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1 Introduction

As Gary Becker (1981) has argued, “education” is not just an investment good, but

also a consumption stream. An educated person will likely drive a larger stream

of consumption from reading a book, or a page of NewsWeek, than an uninformed

person. This greater benefit is likely related, nonlinearly, to many attributes of the

individual and the characteristics of the “goods.”

In a parametric model for treatment effects, fixed coefficients for the treatment

variable, as well as other variables and attributes, imposes severe, and possibly in-

advertent restrictions which may exclude the possibility of observing some aspects of

the program or treatment. These may include different distributions of any treatment

effect, different distributions of behavioral or response changes due to treatment, and

others.

Consider the stylized linear in parameters model:

 =  +  0 +  (1)

where is an exogenous treatment, and  is a vector of other variables and attributes.

A constant coefficient  has several implications, two of which are of immediate

concern in this paper. The first is that constant coefficients force a large degree of

homogeneity on the individuals irrespective of treatment level (if  is not a binary

variable). Everyone in each group (treated and non-treated) has the same response.

The second is that changes in (and/or ) have no impact on “” or “.”We call this

a no rehabilitation assumption since it will not allow any behavior modification, either

as a direct response to changes in , or as modifications in  arising from treatment,

or different amounts of treatment. To impose these restrictions, a priori, will exclude

the possibility of learning from the observed data whether there are changes in both

the outcome variable, , and perhaps sustainable changes in behavior. In other words,

a model of this kind is biased toward observing temporal/local responses, at most, to

treatment programs and policies. There is no redemption!

Some aspects of these restrictions may be dealt with by considering variable pa-

rameter models when data allow it (e.g., panels are available). Indeed, parameters

may be allowed to depend on the observed variables in a parametric way, effectively

permitting a priori specific forms of nonlinearity in treatment responses, and changes
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in other coefficients. Alternatively, we could estimate nonparametric regressions, let-

ting the data settle the degree of nonlinearity, and the form of dependence of the

responses as well as attribute effects (analogous forms of  and ).

We attempt to address some of these problems in the present study in which

we consider the impact of a well known (exogenously assigned treatment) program,

Greater Avenues for Independence (GAIN), on labor market outcomes. Our aim is

to examine changes in the gradients which will vary continuously with the values of

the variables in the model. The traditional approach in this literature focuses on

the average treatment effect in the conditional distribution of . More recent work

removes this “veil of ignorance” by looking at the distribution of the treatment effects

on various individuals/households, etc.

The heterogenous estimates allowed by the nonparametric approach pose new

challenges. In effect, we now have a distribution of responses that need to be exam-

ined. We could of course report several aspects of this latter distribution, such as the

mean value and quantiles of (the analogous version of ), say, for a range of observed

variables and characteristics. Alternatively, dominance criteria may be used, as we

intend in this work. Suppose that a job or drug treatment program is intended to

be life enhancing, so that one values higher responses (“”). This will be compatible

with the class of increasing utility/valuation functions, including “dollar valuations.”

This is all that is needed for first order stochastic dominance (FSD) rankings. Failing

to find it is as informative as when it is found to a statistical degree of confidence,

using tests such as in Linton, Maasoumi and Whang (2005). When FSD is found, we

do not necessarily need a cardinal valuation function to inform the decision maker

that the program is effective, or failed, whatever the criterion function. Only a deci-

sion needing to quantify the impact of the treatment by a scalar value will need to

select a function for that purpose. Dollar values are useful and sensible, so long as we

acknowledge they reflect only one particular valuation function that gives one partic-

ular “complete” ranking. On the other hand, failing to find FSD makes it clear that

decisions based on any cardinal valuation function, including dollars and averages,

will inevitably assign different weights to different members of the population, and is

completely subjective. Different people will legitimately differ on both the usefulness

of the treatment as well as the magnitude of the effects.
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When FSD does not hold, it may be the case that second order stochastic domi-

nance (SSD) or higher orders hold to a statistical degree of confidence. Higher order

dominance rankings are interesting when concave valuation functions are justified,

reflecting aversion to too much “dispersion,” or “inequality” in treatment outcomes,

or aversion to the risk of leaving behind some seriously at risk groups, or overly

benefitting the less needy.

In our work, we examine such rankings for the distribution of the “responses”

which are derivatives of the nonparametric version of model (1). Our approach does

not compete with quantile techniques, as such. Indeed, SD rankings are equivalent

to joint testing of ranking “all,” or a desired subset of quantiles. The difference is

that, a comparison based on individual quantiles may leave one in a quandary when

the outcome direction is different for different quantiles. This will be equivalent to

not finding FSD on the outcomes. But with SD rankings, comparing quantiles is

not the end of the road, as it were. We can look for higher order rankings with

meaningful welfare theoretic interpretations that are essential to policy debate and

decision making. While the treatment literature has begun to move beyond the “av-

erage treatment effect” in the distribution of the outcome variable, to our knowledge,

our work is the first exploration of the distributed effects on responses.

