+j=n} \varphi_{i}^{11}(W) \varphi_{j}^{11}(W) \\
& 0=2 \varphi_{n}^{22}(W)+4 \sum_{i+j=n} \varphi_{i}^{22}(W) \varphi_{j}^{22}(W)
\end{aligned}
$$

When $n=0, \varphi_{0}^{11}(W)=\varphi_{0}^{22}(W)=0$, When $n=1, \varphi_{1}^{11}(W)=\varphi_{1}^{22}(W)=0$, So we assume that $\varphi_{m}^{11}(W)=\varphi_{m}^{22}(W)=0$ for all $1 \leq m<n$ and $W \in \mathcal{M}$. Combining the above equation with the assumption, we get that $\varphi_{n}^{11}(W)=\varphi_{n}^{22}(W)=0$ for all $1 \leq m<n$.

By setting respectively $Y=\frac{1}{2} I_{2}$ and $Y=I_{2}$ in Eq. (45), the following two equations hold

$$
\begin{align*}
& \varphi_{n}^{12}\left(X_{0}+\frac{1}{2} X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{11}(X)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}-2 W\right)+2 \tau_{j}^{12}\left(I_{2}\right)\right)\right. \\
& \left.+\delta_{i}^{11}\left(X^{-1}\right)\left(\delta_{j}^{12}(X)+\varphi_{j}^{12}(X W)+\frac{1}{2} \tau_{j}^{12}\left(I_{2}\right)\right)\right]+2 \delta_{n}^{12}(X) \tag{47}\\
& +2 \varphi_{n}^{12}(X W)+\tau_{n}^{12}\left(I_{2}\right)+\frac{1}{2} \delta_{n}^{11}\left(X^{-1}\right)+\frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}-2 W\right)+\tau_{n}^{12}\left(I_{2}\right) \\
& \quad \varphi_{n}^{12}\left(X_{0}+X^{-1} X_{0}\right)=\sum_{i+j=n}\left[\delta_{i}^{11}(X)\left(\delta_{j}^{12}\left(X^{-1}\right)+\varphi_{j}^{12}\left(X^{-1} X_{0}-W\right)+\tau_{j}^{12}\left(I_{2}\right)\right)\right. \\
& \left.\quad+\delta_{i}^{11}\left(X^{-1}\right)\left(\delta_{j}^{12}(X)+\varphi_{j}^{12}(X W)+\tau_{j}^{12}\left(I_{2}\right)\right)\right]+\delta_{n}^{12}(X) \tag{48}\\
& +\varphi_{n}^{12}(X W)+\tau_{n}^{12}\left(I_{2}\right)+\delta_{n}^{11}\left(X^{-1}\right)+\varphi_{n}^{12}\left(X^{-1} X_{0}-W\right)+\tau_{n}^{12}\left(I_{2}\right) .
\end{align*}
$$

Which implies that

$$
\begin{align*}
& -\frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}\right)=\sum_{i+j=n}\left[-\delta_{i}^{11}(X) \varphi_{j}^{12}(W)+\delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right)\right. \\
& \left.+\frac{1}{2} \delta_{i}^{11}\left(X^{-1}\right) \tau_{j}^{12}\left(I_{2}\right)\right]+\delta_{n}^{12}(X) \tag{49}\\
& +\varphi_{n}^{12}(X W)-\frac{1}{2} \delta_{n}^{11}\left(X^{-1}\right)-\frac{1}{2} \varphi_{n}^{12}\left(X^{-1} X_{0}\right)
\end{align*}
$$

It follows from Eq. (34) and the fact $\delta_{n}^{22}(X)=\varphi_{n}^{11}(W)=\varphi_{n}^{22}(W)=0$, we have

$$
\begin{equation*}
\delta_{n}^{12}(X)=-\sum_{i+j=n} \delta_{i}^{11}(X) \tau_{j}^{12}\left(I_{2}\right) \tag{50}
\end{equation*}
$$

