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1 Introduction

The majority of economic situations can be described, in essence, in terms of
an agreement between two individuals over a choice set, e.g., when this choice
set is a space of monetary payoffs or a lottery-space over two outcomes. In
this way, the provision of a formalization of the act of agreement between two
individuals is of fundamental relevance for understanding the economic mech-
anisms. This paper provides such a formalization of the agreement, leading
to the concept of the consensus functional equation, by supposing that X 6= ∅
is the choice set, the same for both individuals, and F : X2 = X × X → X
is the map that expresses the agreement between them. In words, if individ-
ual 1 chooses alternative x ∈ X while individual 2 chooses alternative y ∈ X,
then F (x, y) is the alternative in X that the two agents agree. The consensus
equation is based upon the following simple idea. If an agreement is reached
between the two individuals, then this agreement should be sufficiently robust
that if either of the individiuals changes her/his initial position on the one
agreed by both, then the former agreement should not be changed. In formula,
F (F (x, y), y) = F (x, F (x, y)) = F (F (x, y), F (x, y)) = F (x, y), for all x, y ∈ X.
This is what we call the consensus functional equation (shortly, the consensus
equation). It should be observed that the last equality of the formula is exactly
the unanimity principle over the alternatives that are in the codomain of F (i.e.,
F (z, z) = z, for every z ∈ F (X2)). Thus, if F satisfies non-imposition (i.e., for
every z ∈ X there are x, y ∈ X such that F (x, y) = z), then the consensus
equation implies the unanimity principle. The consensus equation transpires
a property that, in some sense, recalls the Nash equilibrium concept of Game
Theory. Indeed, if, for a given x, y ∈ X, F (x, y) can be understood as the “best
social agreement” (provided that agent 1 chooses alternative x whereas agent 2
chooses alternative y), then the “best choice” for agent 1, provided that agent
2 maintains her/his choice y, in order to reach this “best social agreement”, is
to single out F (x, y). The same argument applies for agent 2. In addition, and
although all of these interpretations of the consensus equation are made within
the agreement framework, the ideas that it conveys can be directly applied to
social choice theory context.

The paper is organized as follows. Section 2 contains the basic background.
In Section 3 we study the consensus equation from an abstract point of view. To
that end, we introduce a key concept; namely, that of a rationalizable bi-variate
map. Rationalizability, for a bi-variate map F , is a notion that resembles the one
already introduced in the literature of single-valued choice functions (see [1],[2]
and [7] or, more recently, [6]). Rationalizability here means that a particular
binary relation, that we call the revealed consensus relation, describes, in some
sense, F . A major, and at the same time appealing, difference between the two
notions of rationalizability is that a single-valued choice function always sends
a subset of X into a point of this subset, whereas a rationalizable bi-variate
map applies F (x, y) into a point of X, possibly distinct from x and y, for every
x, y ∈ X.

The existence of the revealed consensus relation on X makes the interpreta-
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tion of a “best choice” given above to be meaningful. We characterize bi-variate
maps that satisfy the consensus equation plus the anonymity principle as those
that are rationalizable. Moreover, if a property, stronger than the fulfilment of
the consensus equation together with the unanimity and the anonymity princi-
ples, is demanded; namely, that of being associative, then the latter result sig-
nificantly improves. If an agreement rule between two individuals F : X2 → X
is associative, then there is a partial order, say �, defined on X such that (X,�)
is a semi-lattice and F (x, y) turns out to be the supremum, with respect to �,
of {x, y}, for every x, y ∈ X.

An agreement rule is a unanimous and anonymous bi-variate map from X2

into X that, in addition, satisfies the consensus equation. Associativity (i.e.,
F (F (x, y), z) = F (x, F (y, z)), for every x, y, z ∈ X) is a slightly more demanding
property than the fulfilment of the consensus equation and can be viewed as an
extension property. That is, if F is associative then, for any finite number of
agents, we can induce agreement rules based on it. In other words, associativity
invites everyone “to join the party”.

We also pay attention to the case where F is a selector, i.e., F (x, y) ∈ {x, y},
x, y ∈ X. In this case, and for obvious reasons, we will say that F satisfies
the independence of irrelevant alternatives condition. Quite surprisingly, the
independence of irrelevant alternatives condition turns out to be stronger than
consensus.