In our empirical analysis, we find that future earnings are only (significantly) im-

pacted by a handful of variables. Specifically, we find that enrollment in GAIN as

well as higher test scores lead to higher earnings. More importantly, we find that

enrollment in GAIN leads to heterogenous impacts across the sample with females

having larger returns to GAIN than males, those whose primary language is English

over those whose primary language is not English, older individuals over younger,

those with no previous earnings over those with previous earnings and those with

higher test scores over those with lower test scores on average. However, even though

we see higher returns at the quartiles, we find relatively few cases of stochastic domi-

nance. In fact, we only find one case of FSD (English as the primary language versus

English not being the primary language). However, we do find SSD for those age

21 and older over those under 21, those with children over those without children,

and for those with above median reading skills over those with below median reading

skills. From a policy standpoint, this would suggest providing additional training in
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English reading skills, generally, and prior to enrollment in programs such as GAIN.

The remainder of the paper proceeds as follows: Section 2 describes the stochastic

dominance procedure. Section 3 briefly outlines the GAIN program while the fourth

section gives the empirical results of our study. The fifth section concludes.

2 Stochastic dominance procedure

In this section we outline our stochastic dominance procedure for gradient estimates.

This methodology will also work for nonlinear parametric models, but we discuss a

procedure for obtaining the gradient estimates nonparametrically. In our empirical

application, we employ local-linear kernel regression for mixed data (Li and Racine,

2004; Racine and Li, 2004) using selected bandwidth vectors (Hurvich, Simonoff

and Tsai, 1998), but other regression methods and bandwidth selectors are clearly

feasible. We should note here that while we have a relatively large sample of data

(6460 observations), we do have a large number of covariates (14) and hence we should

keep the curse of dimensionality in mind.

Nonparametric estimation generates unique gradient estimates for each observa-

tion (individual) for each variable. This feature of nonparametric estimation enables

us to compare (rank) several distributed effects of the exogenous treatment for sub-

groups and make inferences about who benefits most from the treatment. Here we

propose using stochastic dominance tests for empirical examination of such compar-

isons.1 The comparison of the effectiveness of a policy on different subpopulations

based on a particular index (such as a conditional mean) is highly subjective; differ-

ent indices may yield substantially different conclusions. Quantile regressions offer a

limited solution which can be conclusive only when first order dominance holds. In

contrast, finding different orders of stochastic dominance provides uniform ranking

regarding the impact of the policy among different groups and offers robust infer-

ences. It is known to be simpler and more powerful than the corresponding tests of

joint ranking of simple/marginal quantiles (see Maasoumi, 2001).

To proceed, consider a nonparametric version of the treatment regression

 = () + 

1For an empirical application of stochastic dominance tests on estimated outcome values obtained

via nonparametric regression see Maasoumi, Racine and Stengos (2007).
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where  (·) is an unknown smooth function of (the exogenous treatment)  and

(covariates) . We are particularly interested in the change in the conditional expec-

tation of  with respect to a change in the exogenous treatment variable . We will

denote this change as () (= ∇()), but wish to emphasize that (as with all

nonlinear regression functions with interactions) this gradient will likely depend on

the values taken by the control variables . While it is possible to fix these control

variables at their means (or other values), we prefer to allow them to remain at their

individual observed values both because employing fixed values for  would result in

counterfactual estimates not representing any particular individual (see Henderson,

Kumbhakar and Parmeter, 2012 for a discussion on the problems of such methods)

and because in our case  is binary and thus fixing the  would lead to scalar

estimates and not allow for a distributional analysis.

If distinct and known groups are selected within the sample, we can examine the

differences in returns between any two groups, say  and . Here  and  might

refer to males and females, respectively. Denote  () as the effect of the treatment

specific to an individual in group .  () is defined similarly. Again, note that the

remaining covariates are not constrained to be equal across or within groups.

In practice, the actual treatment effect is unknown, but the nonparametric regres-

sion gives us an estimate of this effect. {b ()}
=1 is a vector of  estimates (one

for each individual in group ) of  () and {b ()}
=1 is an analogous vector of

estimates of  ().  [ ()] and  [ ()] represent the cumulative distribution

functions of  () and  (), respectively.