Hence combing Eq. (49) with Eq. (50), we can see that

$$
\varphi_{n}^{12}(X W)=\sum_{i+j=n} \delta_{i}^{11}(X) \varphi_{j}^{12}(W)
$$

for any invertible $X \in \mathcal{A}$. There exists some $n \in N$ such that $n I_{1}-X$ is invertible for every $X \in \mathcal{A}$, one can check that

$$
\begin{equation*}
\varphi_{n}^{12}(X W)=\sum_{i+j=n} \delta_{i}^{11}(X) \varphi_{j}^{12}(W) \tag{51}
\end{equation*}
$$

for any $X \in \mathcal{A}$.
Now we take respectively $X=I_{1}$ and $X=2 I_{1}$ in Eq. (45), one gets

$$
\begin{gather*}
\varphi_{n}^{12}\left(X_{0}+X_{0} Y\right)=\sum_{i+j=n}\left[\left(\delta_{i}^{12}\left(I_{1}\right)+\varphi_{i}^{12}(W)+\tau_{i}^{12}(Y)\right) \tau_{j}^{22}\left(Y^{-1}\right)\right. \\
\left.+\left(\delta_{i}^{12}\left(I_{1}\right)+\varphi_{i}^{12}\left(X_{0}-W Y^{-1}\right)+\tau_{i}^{12}\left(Y^{-1}\right)\right) \tau_{j}^{22}(Y)\right]+\delta_{n}^{12}\left(I_{1}\right) \tag{52}\\
+\varphi_{n}^{12}\left(X_{0}-W Y^{-1}\right)+\tau_{n}^{12}\left(Y^{-1}\right)+\delta_{n}^{12}\left(I_{1}\right)+\tau_{n}^{12}(Y)+\varphi_{n}^{12}(W) \\
\varphi_{n}^{12}\left(X_{0}+\frac{1}{2} X_{0} Y\right)=\sum_{i+j=n}\left[\left(2 \delta_{i}^{12}\left(I_{1}\right)+2 \varphi_{i}^{12}(W)+\tau_{i}^{12}(Y)\right) \tau_{j}^{22}\left(Y^{-1}\right)\right. \\
\left.+\left(\frac{1}{2} \delta_{i}^{12}\left(I_{1}\right)+\varphi_{i}^{12}\left(\frac{1}{2} X_{0}-W Y^{-1}\right)+\tau_{i}^{12}\left(Y^{-1}\right)\right) \tau_{j}^{22}(Y)\right]+\delta_{n}^{12}\left(I_{1}\right) \tag{53}\\
+2 \varphi_{n}^{12}\left(\frac{1}{2} X_{0}-W Y^{-1}\right)+2 \tau_{n}^{12}\left(Y^{-1}\right)+\delta_{n}^{12}\left(I_{1}\right)+\frac{1}{2} \tau_{n}^{12}(Y)+\varphi_{n}^{12}(W)
\end{gather*}
$$

which implies that

$$
\begin{align*}
& \frac{1}{2} \varphi_{n}^{12}\left(X_{0} Y\right)=\sum_{i+j=n}\left[-\left(\delta_{i}^{12}\left(I_{1}\right)+\varphi_{i}^{12}(W)\right) \tau_{j}^{22}\left(Y^{-1}\right)\right. \tag{54}\\
& \left.+\frac{1}{2}\left(\delta_{i}^{12}\left(I_{1}\right)+\varphi_{i}^{12}\left(X_{0}\right)\right) \tau_{j}^{22}(Y)\right]+\varphi_{n}^{12}\left(W Y^{-1}\right)-\tau_{n}^{12}\left(Y^{-1}\right)+\frac{1}{2} \tau_{n}^{12}(Y)
\end{align*}
$$