In Section 4 we study several aspects of the solutions of the consensus equa-
tion in concrete scenarios. In particular, we pay attention to the case in which
X is a space of monetary payoffs or a lottery-space over two outcomes. This
allows us to identify X to a real interval. We add some additional conditions,
like monotonicity (Paretian properties) and continuity, on F . Then we present
both impossibility as well as possibility results. On the one hand, we prove that
there is no strongly Paretian bi-variate map which satisfies consensus. On the
other hand, we show that the only continuous agreement rules that satisfy the
independence of irrelevant alternatives condition are the max and the min (i.e.,
those based upon the most and the least favoured individuals, respectively).

Throughout the paper we will focus on the consensus equation involving only
two individuals. The generalization of this equation for more than two people
is left for a future article.

2 Preliminaries

In what follows, the (nonempty) choice set (or the set of alternatives) will be
denoted by X and F : X2 = X ×X → X will be a bi-variate map defined on
X.

Definition 2.1. The map F is said to satisfy:

(1) the unanimity principle if F (x, x) = x for every x ∈ X.

(2) the anonymity principle if F (x, y) = F (y, x) for every x, y ∈ X.
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(3) the consensus functional equation (shortly, consensus) if F (F (x, y), y) =
F (x, F (x, y)) = F (F (x, y), F (x, y)) = F (x, y) for every x, y ∈ X.

(4) the associativity axiom if F (x, F (y, z)) = F (F (x, y), z) for every x, y, z ∈
X.

(5) the independence of irrelevant alternatives condition (shortly, IIA)) if
F (x, y) ∈ {x, y}, for every x, y ∈ X.

Definition 2.2. A bi-variate map F : X2 → X is said to be an agreement rule
if it satisfies the conditions (1) to (3) of Definition 2.1 above.

Now, we recall some basic concepts on binary relations. A binary relation �
defined on X is said to be a partial order if it is reflexive (i.e., x � x, for every
x ∈ X), antisymmetric (i.e., x � y and y � x imply x = y, for every x, y ∈ X)
and transitive (i.e., x � y, y � z imply x � z, for every x, y, z ∈ X). If, in
addition, � is total (i.e., either x � y or y � x, for every x, y ∈ X), then � is
said to be a total order.

A binary relation, R, on X is said to have the supremum property if, for
every x, y ∈ X, there is a unique z ∈ X such that the following two conditions
are met: (i) xRz and yRz. (ii) If there is u ∈ X such that xRu and yRu, then
zRu. The unique element z that satisfies conditions (i) and (ii) is called the
supremum of x and y and it is denoted by supR{x, y}. If, supR{x, y} ∈ {x, y},
then it is called maximum of x and y and it is denoted by maxR{x, y}.

Definition 2.3. Let � be a partial order defined on X. Then (X,�) is said to
be a semi-lattice if � has the supremum property.1

3 Consensus vs. rationalizable bi-variate maps

The main purpose of this section is to provide a description of the agreement
rules defined on X in terms of certain binary relations on X with special features.
To that end, the following concept will play an important role.

Definition 3.1. Let F be a bi-variate map defined on X. Associated with F
we can define the binary relation, denoted by Rrc, on X as follows: xRrcy ⇐⇒
F (x, y) = y, for every x, y ∈ X. We will say Rrc to be the revealed consensus
relation of F .

Before introducing the notion of a rationalizable bi-variate map, a notational
convention is needed.

Notation. Let R be a binary relation defined on X. Then, for each x ∈ X,
GR(x) will denote the upper contour set of x, i.e., GR(x) = {z ∈ X : xRz}.

Definition 3.2. A bi-variate map F on X is said to be rationalizable if F (x, y) ∈
GRrc

(x) ∩GRrc
(y), for every x, y ∈ X.

1For an excellent account of the material related to latticial or semi-latticial structures, see
e.g., [3].
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We now establish the first result of this section. It turns out to be a charac-
terization of the bi-variate anonymous maps that satisfy the consensus equation
in terms of those which are rationalizable.

Theorem 3.3. Let F be a unanimous and anonymous bi-variate map defined
on X. Then F is rationalizable if and only if it satisfies consensus.

