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On parabolic Whittaker functions II

SERGEY OBLEZIN*

Abstract

We derive a Givental-type stationary phase integral representation for the specified Gry, n-
Whittaker function introduced in [GLO2], which presumably describes the S! x Ux-equivariant
Gromov-Witten invariants of Grassmann variety Gry, y. Our main tool is a generalization of
Whittaker model for principal series U (gly )-modules. In particular, our construction includes
a representation theory interpretation of the Batyrev—Ciocan-Fontanine—-Kim—van Straten toric
degeneration of Grassmannian, providing a direct connection between this toric degeneration of
Gr,,,, v and total positivity for unipotent matrices.

Introduction

Quantum cohomology D-module QH*(F1ly) for complete flag manifold Fly of GLy can be identified
with the quantum Toda lattice [Givl], [GK]. In [Giv2] Givental proposed a stationary phase
integral formula for the solution (generating function) of QH*(Fly). Unfortunately, Givental’s
approach cannot be applied directly to description of quantum cohomology of incomplete (partial)
flag variaties, since no relevant Toda lattice associated with a partial flag variaties was known.

Givental’s construction possesses a set of remarkable properties, and particularly it involves a
degeneration of Fly to a certain Gorenstein toric Fano variety. In [BCFKvSI|] and [BCFKvS2]
Batyrev, Ciocan-Fontanine, Kim and van Straten introduced toric degenerations of partial flag
manifolds of GLy, generalizing Givental’s result; they conjectured that the proposed toric varieties
describe the quantum cohomology of partial flag manifolds.

In [GKLO|, |GLOI1] was given a representation theory proof of Givental’s stationary phase
integral formula for the complete flag manifold, including a representation theory derivation of
Givental’s toric degeneration of complete flag manifold in more general context of Lie groups of
classical type. In this note we extend the construction of [GKLO] to Grassmann varieties, giving a
representation theory construction of the toric degeneration of Grassmann varieties Gr,, y proposed
by Batyrev, Ciocan-Fontanine, Kim, van Straten in [BCFKvS1] and [BCFKvS2].

The key obstacle in representation theory approach to quantum cohomology of homogeneous
spaces until recently was an absence of a relevant Toda lattice associated with partial flag man-
ifolds. Recently such a quantum Toda-type lattice was proposed in [GLO2|, using a generaliza-
tion of the classical Whittaker model for principal series representations of U(gly). The solution
\Pg\m’N) (21, ...,zN) to the quantum parabolic Toda lattice was defined in [GLO2] as a certain matrix
element in principal series representation, and it was referred to as parabolic Whittaker function, or

Gry,, n-Whittaker function. It was conjectured in [GLOZ2] that the specialized parabolic Whittaker
function, \Ifg\m’N) (x,0,...,0), describes the S! x Uy-equivariant quantum cohomology of Gryp, v, and
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this conjecture was verified in the case of projective variety Grq y = PN=1. This conjecture is sup-
ported by an observation that the specialized symbol L(z,0,...,0; p1,...,pn) of the Lax operator
associated with the parabolic Toda lattice reproduces the small cohomology algebra ¢H* (Gt n)
in the form of [AS] and [K].

In our main result, Theorem 1.1, we propose a stationary phase integral formula for the spe-
cialized Gr,, y-Whittaker function \I/g\m’N) (2,0,...,0). Our basic tool is a generalization of the
classical Whittaker model for principal series representations of U(gly), which extends the con-
struction of generalized Whittaker model from [GLO2|. This result should be compared with the

Mellin-Barnes integral representation for \I’g\m’N) (,0,...,0) constructed recently in [O]. The co-
incidence of the two integrals in the case Gri y = PN-1 is evident due to a simple transformation

of integration variables. For generic Gr,, v an identification of the two integrals involves a more
delicate description of the integration contour of the stationary phase integral than we do in this
note; this will be done in a separate note.

Moreover, according to [GLOZ2] the two integral representations for \Ilg\m’N) (2,0,...,0), the

stationary phase one and the Mellin-Barnes one from [O], should be presumably identified with
certain correlation functions in the two, type B and type A respectively, mirror dual topological field
theories. A detailed analysis of the two integral representations of the Gry, y-Whittaker function
in the framework of [GLO2] will be given elsewhere.

Our stationary phase integral representation of Gry, y-Whittaker function is naturally related to
a toric degeneration of the Grassmannian (Corollary 1.2). Namely, we identify the function defining
the toric variety@ (in [GLOZ2] it is given by the superpotential in the mirror dual Landau-Ginzburg
model) with phase function F,, y in our integral formula when the Upy-equivariance parameters
A= (A1,...,A\N) are specialized to zero.

Our construction of stationary phase integral uses the Gauss-Givental realization of universal
enveloping algebra U (gl ) in the space of functions on totally positive unipotent (upper-triangular)
matrices introduced in [GKLO]. It should be emphasized that in our representation theory approach
the involved toric degeneration of the (partial) flag manifolds is directly provided by the total
positivity property of the Gauss-Givenatal realization of U (gl ); this connection was established in
[GLO1] for complete flag manifolds of Lie groups of classical types. One may also refer |[GLO1] for
a detailed analysis of connections between Gauss-Givental realizations of U(g) in general setting
and total positivity phenomenon [L].