Consider the null hypotheses of interest as

Equality of distributions :

 [ ()] =  [ ()] ∀ ()  (2a)

First order stochastic dominance :  dominates  if

 [ ()] ≤  [ ()] ∀ ()  (2b)

Second order stochastic dominance :  dominates  ifZ ()

−∞
 () ≤

Z ()

−∞
() ∀ ()  (2c)
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Third order stochastic dominance :  dominates  ifZ ()

−∞

Z 

−∞
 ()  ≤

Z ()

−∞

Z 

−∞
()  ∀ ()  (2d)

and so on. To test the null hypotheses, we define the empirical cumulative distribution

function for  () as

b [ ()] = 1



X
=1

1
hb () ≤  ()

i
 (3)

where 1 [·] denotes the indicator function and b [ ()] is defined similarly. Next,
we define the following Kolmogorov-Smirnov statistics ;

 = max

⎛⎝ nb [ ()]− b [ ()]o n b [ ()]− b [ ()]o
⎞⎠ ; (4a)

 = min

⎛⎝ max
n b [ ()]− b [ ()]o 

max
nb [ ()]− b [ ()]o

⎞⎠ ; (4b)

 = min

⎛⎝ max
nR ()

−∞
h b ()− b()i o 

max
nR ()

−∞
h b()− b ()i o

⎞⎠ ; (4c)

 = min

⎛⎝ max
nR ()

−∞
R 
−∞
h b ()− b()i  o 

max
nR ()

−∞
R 
−∞

h b()− b ()i  o
⎞⎠ ; (4d)

for testing the equality, first order stochastic dominance (FSD), second order domi-

nance (SSD) and third order dominance (TSD), respectively.

Consistent estimation of  () does not require us to split the sample for groups

 and , but our bootstrap procedure does. Specifically, we suggest to split the

sample into two distinct groups and run separate nonparametric regressions on each

(including estimating bandwidths for each group separately). These estimates of

 () will also be consistent (this is analogous to running separate regressions for a

Chow test) and will allow us to compare the distributions of the two groups without

the information from one affecting the other. In essence, this is equivalent to setting

the bandwidth on the variable we are comparing (say gender) to zero (which will

occur asymptotically, in any case).

6



Based on these estimates, we can construct our test statistics in (4a) — (4d).

The asymptotic distributions of these nonparametric statistics are generally unknown

because they depend on the underlying distributions of the data. We propose re-

sampling approximations for the empirical distributions of these test statistics to

overcome this problem. Our bootstrap strategy is as follows:

(i) Using nonparametric regression methods, obtain the estimates of  ()

(b() = ∇ b()) for each group.

(ii) Let  be a generic notation for    and  Compute

the test statistics  from the original gradient estimates {b1 ()  b2 ()      b
()}

and {b1 ()  b2 ()      b
()}.

(iii) For each observation in group , construct the centered bootstrapped

residual ∗, where ∗ = 1−√5
2

³b− b´ with probability 1+
√
5

2
√
5
and ∗ =

1+
√
5

2

³b− b´ with probability 1− 1+
√
5

2
√
5
. Then construct the bootstrapped

left-hand-variable as ∗ = b () + ∗ for each observation in group .

Call {∗  }

=1 the bootstrap sample. Repeat this process for group

.

(iv) Re-estimate  () for each group using the same nonparametric pro-

cedure and bandwidths in (i), but replace the data with the bootstrap

data obtained in (iii). Call these estimates b∗().
(v) Compute (centered2) bootstrapped test statistics  from the boot-

strapped estimates, where (for FSD, the others follow similarly)

 = min

⎡⎢⎢⎢⎢⎢⎢⎣
max

⎛⎝ nb ∗ [ ()]− b∗ [ ()]o
−
nb [ ()]− b [ ()]o

⎞⎠ 

max

⎛⎝ nb∗ [ ()]− b ∗ [ ()]o
−
nb [ ()]− b [ ()]o

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ 
2The centering of the bootstrap test statistic is performed by subtracting the initial sample

estimates of the empirical CDF differences. We do not impose the null hypothesis (specifically, we

do not impose the least-favorable case) in step (iii). In this way we obtain consistent estimates of the

sampling distributions and coverage probabilities, with i.i.d samples. Standard results for centered

bootstrap validity apply here. We have also conducted extensive experiments when the null of the

least favorable case is imposed, in addition to centering on the initial test statistics themselves. Our

empirical findings are generally the same.
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where b ∗ [ ()] is the analogous estimate of (3) for the bootstrap estimates.
(vi) Repeat steps (iii-v)  times.

(vii) Calculate the "p-values" of the tests based on the percentage of times the

centered bootstrapped test statistic is negative. Reject the null hypotheses if the

p-value is smaller than some desired level , where  ∈ (0 12)
The careful reader will notice that the main departure from typical SD tests is

that the data in question (()) is unknown and thus must be estimated. Therefore,

instead of bootstrapping from b(), it is important to bootstrap from the data and re-
estimate () in each replication.3 This allows us to to approximate the distribution

of the derivatives. By re-sampling, we take into account the fact that we are dealing

with the estimates of the gradients and not the actual gradients.