Proof. Suppose that F is an anonymous bi-variate map defined on X which
satisfies the consensus equation. Let x, y ∈ X be fixed. In order to show
that F is rationalizable, notice that F (x, F (x, y)) = F (x, y) since F satis-
fies the consensus equation. Thus, by definition of Rrc, F (x, y) ∈ GRrc

(x).
Moreover, by anonymity together with consensus, it holds that F (y, F (x, y)) =
F (F (x, y), y) = F (x, y). Therefore, F (x, y) ∈ GRrc(y). So, F (x, y) ∈ GRrc(x)∩
GRrc

(y). Since x, y are arbitrary elements of X, it follows that F is rationaliz-
able.

For the converse, suppose that F is an anonymous rationalizable bi-variate
map defined on X. We want to see that F satisfies consensus. To that end,
let x, y ∈ X be fixed. Since F is rationalizable, it holds that xRrcF (x, y) and
yRrcF (x, y). But, by definition of the revealed consensus relation, this means
that F (x, F (x, y)) = F (x, y) and F (y, F (x, y)) = F (x, y). Now, by anonymity,
F (y, F (x, y)) = F (F (x, y), y) and therefore F (F (x, y), y) = F (x, y). The fact
that F (F (x, y), F (x, y)) = F (x, y) follows directly from unanimity. Since x, y
are arbitrary elements of X, we have shown that F satisfies consensus.

Remarks 3.4. (i) For a bi-variate map F , rationalizable or not, there could
exist a binary relation R on X, other than Rrc if F is rationalizable, for which
F (x, y) ∈ GR(x)∩GR(y), for every x, y ∈ X. If this is the case, then Rrc ⊆ R.
In other words, Rrc is the coarser binary relation on X that satisfies the latter
property. Indeed, let R be a binary relation defined on X so that F (x, y) ∈
GR(x) ∩ GR(y), for every x, y ∈ X. Let x, y ∈ X arbitrary elements of X
such that xRrcy. Then, by definition of Rrc, we have that F (x, y) = y. Also,
F (x, y) ∈ GR(x) ∩GR(y). So, in particular, y = F (x, y) ∈ GR(x) which means
that xRy. Therefore, Rrc ⊆ R.

(ii) A unanimous and anonymous bi-variate map F defined on X for which
Rrc is transitive need not be rationalizable. Indeed, let X = {x, y, z} and
define F : X ×X → X as follows: F (x, x) = F (y, z) = F (z, y) = x, F (y, y) =
F (x, z) = F (z, x) = y and F (z, z) = F (x, y) = F (y, x) = z. Obviously, F , so-
defined, is unanimous and anonymous. Then, an easy calculation gives: Rrc =
{(x, x), (y, y), (z, z)}. In other words, xRrcx, yRrcy and zRrcz are the only
relations, according to Rrc, among the three elements of X. Thus, in addition
to being reflexive and antisymmetric, Rrc is transitive too. However, F is not
rationalizable since, for example, z = F (x, y) /∈ GRrc(x) ∩GRrc(y).

In general, as the next proposition shows, for a (unanimous) bi-variate map
F , consensus is a condition weaker than associativity or IIA.

Proposition 3.5. Let F be a bi-variate map defined on X.
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(i) If F is unanimous and associative, then it safisfies consensus.

(ii) If F satisfies IIA, then it safisfies consensus.

Proof. (i) Let x, y ∈ X be fixed. Then, by associativity and unanimity, it holds
that F (F (x, y), y) = F (x, F (y, y)) = F (x, y). The other equality of consensus is
proved similarly. So, since x, y are arbitrary points of X, F satisfies consensus.

(ii) Let x, y ∈ X be fixed. Since F satisfies IIA, either F (x, y) = x or
F (x, y) = y. If F (x, y) = x, then we have that F (F (x, y), y) = F (x, y) =
x = F (x, x) = F (x, F (x, y)). Now, if F (x, y) = y, then F (F (x, y), y) =
F (y, y) = y = F (x, y) = F (x, F (x, y)). So, in any of the two cases, we have that
F (F (x, y), y) = F (x, F (y, y)) = F (x, y). Since x, y are arbitrary points of X, F
satisfies consensus.

As a direct consequence of Theorem 3.3 and Proposition 3.5 we obtain the
following corollary.