The paper is organized in the following way. In Section 1 we introduce a generalization of the
standard Whittaker model, and define Gr,,, y-Whittaker function.In Theorem 1.1 we propose a sta-
tionary phase integral representation for \Ilg\m’N) (2,0,...,0), which extends the Givental’s integral
formula for complete flag manifold Fly. Next we describe the arising toric degeneration of Gr, n
in Corollary 1.2, and identify it with the Batyrev—Ciocan-Fontanine-Kim—van Straten construc-
tion [BCEFKvSI], [BCEFKvS2]. In Proposition 1.1 we derive the Lax operator for the associated
Gr,y,, N-Toda lattice, and in Proposition 1.2 we find out the first two quantum Hamiltonians of the
Gr,,, n-Toda lattice. The second half contains detailed proofs of our main results. In particular, in
Section 2 we review on the Gauss-Givental realization of U(gly) from [GKLO|] and construct the
Gr,,, n-Whittaker vectors; and in Section 3 we verify the integral formula from Theorem 1.1. In
Section 4 we prove Propositions 1.1 and 1.2.

Acknowledgments: The author is thankful to A. Gerasimov and D. Lebedev for very useful
discussions.

n [BCFKvSI] it referred to as ”Lax operator of Grassmannian”; one should not mistake this function with the
matrix-valued differential operator £(x,0,) in the present work



1 The Gr,, y-Whittaker functions

A Whittaker model for principal series representation of universal enveloping alegbra U(g) involves
a choice of an N-dimensional commutative subalgebra a and the Lie algebra decomposition g =
u_®dadu,. Then choosing a pair of characters x4 : uL — C one can reduce the space of functions on
G = Lie (g) to the space of functions on the commutative subgroup Lie (a). In the case g = gl one
uses the Gauss triangular decomposition of gly with a being the diagonal subalgebra of semisimple
elements, and uy being the nilpotent subalgebras of upper-triangular matrices

In |[GLO2] was proposed a generalization of the standard scheme with a C gly being a com-
mutative subalgebra, containing both semisimple and nilpotent elements, and similarly for us. In
the following we use another generalized Whittaker model, using another choice of commutative
subalgebra a = h(mN) < gly. In special case of Gri y = PN=1 our choice of the commutative
subalgebra h(™) C gl coincides with the one used in [GLO2] and [O]. For generic m the two
commutative subalgebras differ by a simple automorphism, and thus the generalized Whittaker
model used in our calculations below is different from |[GLO2].

Let us consider the triangular decomposition of the Lie algebra gly of real (N x NN)-matrices
with the standard set of generators E;;, ¢,7 = 1,...,N. Namely, let by be the subalgebras of
upper- and lower-triangular matrices, and ny = [by, by] C by are the radicals of the triangular
subalgebras. Then the following holds:

gy =n_®hdny.

Next, let A = {a;; i € I} be the set of simple roots indexed by I = {1,2,..., N — 1}, and Ry
be the set of positive roots. Given an elementary subset {m} C I, let us associate with m the
following modification of the triangular decomposition:

gl = n) g p) g ), (L)

where the commutative subalgebra h™N) is spanned by

Hy = En+...+ Enun, Hi=FE, i=2,...,m;
Hi=FE;n, j=m+1,...,N—1; Hy = Epytme1+ ..+ Exn . (12)
The Lie subalgebras nim ) are defined by their set of generators as follows:
G <Em+1,1; Ep,i=2....m k=i,... N: (1.3)
Ejp1j, j:m+1,...,N—1>,
and
ngfn’N) = <Ei_17i, 1=2,...,m; En N; (1.4)

By, j=m+1,... N1, k:l,...,j>.

One may note that

N(N —1)

dim h™N) = rank gly = N, dimn(im’N) = dimng = 5

2 Alternatively, one can consider the Iwasawa decomposition gly = ¢ @ a @ uy with € C gly being the compact
subalgebra; then choosing characters of £ and 14 one can obtain another reduction of the space of functions on GLx



Let H™N) and NJ(rm’N) be the Lie groups corresponding to the Lie algebras §(™N) and n(f”’N),
then an open part GLY; (the big Bruhat cell) of GLx allows the following modification of the Gauss
decomposition:

A principal series representation V) admits a natural structure of ¢/-module. Let us assume
that the action of the commutative subalgebra h™ c gly in V), is integrable to the action of
commutative subgroup H(™N) ¢ GLn(R). Below we introduce a pair of elements, 91, ¥r € V),
generating a pair of Whittaker submodules in V), Wy, = Uv)r, and Wr = Utg.