Combining the above equation with Eq. (37) and the fact $\tau_{n}^{11}(Y)=0$, we get

$$
\begin{align*}
& \sum_{i+j=n}\left[-\delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\frac{1}{2} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y)+\frac{1}{2} \varphi_{i}^{12}\left(X_{0}\right) \tau_{j}^{22}(Y)\right]+\frac{1}{2} \tau_{n}^{12}(Y)-\tau_{n}^{12}\left(Y^{-1}\right) \\
& =\sum_{i+j=n}\left[-\delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\frac{1}{2} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y)+\frac{1}{2} \varphi_{i}^{12}\left(X_{0}\right) \tau_{j}^{22}(Y)\right] \\
& -\sum_{i+j=n} \varphi_{i}^{12}(W) \tau_{j}^{22}\left(Y^{-1}\right)+\frac{1}{2} \tau_{n}^{12}(Y)-\tau_{n}^{12}\left(Y^{-1}\right)+\varphi_{n}^{12}\left(W Y^{-1}\right) . \tag{55}
\end{align*}
$$

So

$$
\begin{equation*}
\varphi_{n}^{12}\left(W Y^{-1}\right)=\sum_{i+j=n} \varphi_{i}^{12}(W) \tau_{j}^{22}\left(Y^{-1}\right) \tag{56}
\end{equation*}
$$

Replacing Y by Y^{-1} in the above equation, we obtain for any invertible $Y \in \mathcal{B}$

$$
\begin{equation*}
\varphi_{n}^{12}(W Y)=\sum_{i+j=n} \varphi_{i}^{12}(W) \tau_{j}^{22}(Y) \tag{57}
\end{equation*}
$$

Since there is some integer n such that $n I_{2}-Y$ is invertible for every $Y \in \mathcal{B}$, it is easy to see that Eq. (57) is true for every $Y \in \mathcal{B}$ and $W \in \mathcal{M}$, Summing up Eq. (54) and Eq. (56), we obtain that

$$
\begin{equation*}
\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{n}^{12}\left(Y^{-1}\right)=\frac{1}{2}\left[\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y)+\tau_{n}^{12}(Y)\right] \tag{58}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y)+\tau_{n}^{12}(Y)=\frac{1}{2}\left[\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{n}^{12}\left(Y^{-1}\right)\right] \tag{59}
\end{equation*}
$$

by replacing Y^{-1} by Y in the Eq. (58). Combining Eq. (58) with Eq. (59), we can obtain

$$
\frac{1}{2}\left[\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{n}^{12}\left(Y^{-1}\right)\right]=2\left[\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}\left(Y^{-1}\right)+\tau_{n}^{12}\left(Y^{-1}\right)\right]
$$

So using the direct computation, we can claim that

$$
\begin{equation*}
\tau_{n}^{12}(Y)=-\sum_{i+j=n} \delta_{i}^{12}\left(I_{1}\right) \tau_{j}^{22}(Y) \tag{60}
\end{equation*}
$$

Now summing up all the above equations and using similar arguments as that in the proof of Theorem 2.1, it is easily checked that both $\left\{\delta_{n}^{11}\right\}_{n \in N}$ and $\left\{\tau_{n}^{22}\right\}_{n \in N}$ are higher derivations. Therefore it is also an easy computation to see that $\left\{D_{n}\right\}_{n \in N}$ is a higher derivation.

Reference

[1] R.L. An, J.C. Hou, Characterization of derivations on triangular rings: Additive maps derivable at idempotents, 431 (2009) 1070-1080.
[2] R.L. An, J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras. Taiwanese J. Math. 10 (2006) 45-64.
[3] W. Jing, On Jordan all-derivable points of $\mathcal{B}(\mathcal{H})$, Linear Algebra Appl. 430 (2009) 941-946.
[4] Z.K. Xiao, F. Wei, Higher derivations of triangular algebras and its generations, Linear Algebra Appl. 432(2010) 2615-2622.
[5] J. Zhang, W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006) 251-255.
[6] S. Zhao, J. Zhu, Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 433 (2010) 1922-1938.
[7] J. Zhu, All-derivable points of operator algebras, Linear Algebra Appl. 427 (2007) 1-5.

[^0]: ${ }^{1}$ This work is supported by the National Natural Science Foundation of China (No 10771191)
 ${ }^{2}$ E-mail address: zjphyx@sohu.com
 ${ }^{3}$ E-mail address: zhu_gjun@yahoo.com.cn