Corollary 3.6. (i) Every unanimous, anonymous and associative bi-variate
map defined on X is rationalizable.

(ii) Every bi-variate map defined on X which satisfies IIA is rationalizable.

Remark 3.7. It is simple to see that, for a unanimous and anonymous bi-variate
map F , associativity and IIA are independent conditions. Moreover, there are
agreement rules (hence rationalizable bi-variate maps) other than associative
maps or those that satisfy IIA. For a thorough description of the links that can
be established among the mentioned properties of bi-variate maps, see [5].

We now focus on associative agreement rules. As we have just seen, asso-
ciativity is a more demanding property than consensus. Actually, and as we
will see next, associativity strengthens, in a significant manner, the content of
Theorem 3.3.

Theorem 3.8. Let F be an associative agreement rule defined on X. Then,
(X,Rrc) is a semi-lattice and F (x, y) = supRrc

{x, y}, for every x, y ∈ X.

Proof. Let us first prove that Rrc is a partial order on X. Indeed, reflexivity
follows directly from unanimity of F . To see that Rrc is antisymmetric, let
x, y ∈ X such that xRrcy and yRrcx. Then, by definition of Rrc, we have
that F (x, y) = y and F (y, x) = x. So, by anonymity, x = y and therefore
Rrc is antisymmetric. To prove transitivity of Rrc, let x, y, z ∈ X such that
xRrcy, yRrcz. Then, by definition of Rrc again, we have that F (x, y) = y
and F (y, z) = z. Let us see that F (x, z) = z, which would mean that xRrcz.
Indeed, F (x, z) = F (x, F (y, z)) = F (F (x, y), z) = F (y, z) = z, the second
equality being true since F is associative. Thus, Rrc is transitive too.

Let us show now that (X,Rrc) is a semi-lattice. To that end, we have to
prove that, for given arbitrary elements x, y ∈ X, there is supRrc

{x, y}. Notice
that, since F is asociative, by Proposition 3.5(i), it satisfies consensus too. So,
F (x, F (x, y)) = F (x, y) and therefore, by definition of Rrc, xRrcF (x, y). In a
similar way, now using anonymity and consensus, we have that F (y, F (x, y)) =
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F (F (x, y), y) = F (x, y). That is, yRrcF (x, y). So F (x, y) is an upper bound,
with respect to Rrc, of x and y. Let us see that it is the least upper bound. For
that, let z ∈ X such that xRrcz and yRrcz. Then, by definition of Rrc again,
we have that F (x, z) = F (y, z) = z. So, F (F (x, y), z)) = F (x, F (y, z)), y) =
F (x, z) = z, the first equality being true by associativity. Therefore, we have
that F (F (x, y), z)) = z which means that F (x, y)Rrcz. So, we have shown that
F (x, y) = supRrc

{x, y}, which proves the second assertion of the statement of
Theorem 3.8 and the proof is complete.

We now present some illuminating observations about the concepts intro-
duced above.

Remarks 3.9. (i) It should be observed that, if R is a binary relation on X for
which (X,R) is a semi-lattice, then the bi-variate map defined as (x, y) ∈ X ×
X  FR(x, y) = supR{x, y} ∈ X is an associative agreement rule. Moreover, in
this case, it can be easily proved that R ≡ Rrc. So, associative agreement rules
are characterized as those that can be rationalized by means of semi-latticial
structures.

(ii) An agreement rule that satisfies IIA need not be associative. Moreover,
and unlike the associative case, the revealed consensus relation Rrc in this sit-
uation can exhibit intransitivities. To see an example, consider the set X =
{x, y, z} and the bi-variate map F : X ×X → X given by F (x, x) = F (x, z) =
F (z, x) = x; F (x, y) = F (y, x) = F (y, y) = y; F (y, z) = F (z, y) = F (z, z) = z.
It is clear that F is anonymous and satisfies IIA. However, it is not associative
since F (x, F (y, z)) = F (x, z) = x, whereas F (F (x, y), z) = F (y, z) = y. In
terms of the revealed consensus relation Rrc we have that xRrcy, yRrcz and
zRrcx. So, there is a “cycle”, with respect to Rrc, for the three-element set
{x, y, z}.