Definition 1.1 The Gry, n-Whittaker vectors 11, and g are defined by the following conditions:

Epi11%n = hlr;

EkZ’I;Z)L:()) 222,,7’)1,]{3:2,,]\7, (16)
Ejy%r = h™ e, j=m+1l... N—1;

Ei—l,i¢R = _h_1¢R7 Z:277ma

Eyjbn = j=m+l,. N=1, k=1,..j; (1.7)

0,
Ekij = (_1)E(m7N)h_1wL7 ]:m+177N_17 k= 177]7

where e(m, N) is an integer number and h is an indeterminant.

Lemma 1.1 The introduced Gry, n-Whittaker vectors define characters of the subalgebras uim’N):
x+ o o™V —c, x-: ™Y o, (1.8)

Proof: One can readily check that the defining equations (L) are compatible with Lie algebra
(m’N); and the same is valid for (7)) and nim’N). a

relations in n

Definition 1.2 Given a pair of characters x+ of the opposed nilpotent subalgebras nim’N), the

Gry,, v - Whittaker function associated with the principal series representation (WA, VA) is defined as
the following matriz element:

m —z m(N—m) m, m,
UM (@) = e T (Y m (g aw)) v, (1.9)

where the left and right vectors solve the equations (L) and (L) respectively, and . Here g(x) is
a H™) -valued function given by

g(z) = exp { g: l’sz} ; (1.10)

1=1

where x = (x1,...,xN) and the generators H;, i =1,..., N are defined by (2.

In the above definition (, ) denotes a non-degenerate pairing between the Whittaker submodules:
WL X WR — C.



1.1 Stationary phase integral and Toric degeneration of Gr,, x

This part contains our main result; namely, we introduce the stationary phase integral repre-
sentation for the Gr,, n-Whittaker function, and then establish a direct connection to the toric
degeneration of Grassmannian Gr,, y proposed in [BCFKvSI].

Theorem 1.1 The specialized Gry, n-Whittaker function (L9) has the following stationary phase
integral representation.

N Fm,N (Z)
W(Am )(xN71,07...,0) = / wm7N (& 3 (1‘11)
C
where
m N-—m min(m,n)
]:m,N(Q) = Z(ZAN—m—i-k):EN,I + 1 Z (/\ - >\n+1 Z Tn,i
k=1 n=1
m—1 min(N—m+n,m)

+ Z (AN=m+n — AN—m+n+1) Z LTN—m+n,i

n=1 i=n+1 (1 12)
1 m N—-1-m
—Tmm LTN—-m,1 TN, Titk—1,k—Titk, k
_ﬁ<e + eEN-m,1 N1+Zze+klk +k, k
k=1 =1
N—mm—1
+ Z Z ewk+i,i+1_xk+i71,i> .
k=1 =1
and
N —m min(n,m) m—1 min(N—m+n,m)
wmy = ] H d,, g, - H 11 AN g, i - (1.13)
n=1 i=n+1

The integration contour C is a slight deformation of R™WN=") jn C™(N=7) sych that the integrand
decreases exponentially.

Proof: The proof is given in Section 3. O



Specifying the parameters A, =0, n =1,..., N, the function F,, y(z) admits a simple combi-
natorial structure. Namely, let us consider the following graph:

TN, 1
ITN-m,1 IN—-1,m
(1.14)
Z21 Tm+1,m
11 f]}'m7m — 0

Then let us associate with every arrow = — y an exponential function eV~%; to any interior vertex
xy,; in (LI4) let us assign a pair of exponential functions ay ; = e"¢~17%ki and by ; = e"k+1. 417 Thii,
Besides, let ay = e*N-m,17%N.1 and b, = e~ *¥mm,

Corollary 1.1 The function Fp, n(z) (LI2) equals to the sum of exponential functions for all the
arrows in the graph (LI4):

N—m m—1 N—mm-—1
Fm,N = an + Z Ak, m + by + Zbl,i + Z Zak,i+bk,i-
=2 i—1 k=2 i—1

Actually, the graph (.I4)) defines a toric degeneration of the Grassmann variety [BCFKvSI],
[BCFKvS2]. Namely, the torification of Gr,, y can be identified with a spectrum of the algebra
of functions in ag, K =2,..., N —m,i=1,....mand by;,n=1,.... N—-m,j=1,...,m—1
modulo the ideal of relations:

ak,ibk—l,i = bk,iak-i-l,i-l-lu k:27’”7N_m7 Zzlaum_lv
m—1 N—m (1‘15)
ame HaN—m,i H bk,m = 4dq, q:e_ml'
=1 k=2

1.2 Quantum Gr,, y-Toda lattice

Actually, the Gr,, y-Whittaker function defines a D-module introduced in [GLO2] and called quan-
tum Gr,,, v-Toda lattice. This D-module is provided by the infinitesimal action of the universal

enveloping algebra U(gly) in our representation (my, V). In this part we describe the D-module
Dy, n defined by (L9), and then identify D,,, y with the Gr,, y-Toda lattice from [GLO2].



