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ABSTRACT

Lower and Upper Bounds of Unfair Inequality:
Theory and Evidence for Germany and the US

Previous estimates of unfair inequality of opportunity (I0p) are only lower bounds because of
the unobservability of the full set of endowed circumstances beyond the sphere of individual
responsibility. In this paper, we suggest a new estimator based on a fixed effects panel
model which additionally allows identifying an upper bound. We illustrate our approach by
comparing Germany and the US based on harmonized micro data. We find significant and
robust differences between lower and upper bound estimates — both for gross and net
earnings based either on periodical or permanent income — for both countries. We discuss
the cross-country differences and similarities in IOp in the light of direrences in social
mobility and persistence.
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1 Introduction

Preferences for redistribution are systematically correlated with beliefs about the
relative importance of effort and luck in the determination of outcomes (see Konow
(2003), Alesina and Giuliano (2011) and Gaertner and Schokkaert (2011) for over-
views). Individuals are more willing to accept income differences which are due to
individual effort (or laziness) rather than exogenous circumstances (Fong (2001)).
Theories of distributive justice distinguish ethically acceptable inequalities (e.g. due
to differences in effort) from unfair inequalities (e.g. due to endowed characterist-
ics)[] In empirical applications, the main problem is the identification of the latter,
i.e. the amount of inequality which is due to circumstances beyond the sphere of
individual responsibility. It has been recognized that previous estimates of such
inequality of opportunity (IOp henceforth) yield only lower bounds because of the
unobservability of the full set of circumstances (e.g. Bourguignon et al. (2007) and
Ferreira and Gignoux (2011)). In this paper, we suggest a new estimator of I0p
based on a fixed effects model which additionally allows identifying an upper bound
for unfair inequalities in order to provide the full range of IOp estimates. We illus-
trate our approach by comparing estimates for Germany and the US — two countries
with different welfare state regimes, attitudes towards inequality and redistribution
(see Figure [5] in the Appendix) and social mobility[]

The concept of equality of opportunity (EOp) in contrast to equality of out-
comes (EO) has received considerable attention since the seminal contributions of
Roemer (1993, 1998), Van de gaer (1993) and Fleurbaey (1995)F] The traditional
notion of EO refers to an equal distribution of economic outcomes (e.g. well-being,
consumption or income) across the populationﬂ The EOp theory, in contrast, is in-
terested in the sources of inequality and separates the influences on the outcomes of
an individual into circumstances and effort. Circumstances are defined as all factors

beyond the sphere of individual control, for which society deems individuals should

!See Sen (1980, 1985, 1992), Dworkin (1981a,b), Arneson (1989), Cohen (1989), Roemer (1993,
1998, 2002) and Fleurbaey (2008).

2 According to Alesina and Glaeser (2004), Americans believe that social mobility is important
and high in the US, whereas Europeans perceive lower chances to climb the social ladder. Hence,
Germans are more in favor of redistribution than Americans (Alesina and Angeletos (2005)).

3See e.g. Roemer et al. (2003), Dardanoni et al. (2005), Betts and Roemer (2006), Lefranc et
al. (2008, 2009), Devooght (2008), Checchi et al. (2010), Checchi and Peragine (2011), Dunnzlaff
et al. (2011), Aaberge et al. (2011), Alméas et al. (2011) as well as Bjorklund et al. (2011).

See, e.g., Katz and Autor (1999) for an overview as well as Autor et al. (2008) and Dustmann
et al. (2009) for recent applications to the US and Germany.



not be held responsible, such as parental education, gender or ethnic origin. Effort,
on the other hand, comprises all actions and choices within individual responsib-
ility for which society holds the individual (partially) accountable, e.g. schooling
or labor supply decisions. Inequalities (in income) due to differences in effort are
deemed equitable, whereas inequalities due to endowed circumstances are notE]

In empirical estimations of EOp it is impossible to observe all characteristics
that constitute individual’s circumstances (e.g. innate talent or ability). Hence, in
practice, all existing estimates of IOp are only lower bound estimates of the true
share of unfair inequalities due to circumstancesff| Estimating lower bounds of I0p
has important implications for the design of redistributive policies. As most theories
of distributive justice are based on ethical principles which only defend compensa-
tion for inequalities due to circumstances, underestimating the true amount of this
IOp might lead to too little redistribution when designing a fair tax benefit system
(Luongo (2010)) — or to too much if the implicit assumption is that the upper bound
is 100%. In addition, especially when comparing countries, the observed and unob-
served circumstances might behave differently which can lead to different conclusions
when looking only at a(n observed) subset of all (potential) circumstances.