(iii) If an agreement rule F satisfies IIA, then the revealed consensus relation
Rrc becomes a total order on X. Moreover, if an agreement rule F which satisfies
IIA is also associative, then F (x, y) = maxRrc

{x, y}, for every x, y ∈ X. So,
associative agreement rules that satisfy IIA are characterized as those that can
be rationalized by means of totally ordered structures.

(iv) Associative agreement rules have an interesting property that we call
the extension property. The extension property means that an associative (bi-
variate) agreement rule “generates” associative, unanimous and anonymous n-
variate rules, for any finite number of agents n ∈ N. In words, if a (unani-
mous and anonymous) map involving just two individuals is associative then
it is possible that more and more individuals can “join the party” and enjoy
a “stable” agreement. So, from a behavioural perspective, associativity is an
appealing property. Indeed, let F2 be an associative (bi-variate) agreement
rule. Then, by Theorem 3.8, F2(x, y) = supRrc{x, y}, for every x, y ∈ X.
Now, for any n ≥ 3, define Fn : Xn = X × . . . × X(n−times) → X as follows:
Fn(x1, . . . , xn) = supRrc

{x1, . . . , xn}, for every x1, . . . , xn ∈ X. It is then sim-
ple to see that, for every n ≥ 3, Fn so-defined is an associative, unanimous and
anonymous n-variate map.
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(v) It should be noted that Theorem 3.8 can be applied to scenarios in which
the choice set X is, on its own, a space of preferences. Indeed, let X = {- ⊆
Z×Z ;- is a transitive and total binary relation defined on a finite set Z}. Let
F : X ×X → X be the Borda rule (see, [6]). Then, it is straightforward to see
that F is an associative agreement rule. So, Theorem 3.8 says that the Borda
rule is entirely described by the revealed consensus relation on X. Actually, it
is simple to prove that, in this case, Rrc is given by: -1 Rrc -2 if and only if
-2 ⊆ -1 and ≺1 ⊂ ≺2, (-1,-2∈ X). Here, ≺ stands for the asymmetric part
of - (i.e., x ≺ y if and only if ¬(y - x), for every x, y ∈ X).

As seen in the proof of Theorem 3.8, an associative, unanimous and anony-
mous bi-variate map defined on X has the property that its revealed consensus
relation turns out to be transitive. The converse is not true even though the
bi-variate map is rationalizable (or, equivalently by Theorem 3.3, it satisfies
consensus). Nevertheless, for a unanimous bi-variate map that satisfies IIA,
transitivity of its revealed consensus relation implies associativity. These two
facts are the content of the next result which concludes this section.

Proposition 3.10. (i) An agreement rule such that its associated revealed
consensus relation is transitive need not be associative.

(ii) Every agreement rule that satisfies IIA is associative.

Proof. (i) Let X = {x, y, z, u}. Let F : X × X → X be the bi-variate map
given by F (x, x) = x; F (y, y) = y; F (x, y) = F (x, z) = F (y, z) = F (y, z) =
F (z, x) = F (z, y) = F (z, z) = F (z, u) = F (u, z) = z; F (x, u) = F (y, u) =
F (u, x) = F (u, y) = F (u, u) = u. It is clear that F satisfies unanimity and
anonymity. Let us see that it is an agreement rule (i.e., it satisfies consensus)
by showing that it is rationalizable (see, Theorem 3.3). To that end, let Rrc

be its revealed consensus relation. A direct calculation proves that Rrc is given
by: xRrcx, xRrcz, xRrcu, yRrcy; yRrcz, yRrcu, zRrcz, uRrcz, uRrcu.
Let us observe that Rrc is transitive. Now, by checking the upper contour
sets of Rrc, we obtain: GRrc

(x) = {x, z, u}; GRrc
(y) = {y, z, u}; GRrc

(z) =
{z}; GRrc

(u) = {z, u}. Thus F (x, x) = x ∈ GRrc
(x); F (x, y) = z ∈ GRrc

(x) ∩
GRrc

(y); F (x, z) = z ∈ GRrc
(x) ∩ GRrc

(z); F (x, u) = u ∈ GRrc
(x) ∩

GRrc(u); F (y, y) = y ∈ GRrc(y); F (y, z) = z ∈ GRrc(y) ∩GRrc(z); F (y, u) =
u ∈ GRrc(y) ∩ GRrc(u); F (z, z) = z ∈ GRrc(z);F (z, u) = z ∈ GRrc(z) ∩
GRrc