The action of the center Z C U(gly) of the universal enveloping algebra in principal series
representation (my, Vy) produces the following action of differential operators, the parabolic Toda
lattice Hamiltonians, on Gr,,, y-Whittaker function:

N N ... m(N-m)
H N (@,80,) - 0N (@) = 1 e T (yp, my(eng(2))vr) (1.16)
fork=1,...,N with ¢, k =1,..., N being the Casimir generators of the center Z. The first two
Casimir elements are given by:

N N N
Ci =) Ej, Cy =) (EiiEjj — EjiEyj +Pipj> ~ Y piEii, (1.17)
i=1 =1 i=1
i<j

where p; = (N +1-2i)/2,i=1,...,N.

Proposition 1.1 Action of the first two Casimir generators (LIT)) have the following explicit form:

o _ D0
Hy _haxl +h8xN’
(m,N) 872 . _éi,li i
Hy ) = h2{8$18w n 1<i<zj:<m (( )1 axi) <% &Ej>
9 1-6; 5 O m 9
! m+1<§i;j<N <x,a—%> <xj Na—x]) B kzzl(k B 1)%5—% (1.18)
9 - 0 - 1-6; n_1 O
- — k)= — h )1 vt O
k—Eﬂl:-‘rl(N—i_l )iﬂkaxk} { Z:1( T - +] Emzﬂ T }

2
(1) ek N) Lo b v e P (v gy _ o) (v —3).

Proof: The first statement is trivial. The proof of the second formula is given in Section 4. O

Remark 1.1 The Hamiltonians (LI8) coincide (up to signs in accordance with the choice of signs
in (LI0) ) with the first two Gry, n-Toda Hamiltonians from [GLOZ2]. Let us emphasize that although
for generic m the Gry, n-Whittaker vectors (L) and (L) are different from the ones introduced
in [GLOZ2J, the two (generalized) Whittaker models: the one from [GLOZ2], and its modification
introduced above, produce the same Gry, n-Toda D-module. In particular, the Hamiltonians (LI6)
are identical to the parabolic Toda Hamiltonians from [GLOZ2], and after specifying xo = ... =
xn = 0 the symbols of Hamiltonians ’Hlim’N), k=1,...,N generate the small quantum cohomology
algebra ¢H* (Grp, n).

Let Dy, n be the D-module generated by the Hamiltonians ’H,(gm’N), k=1,...,N as a module
over the algebra of differential operators D(ex, O, h):

Dy ~ D(%,0,, 1) /Toun » T = (MM (@,0,), .., HN (2,0,) ) .

Equivalently, the D-module D,,, x can be defined in terms of the quantum Lax operator, the fol-
lowing Mat (N, R)-valued differential operator:

N
m —x m(N—m)
Lledg) - @) = B Y ey ET (b, ma(Eyg(2) V), (1.19)
i,j=1
where (€;;)gn = 0idjn, fori,j,k,n=1,..., N are the matrix units.



Proposition 1.2 The quantum Laz operator L(x1,...,xN; Opy,-..,0y) = [|Lijll, 4,5 =1,...,N
has the following form:

£k,1:h8mk, k’:l,...,m; £m+1,1:_17
£k71:0, k=m+2,...,N; ﬁkJ:O, 7=2,....m, k=j,...,N;
Lot1,a = —1, Lioa=0, k=a+2,....N,a=m+1,...,N —1;
m
Liky = —0k2+ (1 =0k, m)Try1 + T10z + Zxkxnaxna k=2,...,m;
n=2
Lyi = 0i k41 + hxi0y, , k=2,....m—1, i=k+1,...,m;
(m,N) aN—T (1.20)
Liq = —(—1)V"Vg,xy,e N0, Lyoe=0, k=2...,m—-1,
Em,a = (—1)E(m’N)l‘a€wN_m1, a=m+1,...,N —1;
Loy = —(DTm M=o
Log = hxe0y, , LonN = Nh0z,, a=m+1,...,N—1;
N-1
LNN = hOpy — > Talh, .
a=m-+1
Proof: The proof is given in Section 4. O
The symbol of the quantum Lax operator is referred to as the Lax matrix L(z1,...,ZN; P1,--.,DN)-

Corollary 1.2 (i) The Lax matriz L(z; p) of (L20) and the Lax matriz introduced in [GLO2]
have identical characteristic polynomials.

(i1) The specialized Lax matriz L(x1,0,...,0; p1,...,pn) = ||Lijl|, 4,5 = 1,..., N is given by

Lk,l = Pk, k::l,,m, Lm—l—l,l = _17
Lyi =0, k=m+2,...,N; Lp; =0, j=2,....,m, k=j,...,N;
Loy1,a = =1, Lag = Liq = 0, k=a+2,...,.N, a=m+1,...,N—1; (1.21)

Li7i+1:—1, z':l,...,m—l;
Loy = —po, a=m+1,...,N —1; LN = _(_1)E(m,N)e—:v1
It defines the small quantum cohomology algebra q¢H*(Gry, n) in the form of [AS)], [KJ.