In order to tackle the lower-bound problem, we suggest a new estimator for
IOp which takes into account the maximum value of (observed and unobserved)
circumstances. Our method is based on a two-step approach. First, we estimate a
fixed effects model using panel data. We argue that the time-constant unobserved
heterogeneity is the maximum amount of circumstance variables which an individual
should not be held responsible for — as, by definition it comprises all exogenous
circumstances as well as some unchanging effort variables. Second, we use this
estimated individual effect to estimate the maximum extent of inequality which can

be attributed to IOp, i.e. inequality due to circumstances. This two-stage estimator

This is related to the literature on wage discrimination (see, e.g., Altonji and Blank (1999)
for an overview). However, a fundamental differences exists between the two fields. Labor eco-
nomists studying discrimination are usually interested in estimating the direct effect of endowed
characteristics (e.g. race, gender) on income and try to separate it from confounding effects due to
between-group differences in effort. In contrast, the EOp literature believes that the confounding
indirect effect is also a source of unfair inequalities, i.e. a circumstance, itself that should not be
separated from the direct effect of circumstances on income (see, e.g., the discussion in Roemer
(1998)). We discuss this issue in more detail in Section 2.

6This is due to the fact that adding another circumstance variable to the analysis increases
the explained variation and hence the share of inequality due to circumstances — just like an R2-
measure increases when adding another variable to the analysis. See Ferreira and Gignoux (2011)
for an extensive discussion.



allows us to quantify an upper bound of IOp. Together with the well-known lower
bound we thus provide a range for the extent of IOp which allows to better compare
income distributions and to give guidelines for the design of redistribution policies.

To empirically illustrate our new estimator, we rely on the Cross-National Equi-
valent Files (CNEF) for Germany and the US which contain harmonized micro-level
panel data from national surveys which cover long time periods and include a com-
prehensive set of income, circumstance and effort variables. The German Socio-
Economic Panel (SOEP) data has been widely used for income inequality analyses
(see, e.g. Fuchs-Schuendeln et al. (2010), Peichl et al. (2011)). However, it has not
yet been used to analyze IOp. We compare our estimates to US data taken from the
Panel Study of Income Dynamics (PSID) which has been used by Pistolesi (2009)
to analyze ’IOp in the land of opportunities’. Comparing the US with a Contin-
ental European country like Germany is interesting in itself (see, e.g. Piketty and
Saez (2007)), as both countries have different welfare state regimes and people have
different beliefs about redistribution and social mobility[] Almas (2008) uses data
from the Luxembourg Income Study to compare estimates of unfair inequalities for
Germany and the US and shows that the results depend on the fairness ideal and
the measure usedf]

Our lower bound estimates yield IOp shares of up about 16% for annual earnings
in the US, which is comparable to previous findings. The upper bound of IOp, in
contrast, accounts for around 35% of the observed inequality. Results for Germany
are significantly higher with shares of 30% and 50% respectively — which is in line
with the findings of Almas (2008). The significant differences between lower and

upper bounds suggest that previous (lower bound) estimates of IOp might demand

"There are a number of studies investigating social and economic mobility (see, e.g., Corak and
Heisz (1999), Bjorklund and Jaentti (1997, 2009), or Bjorklund et al. (2010). While these studies
only implicitly measure IOp, we can directly estimate it in our approach.

