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An Erdős-Ko-Rado theorem in general linear groups
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Abstract

Let S n be the symmetric group onn points. Deza and Frankl [M. Deza and P. Frankl, On the
maximum number of permutations with given maximal or minimal distance, J. Combin. Theory
Ser. A 22 (1977) 352–360] proved that ifF is an intersecting set inS n then|F | ≤ (n − 1)!. In this
paper we consider theq-analogue version of this result. LetFn

q be then-dimensional row vector
space over a finite fieldFq andGLn(Fq) the general linear group of degreen. A setFq ⊆ GLn(Fq)
is intersecting if for any T, S ∈ Fq there exists a non-zero vectorα ∈ Fn

q such thatαT = αS . Let
Fq be an intersecting set inGLn(Fq). We show that|Fq| ≤ q(n−1)n/2∏n−1

i=1 (qi − 1).
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The Erdős-Ko-Rado theorem [5] is a central result in extremal combinatorics. There are many
interesting proofs and extensions of this theorem, for a summary see [4].

Let S n be the symmetric group onn points. A setF ⊆ S n is intersecting if for any f , g ∈ F
there exists anx ∈ [n] such thatf (x) = g(x). The following result is an Erdős-Ko-Rado theorem
for intersecting families of permutations.

Theorem 1. Let F be an intersecting set in S n. Then

(i) (Deza and Frankl [3])|F | ≤ (n − 1)!.

(ii) (Cameron and Ku [1])Equality in (i) holds if and only if F is a coset of the stabilizer of a
point.

Wang and Zhang [8] gave a simple proof of Theorem 1. Recently,Godsil and Meagher [6]
presented another proof.

In this paper we consider theq-analogue of Theorem 1, and obtain an Erdős-Ko-Rado theorem
in general linear groups.

Let Fq be a finite field andFn
q then-dimensional row vector space overFq. The set of alln × n

nonsingular matrices overFq forms a group under matrix multiplication, called thegeneral linear
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group of degreen overFq, denoted byGLn(Fq). There is an action ofGLn(Fq) on F
n
q defined as

follows:

F
n
q ×GLn(Fq) −→ F

n
q

((x1, x2, . . . , xn), T ) 7−→ (x1, x2, . . . , xn)T.

Let P be anm-subspace ofFn
q. Denote also byP anm × n matrix of rankm whose rows span the

subspaceP and call the matrixP a matrix representation of the subspaceP.

Definition 1. A set Fq ⊆ GLn(Fq) is intersecting if for any T, S ∈ Fq there exists a non-zero vector
α ∈ Fn

q such that αT = αS .

In this paper, we shall prove the following result:

Theorem 2. Let Fq be an intersecting set in GLn(Fq). Then |Fq| ≤ q(n−1)n/2∏n−1
i=1 (qi − 1).

For the groupGLn(Fq) we can define a graph, denoted byΓ, on vertex setGLn(Fq) by joining
T and S if they are intersecting. SinceGLn(Fq) is an automorphism group ofΓ, this graph is
vertex-transitive.

In order to prove Theorem 2, we require a useful lemma obtained by Cameron and Ku and a
classical result about finite geometry.

Lemma 3. ([1]) Let C be a clique and A a coclique in a vertex-transitive graph on v vertices.
Then |C||A| ≤ v. Equality implies that |C ∩ A| = 1.

An n-spread of Fl
q is collection ofn-subspaces{W1, . . . ,Wt} such that every non-zero vector in

F
l
q belongs to exactly oneWi.

Theorem 4. ([2]) An n-spread of Fl
q exists if and only if n is a divisor of l.

Lemma 5. Let α(Γ) be the size of the largest coclique of Γ. Then α(Γ) = qn − 1.

Proof. By Theorem 4, there exists ann-spread{W0,W1, . . . ,Wqn} of F2n
q . SinceW0 ∩ Wqn = {0}

and W0 + Wqn = F
2n
q , by [7, Theorem 1.3], there exists aG ∈ GL2n(Fq) such thatW0G =

(I(n) 0(n)),WqnG = (0(n) I(n)), and{W0G,W1G, . . . ,WqnG} is ann-spread ofF2n
q , whereI(n) is the

identity matrix of ordern and 0(n) is the zero matrix of ordern. Without loss of generality, we may
assume thatW0 = (I(n) 0(n)) andWqn = (0(n) I(n)). Then eachWi (1 ≤ i ≤ qn − 1) has the matrix
representation of the form (I(n) Ti), whereTi ∈ GLn(Fq). For all 1≤ i , j ≤ qn − 1, sinceWi +W j

is of dimension 2n, Ti − T j ∈ GLn(Fq). By the fact thatTi − T j ∈ GLn(Fq) if and only if αTi , αT j

for all α ∈ Fn
q\{0}, {T1, . . . , Tqn−1} is a coclique ofΓ; and soα(Γ) ≥ qn − 1.

Supposeα(Γ) > qn − 1 andI = {T1, T2, . . . , Tα(Γ)} is a coclique ofΓ. ThenTi − T j ∈ GLn(Fq)
for all 1 ≤ i , j ≤ α(Γ). TakeW0 = (I(n) 0(n)), Wα(Γ)+1 = (0(n) I(n)) andWi = (I(n) Ti) (1 ≤ i ≤
α(Γ)). ThenWk ∩ Wl = {0} for all 0 ≤ k , l ≤ α(Γ) + 1. The number of non-zero vectors in
⋃α(Γ)+1

k=0 Wk ⊆ F
2n
q is (α(Γ) + 2)(qn − 1) > (qn + 1)(qn − 1) = q2n − 1, a contradiction. �

Combining Lemma 3 and Lemma 5, we complete the proof of Theorem 2.
Let Gv be the stabilizer of a given non-zero vectorv in GLn(Fq). ThenGv is an intersecting set

meeting the bound in Theorem 2. It seems to be interesting to characterize the intersecting sets
meeting the bound in Theorem 2.
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