Proof: One can readily check that the matrix ||L;;|| and matrix A in [AS] defining ¢H*(Grp, n)
have identical characteristic polynomials, and thus det (X + ||L;;||) is the generating function of the
ideal for the small quantum cohomology algebra. O

2 Gelfand-Zetlin graphs, paths, and Gr,, y-Whittaker vectors

In this section we recall the Gauss-Givental realization of the universal enveloping algebra U =
U(gly) introduced in [GKLO]. In the second part of this Section we apply this construction to
derivation of the Gr,, y-Whittaker vectors, solving the defining relations (L6 and (I7).



Actually, the construction of Gauss-Givental realization of principal series U/-modules originates
from the total positivity phenomenon in unipotent varieties developed by Lusztig [L]; a detailed
study of connections between Gauss-Givental realizations of ¢(g) and total positivity can be found
in [GLOI1].

2.0.1 Let My be the space of meromorphic functions in e*nk, n=1,... , N—1; k=1,...,n, then
the standard generators E;j;, 7,7 = 1,...,N of gly admit the following realization by first-order
differential operators in My:

i1 9 N1y
E.. = . -+ ,
bt Hi kzzl OTN4h—ik kz::l Oy, ;

& ) 0
B = — et 30 f boooe
n=1

= LOrN itk ke OTN-1-itk k-1

N—i n 9 9
Eii1; = Z eTnti, i1 Thio1,i [,Ui — Hit1 + Z { }] ,
n=1 k=1

OTitk—1,i  OTiph—1,i+1

where xy ; =0,7=1,..., N is assumed.

The universal enveloping algebra acts in V) C My by differential operators ([2.1) with

N+1
o= dn = PR pa = n=1...,N, (22)

and the Whittaker submodules Wy, r C V) C My are spanned by I e"kiTkithr p with

1<k<i<N—1
ni; € Z. The non-degenerate pairing between the Whittaker modules is given by

(P1, ¢2) = /CMN(HJ)E@, o1 €EWL, ¢2 € Wh, (2.3)

where the integration contour is a slight deformation of RNW-1/2 jn CN(V-1)/2 guch that the
integrand exponentially decreases for ¢1 = 11, and ¢2 = ¥g, and the measure uy(x) is given by

N-1 k

pn(x) = H He‘mk’idxk’i. (2.4)

k=1 1=1

One can readily check that thus defined pairing (2.3]) between Wy, and Wy possesses the following
property:

<X : ¢17 ¢2> - _<¢17 X '1/}2>7 X e g[N7 ¢1 S WL7 ¢2 € WR- (25)

2.0.2 The Gauss-Givental realization of U (gly) possesses a distinguished combinatorial structure



arising from the Gelfand-Zetlin graph (see [GLOI1]):

IN,1

|

TN-11 —> IN,2

L

T —> -, . — IN,N-1
11 ——— X922 TN_1,N-1 —> INN

Namely, let Zy be the set of vertices in the Gelfand-Zetlin graph:

In = {(n,j) €Zi;1<j<n<N};

there is a tautological embedding Z,,, C Zn, for any 0 < m < N. Given (n,j) € Zn_1 C Iy let

A}, ; be the following function attached to a vertex z, ; in (2.6):

r
AT — E I | emn+ia7a,j+ia_xn+ia7a71,j+’ia
n7-7 ’

I, a=1

where the summation goes over the strict partitions

I, = (i1 <...<i,) €2, iw<N-n+a a=1,...,1.
The function A}, ;(k) satisfy the following evident relation:
-1 n il — Tl i
AL = Angrjpr + Ap jyg eI
Also for (n, j) € Iny—1 C Iy let us introduce the function B, ; given by
k+j—n—1
Bn7](k7) — Z exn,j_mn+1,j H emn+ia+a,j+za —Tntig—a+l, jtia ,
I a=1

k+j—n—1

where the summation goes over the partitions
k+j-—n—1 = (11 <...< Zk—i—j—n—l) S Z—i— :
The function B, ; satisfies the following relation:

By, j(k) e tti™mi = By (k) 4+ Bpyo,jr1(k).

Actually, the relations (2.8) and (2.I0) are direct consequence of the ”box relations” (LI5]).

10

(2.7)

(2.8)

(2.10)



2.0.3 With respect to an obvious symmetry of the graph (IL14]), let us introduce the following pair
of functions:

r—1
TA;’J. — E eTnt1, j+1Tn, j H ePntiatatl jtatl ~Tntiaa jta (2.11)
Ir_, a=1
where the summation goes over partitions
I' = <...<i_1)€ Z;OI, o<N-nn—r, a=1,...,r—1;

and

E H emn+za a+1,j+l—a " Tntig—a,j— a, (212)

—k o= 1
where the summation goes over strict partitions
g = (ih<...<ijy) ezl F, in<N-n+a, a=1,...,j—1.