The most important steps above are the third through fifth. In (iii), we emphasize

that we do not impose the least favorable case. Instead we separate the groups and

re-sample from each separately. This can be achieved several ways (which we have

done), but our preferred procedure is to use a wild bootstrap (to avoid issues with

respect to potential heteroskedasticity). Then proceeding to step (iv), we re-estimate

each model (using the same bandwidths as in step (i)). Note that we evaluate the

bootstrapped gradient estimates at the original  and  values. In the fifth step, we

calculate the bootstrapped based test statistic by evaluating over the same grid we

did in step (ii).4

We wish to note here that in our empirical example, the gradient in question

comes from a binary regressor. Hence, we only achieve a gradient estimate for those

observations for which the dummy variable is equal to unity. Therefore, we construct

our empirical CDF’s with fewer observations than if we had a continuous regressor,

but the basic methodology remains the same.

3Eren and Henderson (2008) and Henderson (2010) simply resample the gradient estimates. If

the distribution functions are sufficiently well separated, this should lead to the same conclusions,

but we recommend re-estimating the gradients in practice.
4We performed simulations to determine the size and power of our bootstrap based test and

found that it did well in relatively small samples. These results are available from the author upon

request.
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3 Greater Avenues for Independence

The Greater Avenues for Independence (GAIN) program was started in California

in 1986 in order to help long term welfare recipients “find employment, stay em-

ployed, and move on to higher paying jobs, which will lead to self-sufficiency and

independence.” It is a mandatory (excluding female heads of households with chil-

dren under age six) program for adults receiving Aid to Families with Dependent

Children (AFDC).

The program initially administers screening tests to determine basic math and

reading skills. Those deemed to be below a given level are targeted to receive basic

education. Those above a given level are moved into either a job search assistance

program or a vocational training program. This decision largely falls on the county

with some counties preferring one over another.

Starting in 1988, a randomly assigned subset of GAIN registrants in six Califor-

nia counties (Alameda, Butte, Los Angeles, Riverside, San Diego and Tulare) were

assigned to a treatment group and the remaining were selected into a control group.

Those in the treatment group were allowed to participate in the GAIN program and

the remaining were not, but were still allowed to receive standard AFDC benefits.

Those in the control group were allowed, but not required, after two years, to join

the GAIN program.

From the econometrician’s standpoint, this data set is ideal because the partic-

ipants were randomly assigned to either the treatment or the control group. Table

1 shows that for Riverside County, nearly all means are the same between the two

groups, perhaps with the exception of females in the control group. The results are

similar for the other counties.

We choose Riverside County for several reasons. It has been highlighted by many

as the best performing county. In fact, it has often been referred to as the “Riverside

Miracle” (e.g., see Nelson, 1997). This result has led many to study this case (e.g.,

see Dehejia, 2003) and thus our findings can be compared to past studies. Finally, the

sample is relatively large, and given the large number of covariates, our estimation

procedure benefits greatly from the relatively large sample size.

Although this data has been studied using rigorous econometric techniques before

(e.g., Dehejia, 2003; Hotz, Imbens and Klerman, 2006), to our knowledge, no one has
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used nonparametric methods. The need for these methods with this particular data

set have been hinted at before. Dehejia (2003, pp. 9) mentions that “an estimator

or a functional form that is more flexible in terms of pretreatment covariates should

yield a more reliable prediction of the treatment impact.”

In addition to having a more flexible approach, we are also able to get a treat-

ment effect for each GAIN recipient in the program. This allows us to look at het-

erogeneity both across and within groups. Further, it allows us to use the stochastic

dominance methods discussed earlier to look for relationships amongst the returns

for pre-specified groups in order to better inform policy decisions.

4 Empirical results

We begin by looking at the cross-validated bandwidths from the regression of earnings

on pre-treatment attributes (Table 2). These bandwidths can lead to knowledge

about whether or not variables are relevant and whether or not they enter the model

linearly. We then turn our attention to the gradient estimates (Table 3). Although

our primary concern is with respect to the GAIN participation variable, we will also

analyze other gradients. We then turn our focus to our primary interest. We split

the sample amongst the pre-specified groups and look at their returns distributions

to the GAIN program (Table 4). Finally, we perform stochastic dominance tests

to determine whether or not we have first or higher-order dominance relationships

(Tables 5-6).

4.1 Bandwidth estimates

Table 2 presents the bandwidths for the nonparametric model. The bandwidths

reveal three salient points. First, the bandwidths on the CASAS reading and math

score variables each exceed 3.94E+06. Since continuous regressors behave linearly

as the bandwidths approach infinity, this suggests that a linear approximation for

these two variables may be reasonable. The bandwidth on the “previous earnings”

in the past 12 quarters is relatively small, indicating nonlinear effects. Employing

a model which is linear in this variable would most likely lead to biased estimates.

Second, the bandwidths on the treatment, gender, prior employment or training, and
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ethnic group are much smaller than their respective upper bounds, implying that

these variables are relevant in the model. Finally, the bandwidths on the primary

language variables, as well as family status, age, highest school grade completed,

number of children and random assignment month are each close to their respective

upper bounds; thus, these variables are (likely) statistically irrelevant in explaining

treatment effect on earnings .