(u). Therefore F is rationalizable. Finally, observe that F is not associa-
tive since F (F (x, y), u) = F (z, u) = z 6= u = F (x, u) = F (x, F (y, u)).
(ii) Let x, y, z ∈ X be fixed. We have to show that F (F (x, y), z) = F (x, F (y, z)).
Since F satisfies IIA F (x, y) = {x, y}, F (x, z) = {x, z} and F (y, z) = {y, z}. So
we distinguish among eight possibilities:
(1) F (x, y) = x, F (x, z) = x and F (y, z) = y. In this case, F (F (x, y), z) =
F (x, z) = x = F (x, y) = F (x, F (y, z)) and we are done.
(2) F (x, y) = x, F (x, z) = x and F (y, z) = z. In this case, F (F (x, y), z) =
F (x, z) = x = F (x, z) = F (x, F (y, z)) and we are done again.
(3) F (x, y) = x, F (x, z) = z and F (y, z) = y. Now, since F is anonymous,
F (y, x) = F (x, y) = x and F (z, y) = F (y, z) = y. So, yRrcx and xRrcz which,
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by transitivity of Rrc, implies that yRrcz. But F (z, y) = F (y, z) = y means
that zRrcy too. Now, Rrc is antisymmetric since F is anonymous. Therefore,
y = z. Now, if y = z, F (F (x, y), z) = F (x, F (y, z)) becomes F (F (x, y), y) =
F (x, F (y, y)) or, equivalently, F (F (x, y), y) = x = F (x, y) = F (x, F (y, y)) and
we are done.
(4) F (x, y) = x, F (x, z) = z and F (y, z) = z. In this case, F (F (x, y), z) =
F (x, z) = z = F (x, F (y, z)) and we are done.
(5) F (x, y) = y, F (x, z) = x and F (y, z) = y. In this case, F (F (x, y), z) =
F (y, z) = y = F (x, y) = F (x, F (y, z)) and we are done.
(6) F (x, y) = y, F (x, z) = x and F (y, z) = z. In this case, and arguing in
the same way as in case (3) above, we have that xRrcy and zRrcx which, by
transitivity, implies that zRrcy. This, together with yRrcz, implies that y = z.
Then, F (F (x, y), z) = F (x, F (y, z)) becomes F (F (x, y), y) = F (x, F (y, y)) or,
equivalently, F (F (x, y), y) = y = F (x, y) = F (x, F (y, y)) and we are done again.
(7) F (x, y) = y, F (x, z) = z and F (y, z) = y. In this case, F (F (x, y), z) =
F (y, z) = y = F (x, y) = F (x, F (y, z)) and we are done. Finally,
(8) F (x, y) = y, F (x, z) = z and F (y, z) = z. In this case, F (F (x, y), z) =
F (y, z) = z = F (x, z) = F (x, F (y, z)) which concludes the proof.

Remark 3.11. It can be shown that if X is a three-elements set (i.e, X =
{x, y, z}), then any agreement rule defined on X for which Rrc is transitive is,
in fact, associative.

4 Possibility vs. impossibility results in contin-
uum spaces

In this section, we study the consensus equation in particular contexts. In
general, this equation has no easy solutions (see [5] for details). However, in
concrete spaces, and with some natural additional assumptions on the map F , it
is possible to entirely describe its solutions. We assume that the choice set X is
a real interval. In particular, this means that X can be a set of monetary payoffs
or, in a probabilistic scenario, X could represent the space of lotteries between
two outcomes. In the first situation X can be identified as [0,∞) whereas it
can be identified as [0, 1] in the second. Both impossibility as well as possibility
results arise. On the one hand, we prove that there is no strongly Paretian
bi-variate map which satisfies consensus. On the other hand, we show that the
only continuous agreement rules that satisfy IIA are the max and the min. In
what follows, I will represent an interval of the real line R.

Notation. Let F : I × I → I be a bi-variate map. For every x ∈ I, Fx

(respectively, F x) stands for the vertical (respectively, horizontal) restriction of
F ; i.e., y ∈ I  Fx(y) = F (x, y) ∈ I (respectively, y ∈ I  F x(y) = F (y, x) ∈
I).