Analogously to the the functions A} ; and B, j, the "box relations” (LIH) imply the following
relations for the introduced functlons (IQ:III) and (2.12)):

TA mn+1 Jj+1—Tn, 5 —

T
— An+1 Jj+1 + An+2 ]+17 (213)

and

"Bpj = "Bni1,j + "By joqefrthiT it (2.14)

2.0.4 In fact, the summations in (2.7), (213, and ([2.9]), (ZI4]) can be readily interpreted as sums
over paths in Gelfand-Zetlin graph. More precisely, the functions

Py (k) = AT By (k). TP = AR, (2.15)

are represent sums over all paths (with certain restrictions) of length r passing through a vertex x,, ;
on the Gelfand-Zetlin graph; the paths from P, ;(k) are starting at horizontal line {z4,5; a—b = k},
and the paths from TP;j(k’) are starting at vertical line {z4 p; b = k} in graph (2.6]).

Moreover, the generators E;; of Lie algebra gly in Gauss-Givental realization (ZIJ) admit a
distinct description in terms of certain paths in graph (Z6)). Namely, for any vertex x, ; let us
introduce the following pair of differential operators:

Dn,j:L."FjZ_f( 8... - 8>
i=1

amn—i—l—],l 8xn—l—l—l—z—],z-{—l axn—i—l—i—z—],z
2.16
o o9 9 (210
TR
Db o= g — a1 + —— + ( - )
i T T g 2 Oritjj  OTigjjm

Proposition 2.1 The Lie algebra generators E;; have the following combinatorial realization in
terms of the Gelfand-Zetlin graph (IQEI)

n—1
_ k+1 T -
En,j—z Z Pk—l—zk Dk—l—zkv n>j;
k=j =0

(2.17)

. _
= E (_1) E :P]Z\/-‘:Lk i+7, j+1(N - 7'L) DN—i+k+j,j+1 9
k=1 =0

forn <.

11



Corollary 2.1 The elements E,, 1 and E,, y have the following differential operators in the Gauss-
Givental realization (2.1).

Enn = Ni_n(—l)’““i Pris fﬂ# + Z( i )}
i=1 Jj=2

=1 axk—l—z—l,l axk+z—2,z axk+z—2,z

(2.18)

n—1 )
0
B, = Py {Mk—uk+1+ + ( )},
" kz Z +h OTkijk  OThijbi1

7j=1
where P! := Pr (1), and TP" := TP} ;(N —1).

Proof: Direct calculations of commutators, using (2.I)). O

2.1 Derivation of Gr,, y-Whittaker vectors

In this part we solve the defining equations ([.6) and (7)) and find out the Gry,, n-Whittaker
vectors.

Proposition 2.2 The following Grp, - Whittaker vectors satisfy the defining equations (LG) and

(LD in realization 2.1I):

N—1
N 1
(Lm ):CL exp{ Z — Hn+1 anz+ZMN1k$N1k1
m7 TL:].
1 m N—-—m—1 N-1
_E(efom,l +Z eTith—1,k—Tithk, k + Z [efol,k (2_19)
k=1 i=1 k=m+1
N—k—1
+ Z eTitk—1,k—Titk, k])}
i=1
and
( ) 1 N-1 N—mm—1
N _ o
T/JRW = B eXP{ Z METkE — —< Emm 4 Z Zewk“ﬂ“ Thi=1,
O, k=m+1 k=1 i=1
(2.20)
m—1 k—1
+ |:e_fol,k + ZexN7k+i,i+1_xN7k+i—l,ii|>}
k=1 i=1
where
N N
R | B G N COVE Cmn = [I WV T(pi—uy).  (2.21)
i, j=N—m+1 ij=m+1
1<J 1<j

Proof. Our proof of Proposition 2.1 is based on an verification of the defining equations (L.0)), (I7),
using the Gauss-Givental realization (2.1]).
Actually, the expressions (2.19]) and (2.20) (with specialized parameters yu, =0, n=1,...,N)

have definite interpretation in terms of arrows in (2.6)) defined by the equations (L)), (I7), respec-
tively. In this way the graph (L14)) is a subgraph of (2.6]), built of the corresponding arrows from

2.19) and @20).
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2.1.1 At first let us observe that the action of the Cartan generators E;;, i = 2,..., N — 1 fixes a
dependence of the Whittaker vectors on the parameters p, ..., uy). Namely, the following holds:

N-1 n m—1
Ejy. - eXP{ - Z (tn — fin+1) Zl’m + Z NN—l—kxN—l—k,l} =0
n=1 i=1 k=1
for k=2,...,m, and
Euq - € Wma1Zmit mirtotpn ey -1, N-1) = () a=m+1,...,N—1.

2.1.2 Besides, the action of differential operators E;; have the following properties:
By - kT Itk = (), k=2,...,m,
whenn=2,...,N—m, k=2,...,m, and
Eqq - efntt 1™k — (), a=m+1,...,N—1,
whenn=2,.... N+1—-—m, k=1,...,m — 1. Also, taking into account that Fii, k = 2,...,m

annihilate any function in z, 1, n =1,..., N —m, and E,,, m+1,..., N —1 annihilate any function
in Zp,, n=1,...,m, one can deduce that (2.I9) and ([2:20)) satisfy

Eg™ =0, k=2,...,m; B =0, a=m+1,...,N—1.