In sum, examination of the bandwidths suggest that some variables are relevant

and some variables are irrelevant. Further, it suggests that some variables enter the

model nonlinearly and some variables enter the model linearly. However, this does

not mean we should automatically switch to a semiparametric estimation procedure.

Linearity is not synonymous with homogeneous effects of the covariates. Conse-

quently, while the assumption of linearity receives the most attention, heterogeneity

may be just as problematic. We now turn to the actual results, as well as more formal

statistical tests.

4.2 Parameter estimates

4.2.1 All covariates

Table 3 presents the results for the gradient estimates. We present the nonparamet-

ric estimates corresponding to the 25, 50, and 75 percentiles of the estimated

gradient distributions (labelled 1, 2, and 3). Estimates which are statistically

significant at the 5% level are listed. To conserve space, we exclude any regressor

for which each of the quartiles are insignificant. The full set of estimates with corre-

sponding standard errors is available from the authors upon request.

In terms of the unordered categorical variables, several findings stand out. First,

nonparametric estimates of the treatment (enrollment in GAIN) are positive and

significant at the median and upper quartile. Perhaps more important for this study

is that the third quartile is over three times the value of the second quartile. This

shows prevalence of heterogeneity in the effect of the treatment across the sample.

Finally, while some of the bandwidths suggest relevance, we did not find significance

of any of the other unordered categorical regressors at the quartile values.

Likewise, for the ordered categorical variables, none of the quartile gradient es-

timates are significant. Again, these results are expected because, as was observed
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before, their bandwidths approached their upper bounds of unity. The implication is

that they are not important in prediction of earnings. However, this does not mean

that they do not play a role in terms of the impact of the treatment, as we will check

later.

Finally, for the continuous variables, it is seen that CASAS reading and math

scores have effects on earnings. The partial effect at the median for reading scores is

89.6598 (s.e. = 22.4854) and the partial effect at the median for the math score is

37.6296 (s.e. = 12.4125). This result suggests that improving basic reading and math

scores would lead to higher earnings (with improvements in reading skills typically

being more beneficial than mathematics). While the bandwidths suggest that each of

these variables enter linearly, they do not shed light on possible heterogeneity. The

results at the quartiles show heterogeneity in the partial effects and re-emphasize the

importance of a nonlinear estimation procedure.

4.2.2 Treatment variable

The results across different covariates are interesting, but a main purpose of this

study and the GAIN experiment is to determine the effect of the treatment. In most

studies, a single coefficient is obtained for the (average) treatment and its magnitude

determines whether or not the treatment was successful. Here we obtain a separate

estimate for each person receiving the treatment. Thus, we can examine the effect of

the treatment among pre-specified groups.

Table 4 gives the nonparametric estimates corresponding to the 25, 50, and

75 percentiles of the distribution for the treatment (GAIN) for specific sub-groups.

Specifically, we broke the sample across each pre-specified group and ran separate

nonparametric regressions on each sub-group (including calculating bandwidths for

each). The quartile estimates for those in the GAIN program are given in the table.

The results for the groupings by unordered categorical variables are quite striking.

First, the effect of the treatment on women is larger than the effect of the treatment

on men at median, the first, and the third quartiles (note that the first quartile

estimate for men is negative and insignificant). Although the results at the quartiles

are strong, we cannot determine whether or not the effect of the treatment for women

dominates the effect of the treatment for men. We will examine this further in the
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next sub-section. Second, there is some evidence that individuals who received the

treatment and had previous training or work experience in the prior year experienced

larger returns to GAIN than treated individuals who did not have employment or

training in the prior year. However, these results only hold at the median and at the

upper quartile. This would suggest that no dominance relation exists. Third, Asians

are the only ethnic group who did not experience significant returns at these quartiles.

Finally, although the bandwidth for English or Spanish as a first language was near

its upper bound, treated individuals who spoke English as their native language, had

positive and significant treatment effects for enrollment in GAIN and those whose

primary language was not English did not experience significant returns to GAIN at

any of the quartiles. This result may suggest that immigrants are not benefitting

from the program. This result is consistent with other inferences below related to

spoken or written English.

For the ordered categorical variables, we see that treated individuals aged 21 and

over had larger effects than treated individuals under 21. The level of schooling

seemed to make little difference on who benefitted the most from the program. Fi-

nally, treated individuals who have one or more children have larger treatment effects

at each quartile than individuals who did not have any children (perhaps a sign of

necessity). Again, these results at these selective quartiles are strong, but it is pre-

mature to conclude that any of these groups “dominate” one another in terms of the

partial effect of the treatment variable.

