An Erdős-Ko-Rado theorem in general linear groups

Jun Guo^a, Kaishun Wang^{b,*}

^aMath. and Inf. College, Langfang Teachers' College, Langfang 065000, China ^bSch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China

Abstract

Let S_n be the symmetric group on n points. Deza and Frankl [M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977) 352–360] proved that if \mathcal{F} is an intersecting set in S_n then $|\mathcal{F}| \le (n-1)!$. In this paper we consider the q-analogue version of this result. Let \mathbb{F}_q^n be the n-dimensional row vector space over a finite field \mathbb{F}_q and $GL_n(\mathbb{F}_q)$ the general linear group of degree n. A set $\mathcal{F}_q \subseteq GL_n(\mathbb{F}_q)$ is *intersecting* if for any $T, S \in \mathcal{F}_q$ there exists a non-zero vector $\alpha \in \mathbb{F}_q^n$ such that $\alpha T = \alpha S$. Let \mathcal{F}_q be an intersecting set in $GL_n(\mathbb{F}_q)$. We show that $|\mathcal{F}_q| \le q^{(n-1)n/2} \prod_{i=1}^{n-1} (q^i - 1)$.

Keywords: Erdős-Ko-Rado theorem, general linear group

The Erdős-Ko-Rado theorem [5] is a central result in extremal combinatorics. There are many interesting proofs and extensions of this theorem, for a summary see [4].

Let S_n be the symmetric group on n points. A set $\mathcal{F} \subseteq S_n$ is *intersecting* if for any $f, g \in \mathcal{F}$ there exists an $x \in [n]$ such that f(x) = g(x). The following result is an Erdős-Ko-Rado theorem for intersecting families of permutations.

Theorem 1. Let \mathcal{F} be an intersecting set in S_n . Then

- (i) (Deza and Frankl [3]) $|\mathcal{F}| \leq (n-1)!$.
- (ii) (Cameron and Ku [1]) Equality in (i) holds if and only if \mathcal{F} is a coset of the stabilizer of a point.

Wang and Zhang [8] gave a simple proof of Theorem 1. Recently, Godsil and Meagher [6] presented another proof.

In this paper we consider the *q*-analogue of Theorem 1, and obtain an Erdős-Ko-Rado theorem in general linear groups.

Let \mathbb{F}_q be a finite field and \mathbb{F}_q^n the *n*-dimensional row vector space over \mathbb{F}_q . The set of all $n \times n$ nonsingular matrices over \mathbb{F}_q forms a group under matrix multiplication, called the *general linear*

July 19, 2011

^{*}Corresponding author

Email addresses: guojun_lf@163.com(Jun Guo), wangks@bnu.edu.cn(Kaishun Wang)

Preprint submitted to

group of degree *n* over \mathbb{F}_q , denoted by $GL_n(\mathbb{F}_q)$. There is an action of $GL_n(\mathbb{F}_q)$ on \mathbb{F}_q^n defined as follows:

$$\mathbb{F}_q^n \times GL_n(\mathbb{F}_q) \longrightarrow \mathbb{F}_q^n$$

((x₁, x₂,..., x_n), T) \longmapsto (x₁, x₂,..., x_n)T.

Let *P* be an *m*-subspace of \mathbb{F}_q^n . Denote also by *P* an $m \times n$ matrix of rank *m* whose rows span the subspace *P* and call the matrix *P* a matrix representation of the subspace *P*.

Definition 1. A set $\mathcal{F}_q \subseteq GL_n(\mathbb{F}_q)$ is intersecting if for any $T, S \in \mathcal{F}_q$ there exists a non-zero vector $\alpha \in \mathbb{F}_q^n$ such that $\alpha T = \alpha S$.

In this paper, we shall prove the following result:

Theorem 2. Let \mathcal{F}_q be an intersecting set in $GL_n(\mathbb{F}_q)$. Then $|\mathcal{F}_q| \leq q^{(n-1)n/2} \prod_{i=1}^{n-1} (q^i - 1)$.

For the group $GL_n(\mathbb{F}_q)$ we can define a graph, denoted by Γ , on vertex set $GL_n(\mathbb{F}_q)$ by joining T and S if they are intersecting. Since $GL_n(\mathbb{F}_q)$ is an automorphism group of Γ , this graph is vertex-transitive.

In order to prove Theorem 2, we require a useful lemma obtained by Cameron and Ku and a classical result about finite geometry.

Lemma 3. ([1]) Let C be a clique and A a coclique in a vertex-transitive graph on v vertices. Then $|C||A| \le v$. Equality implies that $|C \cap A| = 1$.