2.1.3 Next for ¢(m M one finds out the following:

By ™) = - () k=2,....m, (2.22)
since
Eijpq-e eV o —% e~ le TN i=1,...,N—1,
and
1 m—1
Eiin1 -exp{ -5 Z EFN+j—i, j+1TN+j—i=1,5 | exN+jfi+1,j+1—xN+j7i,j} =0, i=1,...,N-1
j=1

for any m =1,..., N — 1, is due to the "box relations” (LI5l1):

EUN+I=i=1, TEN+=i,j . @EN+j =i L TIN+=i=1,§ = @TN+j—itl jhl TEN+j =05 . @TN+j—i, j+l ~EN+j—it 1, 41

where ePN+i—i-1.i~TN+i—i.j with e?N+i—i.j+17FN+i-i+1.5+1 come from coefficients in F; 41,
and e*N+i—i i+l TNt —i-1j with e"N+i—it1.i+17PN+i—i.i are from the exponent in (2.20).

2.1.4 Similarly for the left (m, N)-Whittaker vectors one obtains:
1
Bap1, o™ = _gﬂ’(Lm’N) ’ a=m+1,...,N—1, (2.23)
since for E;-) +1,; being the generators (1)) with specialized parameters y; = 511 = 0:

_frl e*N—-1,j _h1e*N-1,j

, 1 : .
E]_H] :—ﬁe , j=1...,.N—1,
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and
r—1
E]Q+17j . exp{ 7 E eFiti, i TFj+i-1j exj+1+i,j+1—xj+i,j+1} =0, j=1,N—-1,
i=1

for any r =2,..., N — 1 holds due to the "box relations” (LI5l1):

U1 T L L @it I T L = @@t L TG T, L T G
where e®i+ii+17%i+i-1 7 with e®/+1+47+17%+i.7 come from coefficients of ;1 j, and e®iti-177%i+ij
with e®i+1t+ii+17%i+i.5+1 are from the exponent of (2.19)).

2.1.5 At last to verify the remaining defining relations

N - N N - N
Em,N¢g7 = _h 11)[)717;, ’ Em+1’1¢2ﬂ, = _} 1¢£n,
for the (m, N)-Whittaker vectors, we use the explicit form (2I8]) of the generators E,, y and

Ernt1,1 and apply the relations ([2.8), (Z13), and (Z10), (ZI4). O

3 Proof of Theorem 1.1

In this part we apply the results of previous Section to derive the integral formula (LIII) for

\If&m’N) (2,0...,0). Namely, into (I.9) using (2.3]) one readily obtains:

g\m N)(x,O. ,0) = e—xw< (Lm’N) 7 ex(E11+---+Emm)1/)§%mvN)>

N-1 (3.1)

H e Imiday, ; ¢?’N(&)ew(E“Jr“'JrEmm)”L/J%m’N) (z).

Il
o
3
2
3
C:\
A

n=
Then one picks from (21)):

N—m min(m,n) m—1 min(N—m+n,m)

Ey+...+ mm—ZukJr Z Z ax +Z )

n=1 i=n+1

and substituting this together with (Z19) and (220) into ([BI]) one finds out the following:

0

axN—m—l-n,i

9

N—-1 n S — Nt
Zﬂlelekl— > HrTkk

= /HHd:E"Zekl k=m+1

Ncnlzl

N-1 n m
BT S ST

n= i=1 k=1

[y

N—k—-1

m N—m—1
+ Z Z elith—1,k~Tithk,k | Z |:1'N—1,k + Z exi+k—1,k_xi+k,k:| (3.2)
k=

1 =1 k=m+1 =1
N—-mm-—1

—Tmm + E g exk:Jrz i+1 " Th4i—1,1

k=1 =1
m—1 k—1

+ |:e_fol,k + § exN7k+i,i+1_xN7k+i—1,i:|>} .

k=1 i=1
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Next, let us integrate out the variables xy_ ;, k =1,...,m—1,i=1,... , m—kand T4k, myj, k =
S N—m-—-1,1=1,... k:

m—1m—k m—k

H Hd:nN k,i Hexp{ (AN—k — AN—k+1) ZxN ki

)klzl 1=1

m(m—1
3.3
— (LAN—1—k + PN—1—-k)TN—1—k,1 (3.3)
1 k—1
—TN_1,k TN ki, it 1~ TN—k4i—1,i _ R
——le k4 e ’ ’ = C, N>
h ‘
i=1
and
N—m—1 k N—m-—1 k
IT ITdwminsrs ] exp {Z()‘m—l—k ~ Amtki1) D Tk, mbi
(me)(mefl) k?:]. =1 k‘zl =1
(N=m)(N=m—1)
3.4
- (Z/\m-‘rk - pm+k)$m+k,m+k ( )
1 N—m—k—1
. ﬁ <€mN*1’ mik 4 Z emm+i+k71,m+k_mm+i+k,m+k> } — Cr%:,,N )
i=1

Finally, making cancelations of the normalization constants Cﬁ N and C N n B2), one arrives
to (ILI1]), and thus completes the proof of Theorem 1.1.