Finally, for groupings corresponding to the continuous variables, treated individ-

uals with no earnings in the previous 12 quarters had larger effects of the treatment

than treated individuals who had positive earnings in the previous 12 quarters at

each quartile. The test scores results are as expected. Treated individuals obtaining

scores above the median (either in math or reading) have larger treatment effects

as compared to their counterparts who scored below the median. This shows that

higher ability individuals are able to benefit more from the treatment. We return

to the Gary Becker argument which we paraphrased in the Introduction: education

is both an investment and a consumption good. The greater benefit of education is

likely related, nonlinearly, to many attributes of the individual and the characteristics

of the “goods.”
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4.3 Dominance tests

The results of the previous subsection showed that certain groups appeared to have

higher returns from the treatment than other groups, at certain quantiles. Here we

use formal tests to compare the effect of the treatment between two pre-specified

groups across all quantiles. Tables 5-6 break down the results for tests of equality,

first order, second order and third order dominance. Table 5 gives the test statistics.

A negative sign of a test statistic is a sign of possibly significant dominance relation.

The entries in Table 6 are the “p-values” for the corresponding tests.

4.3.1 Test statistics

In Table 5, the entries are the sample value of the test statistics. The left-hand-

side of the table gives the pre-specified groups being compared. In each case we are

comparing the treated individuals in each group. The first column of numbers gives

the test statistic for the equality of the distributions of the gradient of the conditional

mean with respect to the treatment (GAIN). The second through fourth columns give

the test statistic for first, second and third order dominance, respectively. In order

for a dominance relation to exist, the test statistic must be negative. For example,

for the first order dominance case, if the test statistic is negative, then first order

dominance is observed. If the test statistic is positive, then there is no observed

ranking in the first order sense. Similar interpretations are given to higher order

dominance relations.

When examining the test statistics for first order dominance, there is only the

possibility of FSD for three of the 17 comparisons. The comparisons with negative

FSD test statistics are: white versus Asian, primary language English versus primary

language not being English, and CHASS reading score above the median versus score

below the median. The lack of negative test statistics for the comparison between

those with and without previous earnings may be surprising given the results at the

quartiles, but these suggest crossing of the distributions closer to the tails.

As expected, more cases of second order dominance are observed. The third

column of numbers in Table 5 gives the test statistics for the null of second order

dominance (noting that first order dominance implies second order dominance, and

so on). Here we also find negative test statistics for each ethnic group versus Asians,
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those 21 and over versus those under 21, and those with children over those not having

children. For third order dominance, we also find a negative test statistic for white

versus black. These higher order dominance rankings imply that policy makers with

an aversion, or increasing aversion to earnings poverty, would find the program to be

beneficial, whatever cardinal weighting function/utility is adopted.

4.3.2 Probability values

Each value in Table 6 is the p-value associated with a particular test. The first column

rejects the null of equality of the distributions of the treatment effects when the p-

value is below . In columns 2-4, the respective order of dominance is rejected (when

its associated test statistic is negative) if the p-value is less than 0400 (see Maasoumi,

Millimet, and Sarkar, 2009). Substantial coverage probability for negative values of

the statistic support an inference of dominance to a degree of statistical confidence.

In Table 6, we reject each null that the pairs of treatment effect estimates are

equal. These results are not surprising given what we have seen thus far. For the

dominance tests (in Table 5) with negative sample statistics, there are cases where

there is significant evidence of dominance. The strongest ranking is the finding of

first order dominance. We find that those whose primary language is English have

uniformly higher returns to GAIN than those whose first language is not English.

First order dominance implies higher order dominance, and we see that the p-values

for second and third order dominance are larger in magnitude than that of the first

order test. In two other cases where we found negative test statistics for first order

dominance (white vs. Asian and above median reading score versus below median)

both have p-values much less than 0.40.

We find three strong cases for second order dominance. In addition to white

versus Asian, we also see that those who received the treatment and were 21 years

and older gained more than those under 21; similarly, those with children versus those

without children. It may be that older individuals and those who have dependents

took better advantage of the program. Finally, we have one test statistic with a p-

value near the border of 0.40. Reading score above the median versus reading score

below the median (p-value = 0.3924) is likely related to the result of language ability.

This, along with the previous results, suggest that the program may want to focus
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more on basic language and reading skills.

Finally, for third order dominance, in addition to those listed above, we find a

further ranking of white versus black treatment outcomes. Those with increasing

aversion to inequality of earnings at the lower end of the earnings distribution, would

infer a greater benefit to whites vs blacks treated in GAIN.

5 Conclusions

In this paper we outlined a method to compare gradient estimates from a nonpara-

metric regression via stochastic dominance techniques. Our goal here was to look at

the impact of an exogenous treatment across different pre-specified groups.

To showcase the methodology, we applied our procedure to the California GAIN

program. Here we found that relatively few inputs commonly used in determining

labor outcomes are significant. Specifically, we only found significant quartile esti-

mates for improving earnings for enrollment in GAIN and for test scores. Although

many results were insignificant, we did find that certain groups had higher returns to

GAIN. For example, we found that females, those whose primary language was Eng-

lish, those individuals over the age of 21 and those with higher test scores had higher

returns to the treatment. However, we only found one case of first order dominance:

English as the primary language versus English not being the primary language. We

also found some evidence of second and higher order dominance, for example, for

above median versus below median reading scores. From a policy standpoint, this

suggests that improving basic reading skills can increase the impact of GAIN.