An *n*-spread of \mathbb{F}_q^l is collection of *n*-subspaces $\{W_1, \ldots, W_t\}$ such that every non-zero vector in \mathbb{F}_q^l belongs to exactly one W_i .

Theorem 4. ([2]) An *n*-spread of \mathbb{F}_q^l exists if and only if *n* is a divisor of *l*.

Lemma 5. Let $\alpha(\Gamma)$ be the size of the largest coclique of Γ . Then $\alpha(\Gamma) = q^n - 1$.

PROOF. By Theorem 4, there exists an *n*-spread $\{W_0, W_1, \ldots, W_{q^n}\}$ of \mathbb{F}_q^{2n} . Since $W_0 \cap W_{q^n} = \{0\}$ and $W_0 + W_{q^n} = \mathbb{F}_q^{2n}$, by [7, Theorem 1.3], there exists a $G \in GL_{2n}(\mathbb{F}_q)$ such that $W_0G = (I^{(n)} \ 0^{(n)}), W_{q^n}G = (0^{(n)} \ I^{(n)}), \text{ and } \{W_0G, W_1G, \ldots, W_{q^n}G\}$ is an *n*-spread of \mathbb{F}_q^{2n} , where $I^{(n)}$ is the identity matrix of order *n* and $0^{(n)}$ is the zero matrix of order *n*. Without loss of generality, we may assume that $W_0 = (I^{(n)} \ 0^{(n)})$ and $W_{q^n} = (0^{(n)} \ I^{(n)})$. Then each $W_i (1 \le i \le q^n - 1)$ has the matrix representation of the form $(I^{(n)} \ T_i)$, where $T_i \in GL_n(\mathbb{F}_q)$. For all $1 \le i \ne j \le q^n - 1$, since $W_i + W_j$ is of dimension $2n, T_i - T_j \in GL_n(\mathbb{F}_q)$. By the fact that $T_i - T_j \in GL_n(\mathbb{F}_q)$ if and only if $\alpha T_i \ne \alpha T_j$ for all $\alpha \in \mathbb{F}_q^n \setminus \{0\}, \{T_1, \ldots, T_{q^{n-1}}\}$ is a coclique of Γ ; and so $\alpha(\Gamma) \ge q^n - 1$.

Suppose $\alpha(\Gamma) > q^n - 1$ and $\mathcal{I} = \{T_1, T_2, \dots, T_{\alpha(\Gamma)}\}$ is a coclique of Γ . Then $T_i - T_j \in GL_n(\mathbb{F}_q)$ for all $1 \le i \ne j \le \alpha(\Gamma)$. Take $W_0 = (I^{(n)} \ 0^{(n)})$, $W_{\alpha(\Gamma)+1} = (0^{(n)} \ I^{(n)})$ and $W_i = (I^{(n)} \ T_i)$ $(1 \le i \le \alpha(\Gamma))$. Then $W_k \cap W_l = \{0\}$ for all $0 \le k \ne l \le \alpha(\Gamma) + 1$. The number of non-zero vectors in $\bigcup_{k=0}^{\alpha(\Gamma)+1} W_k \subseteq \mathbb{F}_q^{2n}$ is $(\alpha(\Gamma)+2)(q^n-1) > (q^n+1)(q^n-1) = q^{2n}-1$, a contradiction.

Combining Lemma 3 and Lemma 5, we complete the proof of Theorem 2.

Let G_v be the stabilizer of a given non-zero vector v in $GL_n(\mathbb{F}_q)$. Then G_v is an intersecting set meeting the bound in Theorem 2. It seems to be interesting to characterize the intersecting sets meeting the bound in Theorem 2.

Acknowledgment

This research is partially supported by NSF of China (10971052, 10871027), NCET-08-0052, Langfang Teachers' College (LSZB201005), and the Fundamental Research Funds for the Central Universities of China.

References

- [1] P.J. Cameron and C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003) 881–890.
- [2] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin/Heidelberg, 1968.
- [3] M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977) 352–362.
- [4] M. Deza and P. Frankl, Erdős-Ko-Rado theorem–22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419–431.
- [5] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 2 (1961) 313–318.
- [6] C. Godsil and K. Meagher, A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009) 404–414.
- [7] Z. Wan, Geometry of Classical Groups over Finite Fields, 2nd edition, Science Press, Beijing/New York, 2002.
- [8] J. Wang and Sophia J. Zhang, An Erdős-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008) 1112–1115.