4 Proof of Propositions 1.1 and 1.2

In this part we prove Proposition 1.1. Explicit form (L20]) of the quantum Lax operator £(z; J)
readily follows from a simple calculation.

Lemma 4.1 The adjoint action of g = g(z) € H™N) ¢ GLy ([I0) in Mat(N,R) reads as
follows:

m
9 'Eng = En — Y a1Ega;
k=2

m
9 'Eikg = Erg + xpE — Z%(Enk +2kEni), k=2,...,m;
n=2

9 'Erng = Exn + 2,Bk1, kn=2,...,m; (4.1)

m
g_lEl,ag = "N |:E1,a + xaEl,N - Z Tk (Ek,a + $aEk,N)] >
k=2

g_lEkﬂg = ewN_ml[Ek,a—kxaEk,N], k=2,....m,a=m+1,...,N—-1;

g_lEa,bg = FEop + vpEgn, a=m+1,...,N-1,b=a,...,N—1.

Proof: Expanding the functions Fj;(z) = g(x) "' E;;g(z) by the Taylor formula one arrives to (&)
O
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4.1 Next, let us introduce the following notation:

(Xg) = (Yo, m(X)ma(9)vr) | X eU(gly), g=g(z)e H™N .

Thus, using (1)), and taking into account the property (23] with the defining equations (IL.6]),
(L), one can find the following:

(Eug) = (B + .. Z (Exkg) = 0u,(9);
k=2

(E1k9) = (E1k9) + zx(Eng) + Z:En(iﬂk(En,lg) —(Enk9)) = { — Spoh ™t
n=2

+(1 = Spm)h o + TR0y + Zxkxnaxn}(m , k=2...,m;

n=2
<Ek,ig> = {_6i,k+1h_1 +xi8xk}<g>, k:2,...,m, z':k—l—l,...,m; (4‘2)
(Bra9) = —(—1)6(m’N)a;aa;memN_x1,
(Em,a) = (_1)e(m,N)xaemN—9c17 a=m+1,...,N—1;
<E1Ng> = _(_1)e(m,N)xmexN—:c17 <Em,Ng> — (_1)e(m,N)e:cN—x1;

<Ea7ig>:$iaxay a:m—l—l,...,N—l, ’L:CL”N_l’

(Enng) = {3xN - Nz_:l waaxa}<g>

a=m-+1

At last, using (2.5, together with the defining equations (IL6]), (7)) one obtains the expressions
for the remaining matrix elements of the Lax operator (.20]).

4.2 Finally, let us adopt the following notations:

N N
Cr = Z Ejj, Crir = Z EjiEij Crr = ZPiEii§
i=1

7,j=1 i,5=1
1<J 1<J
and therefore (LI712) reads
Cy = Cr — Ci1 — Cri1 + 02(p) .

Then one has

Cr=(FEu+...+Enm)( Emit,mi +...+ Enn) + Z Ey+. mm ) Ejj
j=2
No1 " (4.3)
+ Z Eii(Em+1,m+1+---+ENN) - Z Z jja
i=m-+1 1,j=2 i,j=m+1
i<j i<j
and similarly to (4£.2]) one finds out:
2 N-1 82 N-1 9 9
=t~ (s ¥ o 5 (o) ()
(Cr9) = {C19) = \gromm T i:%;lx i M;ﬂ %) #9557 19) (4.4)
i<
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with

C} = (Bii+.. .+ Epm) B 1, me1 + ... + Enn)

N = (4.5)
+ Z Eiif(Em+1,m+1+ ...+ EnN) — Z EiiEjj . .
i=m+1 b=l

i<j

Next, let us observe that for 1 < k < m one has

_ A 1—0g 2 9
(Ex1E1kg) = {x’“axlaxk — (—wp_1) 9ar
) ) (4.6)
+ Z:: [x"a -t <:”’fa_:gk>< "axn>”<g>’
hence, for
m N-1
(Crrg) = Z(Ek,lEl,k9> + Z (Eiv1,iEi iv1) + (Emt1,1E1,m+19) ,
k=2 i=m-+1
one obtains
m 8 m—1
Ey E =3 (61— 1 + ) z
kZ:2< k1 1’kg> { <( 1 )8 ) 222 k(‘)azkﬂ)
i H? " 1-6;, O 0
+Z[(k_1)xk8 + 83:%] + Z ( ¢ 8:@)( T 0z >}(g>,
k=2 1;.g<—jl (47)
N-1 N—2
0 ., 0
Z (Big1,iEi iv1) = { Z $i+18—$i + (1= 0m, n—1)h N1 }<g>7
i=m+1 i=m+1
(Em+1.1E1 my19) = (—1)0m N1t e N) =2 (g NI=0m1 (g0 YI70m No1 BN T ()
At last one derives
0 0 = 0
<C[[[g> = {pl(ﬁ—xl — %> + i:%;l(pl + Pz)xza—xz}(g% (4-8)

and collecting (£4]), (£7) and (48] one arrives at (L.I82).
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