An interesting extension to our work would be to calculate “collateral effects,”

which we define as changes to the gradients of the other regressors () arising from the

treatment, or different amounts of the treatment (if the treatment were continuous).

These can be calculated as the cross-partial derivatives with respect to  and any

element in . In other words, we would like to allow for the treatment to have effects

on other attributes of the individual.
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Table 1: Descriptive Statistics
Variables By Type All Treatment Group Control Group

Dependent Variable:
  Earnings 10079.5147 10696.7075 7790.6829

Unordered Categorical Variables:
   Experimental (GAINS) 0.7876 1.0000 0.0000
   Female 0.6819 0.7040 0.5999
   Employment or Training (Prior Year) 0.2376 0.2390 0.2325
   White 0.5500 0.5513 0.5452
   Not White 0.4500 0.4487 0.4548
   Hispanic 0.2464 0.2435 0.2573
   Black 0.1551 0.1584 0.1429
   Asian 0.0334 0.0311 0.0423
   Primary Language English 0.9610 0.9636 0.9512
   Primary Language Spanish 0.0197 0.0181 0.0255

Ordered Categorical Variables:
   Age 32.2918 32.3143 32.2085
   Highest School Grade Completed 11.1642 11.1733 11.1305
   Number of Children 2.0193 2.0161 2.0313

Continuous Variables:
   Earnings Previous 12 Quarters 2335.7927 2293.0782 2494.1975
   CASAS Reading Score 232.6416 232.6085 232.7646
   CASAS Math Score 219.5249 219.5871 219.2945

Number of Observations 6460 5088 1372

Notes: Average values are listed. The first column of numbers is for the entire Riverside sample, the 
second is for the treatement group and the final is for the control group.



Table 2: Bandwidths
Variables By Type Bandwidth Upper Bound Interpretation

Unordered Categorical Variables:
   Experimental (GAINS) 0.2630 0.5000 relevant
   Sex 0.2382 0.5000 relevant
   Employment or Training (Prior Year) 0.3451 0.5000 relevant
   Ethnic Group 0.7721 0.8750 relevant
   Primary Language English 0.4993 0.5000 most likely irrelevant
   Primary Language Spanish 0.4993 0.5000 most likely irrelevant
   Family Status 0.7590 0.8000 most likely irrelevant

Ordered Categorical Variables:
   Age 0.9986 1.0000 most likely irrelevant
   Highest School Grade Completed 0.9986 1.0000 most likely irrelevant
   Number of Children 0.9986 1.0000 most likely irrelevant
   Random Assignment Month 0.9986 1.0000 most likely irrelevant

Continuous Variables:
   Earnings Previous 12 Quarters 1.35E-01 ∞ nonlinear
   CASAS Reading Score 3.94E+06 ∞ most likely linear
   CASAS Math Score 5.22E+07 ∞ most likely linear

Notes: Bandwidths selected via AICc.  Aitchison and Aitken (1976) kernel used for unordered data, Wang 
and van Ryzin (1981) kernel used for ordered data and second-order Gaussian kernel used for continuous 
data.



Table 3: Significant nonparametric gradient estimates at the quartiles
Variable Q1 Q2 Q3

Unordered Categorical Variables:
   Treatment (GAIN) 184.1634 644.8306

Continuous Variables:
   CASAS Reading Score 89.6598 123.8145
   CASAS Math Score 37.6296 60.5834

Notes: Significant gradient estimates for the first, second and third quartiles are listed above (standard 
errors obtained via bootstrapping are available upon request).  For those variables with no significant 
quartiles, the estimates are excluded. For discrete regressors, the lowest value taken by the gradiet is 
exactly zero by definition.



Table 4: Significant returns to GAIN by group at the quartiles
Variable Q1 Q2 Q3

Unordered Categorical Variables:
   Gender
      Female 691.3410 1125.3420 1652.9889
      Male 103.3956 331.2337
   Previous Training
      Employment or Training (Prior Year) 338.7188 1122.1333 1974.1487
      No Employment or Training (Prior Year) 379.5400 897.4375 1457.1979
   Ethnic Group
      White 173.4314 971.4750 1754.1438
      Not White 202.2289 897.1133 1368.9425
      Hispanic 127.9419 362.3600 504.5695
      Black 385.7882 996.9691 1412.9833
      Asian
   Language
      Primary Language English 554.1186 1035.6361 1513.4771
      Primary Language is Not English
      Primary Language Spanish

Ordered Categorical Variables:
   Age
      Under 21 386.0289
      21 and Over 545.5721 1090.4551 1696.0552
   Highest School Grade Completed
      Less Than High School 48.5136 80.2157
      High School Diploma and Over 32.7699 46.8052
   Number of Children
      Zero
      One or More 344.6863 723.9139 1074.3786