We recall the concept of an idempotent function defined on I. This concept
will play a significant role in the sequel, in particular in the next Proposition
4.2.
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Definition 4.1. A function f : I → I is said to be idempotent if f(f(x)) =
f(x), for every x ∈ I.

Proposition 4.2. Let F : I × I → I be a bi-variate map.

(i) F is unanimous if and only if Fx(x) = F x(x) = x for every x ∈ I.

(ii) F is anonymous if and only if Fx(y) = F x(y) for every x, y ∈ I.

(iii) F satisfies consensus if and only if, for every x ∈ X, both restrictions Fx

and F x are idempotent functions and, for each z ∈ F (I ×I), it holds that
Fz(z) = F z(z) = z.

Proof. Parts (i) and (ii) follow directly. So we prove only part (iii). Suppose that
F satisfies consensus and let x ∈ X be fixed. Then, we have that Fx(Fx(y)) =
F (x, Fx(y)) = F (x, F (x, y)) = F (x, y) = Fx(y) for every y ∈ I. Also, we have
that F x(F x(y)) = F (F x(y), x) = F (F (y, x), x) = F (y, x) = F x(y), for every
y ∈ I. Therefore, Fx and F x are both idempotent functions. Since x is an
arbitrary element of I, we have proven that Fx and F x are both idempotent
functions foe every x ∈ I. The fact that, for each z ∈ F (I × I), Fz(z) =
F z(z) = z follows directly from consensus.

Conversely, suppose that, for every x ∈ I, Fx and F x are both idempo-
tent functions. Let x, y ∈ I be fixed. Then, we have that F (x, F (x, y)) =
Fx(Fx(y)) = Fx(y) = F (x, y), and also we have that F (x, y) = F y(x) =
F y(F y(x)) = F (F y(x), y) = F (F (x, y), y). Moreover, F (F (x, y), F (x, y)) =
F (x, y) since, by hypothesis, Fz(z) = F z(z) = z, for every z ∈ F (I × I).
Therefore, F satisfies consensus.

Remark 4.3. It should be noted that the concepts introduced above can be
given in an abstract space X. In particular, Proposition 4.2 remains true if I
is replaced by a nonempty choice set X.

Before presenting a basic definition of the most familiar notions involving
monotonicity properties of real-valued bi-variate functions, we recall that for a
given (x, y), (u, v) ∈ I×I, (x, y) ≤ (u, v) means x ≤ u and y ≤ v; (x, y) < (u, v)
means (x, y) ≤ (u, v) and (x, y) 6= (u, v). Finally, (x, y) � (u, v) means x < u
and y < v.

Definition 4.4. A bi-variate map F : I × I → I is said to be:

(i) Paretian (or, non-decreasing) if (x, y) ≤ (u, v) implies F (x, y) ≤ F (u, v),
for every x, y, u, v ∈ I.

(ii) weakly Paretian if (x, y) � (u, v) implies F (x, y) < F (u, v), for every
x, y, u, v ∈ I.

(iii) strongly Paretian if (x, y) < (u, v) implies F (x, y) < F (u, v), for every
x, y, u, v ∈ I.

(iv) dictatorial if either F (x, y) = x for every x, y ∈ I, or F (x, y) = y for every
x, y ∈ I.
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(v) continuous if the inverse image of every Euclidean open subset of I is an
open subset of I × I, where I × I is endowed with the usual product
(Euclidean) topology.

Notice that the monotonicity properties that appear in Definition 4.4 above
are meaningful in the case that the choice set X is a set of monetary payoffs.
Now we present an impossibility result. It states that, for a bi-variate map on
I, strongly Paretian and consensus are incompatible conditions.

Theorem 4.5. There is no strongly Paretian bi-variate map on I which satisfies
consensus.