Continuous Variables:
   Previous Earnings
      Positive Earnings Previous 12 Quarters 281.0717 604.8498 790.5349
      No Earning in Previous 12 Quarters 716.2675 1133.7201 1580.6813
   Test Scores
      CASAS Reading Score Above Median 864.1227 1400.7653 1848.2009
      CASAS Reading Score Below Median 225.2025 486.8775 719.7718
      CASAS Math Score Above Median 481.5905 1066.8121 1674.2816
      CASAS Math Score Below Median 247.4605 740.0365

Notes: Returns to GAIN for the first, second and third quartiles for particular sub-groups are listed 
above.  Only those that are significant are listed (standard errors obtained via bootstrapping are 
available upon request).  Each estimate is obtained by splitting the sample and running a separate 
regression (including cross-validation routine) on the pre-specified group.



Table 5: Stochastic dominance test statistics
Comparison EQ FSD SSD TSD

Unordered Categorical Variables:
   Female vs. Male 0.6862 0.0336 3.3447 383.2913
   Previous Employment or Training vs. No Previous Employment or Training 0.1520 0.0423 11.0134 3381.1571
   White vs. Not White 0.1397 0.0187 0.8180 24.1794
   White vs. Black 0.1422 0.0728 3.9184 -0.0219
   White vs. Hispanic 0.5074 0.0829 24.1267 7098.3774
   White vs. Asian 0.6407 -0.0042 -0.0340 -0.0340
   Black vs. Hispanic 0.5790 0.0824 31.0026 11533.7441
   Black vs. Asian 0.6989 0.0091 -0.0120 -0.0120
   Hispanic vs. Asian 0.6296 0.0275 -0.0435 -0.0435
   Primary Language English vs. Primary Language Not English 0.8821 -0.0102 -0.3854 -0.3854
   Primary Language Spanish vs. Primary Language Not Spanish 0.7590 0.1264 1.4339 15.6832

Ordered Categorical Variables:
   21 and Over vs. Under 21 0.5492 0.0029 -0.0230 -0.0230
   High School Diploma vs. No High School Diploma 0.2761 0.0609 0.5873 6.0183
   Children vs. No Children 0.7084 0.0091 -0.1010 -0.1010

Continuous Variables:
   No Earnings in Previous 12 Quarters vs. Earnings in Previous 12 Quarters 0.4951 0.0077 0.2199 14.0987
   CHASS Reading Score Above Median vs. CHASS Reading Score Below Median 0.5799 -0.0014 -0.0041 -0.0041
   CHASS Math Score Above Median vs. CHASS Math Score Below Median 0.4135 0.0017 0.0182 0.5662

Notes: The number in each cell is the test statistic for the comparison of the returns to enrollment in GAIN between two pre-specified groups 
for a particular test.  The first column is a test for equality.  The second through fourth columns are tests for stochastic dominance (first, 
second and third order, respectively).  For the stochastic dominance tests, those test statistics which are negative are possible cases where 
dominance may exist.  For the negative test statistics, the p-values in Table 6 will determine whether or not dominance exists.



Table 6: Stochastic dominance test p-values
Comparison EQ FSD SSD TSD

Unordered Categorical Variables:
   Female vs. Male 0.0000
   Previous Employment or Training vs. No Previous Employment or Training 0.0000
   White vs. Not White 0.0000
   White vs. Black 0.0000 0.4810
   White vs. Hispanic 0.0000
   White vs. Asian 0.0000 0.0253 0.0506 0.0506
   Black vs. Hispanic 0.0000
   Black vs. Asian 0.0000 0.2025 0.2405
   Hispanic vs. Asian 0.0000 0.0886 0.0886
   Primary Language English vs. Primary Language Not English 0.0000 0.8734 0.8861 0.8861
   Primary Language Spanish vs. Primary Language Not Spanish 0.0000

Ordered Categorical Variables:
   21 and Over vs. Under 21 0.0000 0.8228 0.8608
   High School Diploma vs. No High School Diploma 0.0000
   Children vs. No Children 0.0000 0.7722 0.8101

Continuous Variables:
   No Earnings in Previous 12 Quarters vs. Earnings in Previous 12 Quarters 0.0000
   CHASS Reading Score Above Median vs. CHASS Reading Score Below Median 0.0000 0.1013 0.3924 0.5443
   CHASS Math Score Above Median vs. CHASS Math Score Below Median 0.0000

Notes: The number in each cell is the p-value for the comparison of the returns to enrollment in GAIN between two pre-specified groups 
for a particular test.  For the stochastic dominance tests (columns 2-4), the p-value is included only if the corresponding test statistic in 
Table 5 is negative.  Cases where we fail to reject the null of dominance are listed in bold.  399 bootstrap replications are performed for 
each SD test.