Proof. Suppose that F : I ×I → I is a strongly Paretian bi-variate map which
satisfies consensus. Let x0 ∈ I be fixed and consider the vertical restriction
Fx0 . Notice that Fx0 is a strictly increasing function since F is, by hypothesis,
strongly Paretian. Let us see that Fx0(y) = y, for all y ∈ I (in other words,
Fx0 is the identity function from I into I). To that end, suppose, by way
of contradiction, that there is y0 ∈ I such that Fx0(y0) 6= y0. Then, either
Fx0(y0) < y0, or Fx0(y0) > y0. Suppose that the first case occurs. Then, since
Fx0 is a strictly increasing real-valued function, Fx0(Fx0(y0)) < Fx0(y0). But
this leads to a contradiction since, by Proposition 4.2 (iii), Fx0 is an idempotent
function and therefore Fx0(Fx0(y0)) = Fx0(y0). So, Fx0(y0) < y0 cannot occur.
In the same way we can prove that Fx0(y0) > y0 cannot happen for any y0 ∈ I.
Therefore, we have proved that Fx0(y) = y, for every y ∈ I. Actually, since x0

is an arbitrary element of I, we have shown that, for every x ∈ I, Fx(y) = y,
for all y ∈ I.

Arguing in a similar way we can prove that, for every x ∈ I, the horizontal
restriction F x is the identity function. In other words, we have that, for every
x ∈ I, F x(y) = y, for all y ∈ I. Let us now reach a contradiction. Indeed, let
x 6= y be two elements in I. Then, F (x, y) = Fx(y) = y 6= x = F y(x) = F (x, y),
which is impossible. So, no strongly Paretian bi-variate map F which satisfies
consensus can exist.

Remarks 4.6. (i) A careful glance at the proof of Theorem 4.5 above shows
that the only bi-variate map on I which satisfies consensus and has the addi-
tional property that all of its vertical restrictions are strictly increasing functions
(respectively, all of its horizontal restrictions are strictly increasing functions) is
dictatorial over the second (respectively, first) coordinate. That is, F (x, y) = y
for every x, y ∈ I (respectively, F (x, y) = x for every x, y ∈ I).

(ii) If strongly Paretian is relaxed to Paretian (or weakly Paretian) then the
impossibility result does not hold true. For example, consider the dictatorial
bi-variate maps or the max/min functions.

We now state a possibility result. Actually, we establish that the only con-
tinuous bi-variate maps F : I × I → I that satisfy IIA are the max, the min
and the dictatorial functions. In particular, we have that the only continuous
agreement rules that satisfy IIA are the max and the min functions.
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Theorem 4.7. Let F : I × I → I be a bi-variate map. Then the following
conditions are equivalent:

(i) F is continuous and satisfies IIA.

(ii) F is of one of the following forms:

(1) F (x, y) = x, for every x, y ∈ I.
(2) F (x, y) = y, for every x, y ∈ I.
(3) F (x, y) = max{x, y}, for every x, y ∈ I.
(4) F (x, y) = min{x, y}, for every x, y ∈ I.

Proof. (ii) implies (i) is straightforward.
For the converse, (i) implies (ii), let F : I×I → I be a continuous bi-variate

map which satisfies IIA. Let x ∈ I be fixed and consider the vertical restriction
Fx. Since F satisfies IIA, Fx(y) ∈ {x, y} for all y ∈ I. The continuity of Fx,
together with IIA, clearly implies that Fx must be of one of the following types:
(1) Fx(y) = x, for every y ∈ I.
(2) Fx(y) = y, for every y ∈ I.
(3) Fx(y) = y, if y ≥ x and Fx(y) = x, if y < x.
(4) Fx(y) = x, if y ≥ x and Fx(y) = y, if y < x.

Now, the continuity of F (in two variables) clearly implies that if for some
x0 ∈ I, Fx0 is of the type (i), i= 1 to 4, then Fx is of the type (i), for all
x ∈ I. Finally, it is straightforward to see that the situation for each of the four
cases leads to the corresponding functional form given in the statement of the
theorem.

As a direct consequence of Theorem 4.7 we obtain the following corollary.

Corollary 4.8. Let F : I × I → I be a bi-variate map. Then the following
conditions are equivalent:

(i) F is continuous, anonymous and satisfies IIA.

(ii) Either F (x, y) = max{x, y} (for all x, y ∈ I), or F (x, y) = min{x, y} (for
all x, y ∈ I).

Remark 4.9. The content of Theorem 4.7 strongly depends on the condition
that F satisfies IIA since there are continuous bi-variate maps F : I × I → I
which satisfy consensus other than those belonging to the four types that appear
in the statement of the theorem (for details, see [5]).
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