8Two different approaches have been used in literature to estimate IOp (see, e.g., Fleurbaey
and Peragine (2009)): ex-ante vs. ex-post. The former partitions the population into types,
i.e. groups of individuals endowed with the same set of circumstances, and IOp is measured as
inequality between types. In the latter case, individuals are classified into responsibility groups
(tranches) of individuals at the same effort level and inequality within tranches is investigated.
Note that Alméas (2008) argues that the ex-ante approach gives a lower bound because it treats the
unexplained variation as an responsibility variable (see also the discussion in Ferreira and Gignoux
(2011)), whereas the ex-post approach would give an upper bound because it treats the residual as
a circumstance. This, however, is only true for a given set of (observed) circumstances. Defining
the upper bound as in our case, gives lower and upper bounds both for the ex-ante and ex-post
approaches. In our empirical application, we focus on the ex-ante approach due to practical reasons
and data limitations. We discuss the two approaches in more detail in Section 2.



for too little redistribution in order to equalize unfair inequalities. Furthermore,
our results based on annual incomes seem to indicate that EOp is higher in the
"land of opportunities". However, as it has been shown in the literature, IOp is
usually higher in permanent than in annual incomes (Aaberge et al. (2011)). We are
able to confirm this result for the lower and upper bound shares for the US, which
increase to 30% and 70% respectively. However we do not find a large increase for
Germany. Hence, when looking at permanent income, IOp is even slightly higher in
the US. We relate this interesting country difference to different degrees of mobility
and persistence in different parts of the distribution (Bjoérklund and Jéntti (2009)).

Results are similar for gross and net earnings. This implies that there is no
differential effect of redistribution on IOp, i.e. there is no implicit tagging on cir-
cumstances in the tax systems of Germany and the US. Our results further indicate
that unobserved circumstances, such as ability and talent, are important determ-
inants of inequality (in line with findings for Sweden, see Bjorklund et al. (2011)).
Furthermore, we identify gender as an important source of IOp which is mainly
driven by the indirect effect of gender on earning outcomes through the selection
into part-time employment. A policy simulation reveals that the switch from joint
taxation to individual taxation significantly reduces IOp in Germany.

The setup of the paper is as follows: In Section 2, we introduce the conceptual
framework of EOp and the methodology to estimate the upper bounds of IOp.
Section 3 describes the data and income concepts used. Section 4 presents the results

of our empirical analysis which are discussed in Section 5. Section 6 concludes.

2 Conceptual Framework and Methodology

2.1 Measuring IOp: a simple model

In order to compare our new estimator to previous IOp estimates, we follow standard
practice in the literature to define our theoretical and empirical approaches. In
accordance with Roemer (1998), we distinguish between two generic determinants
of individual outcome y;, of individual ¢ at time point s. First, circumstances C; are
characteristics outside individual control (think of race, gender, family background)
— and hence a source of inequitable inequalities in outcomes. Second, effort FE;,
is representing all factors affecting earnings that are assumed to be the result of

personal responsibility.



Following Roemer (1998), we explicitly recognize the fact that effort is shaped
by circumstances, i.e. that the distribution of effort within each type is itself a char-
acteristic of the type. This approach, which is common in the literature on EOp,
differs from the literature on wage discrimination (see Altonji and Blank (1999) for
an overview) where economists are usually interested in a ’clean’ measure of the
direct effect of circumstances. Suppose there in an unobservable aspect of effort
that is correlated with an endowed characteristic. Then a regression of earnings on
circumstances only (e.g. a gender dummy) overestimates the direct effect of gender
on earnings because it confounds the effects of the endowed characteristic with a
dimension of effort that it is correlated with. Hence, economists studying discrim-
ination control for between-group differences in effort in order to arrive at a ’clean’
measure of the direct effects of circumstances. In the literature on EOp, in contrast,
the confounding indirect effect (of circumstances on income via effort) is also seen
as a source of unfair inequalities itself which should be compensated and hence not
be separated from the direct effect of circumstances on incomd’] Therefore, I0p is
related to wage discrimination, but it is not the same. Unfair income differences
in the IOp framework can be indeed caused by discrimination, but they could also
be due to between-group differences in productivity or preferences. Therefore, the
two approaches imply different normative choices about the compensation of the
indirect (confounding) effect. While we focus on the traditional notion of EOp in
this paper, the different normative choices of the underlying fairness principles can
be made explicit (see Fleurbaey (2008) or Almas et al. (2011)) and, in principle, it
is possible to extend our approach of estimating an upper bound to other normative
frameworks as well.

We assume that the outcome variable of interest depends both on exogenous,
i.e. time-invariant, circumstances C; belonging to a finite set I' = {C4, Cy, ...,Cy},
as well as personal effort E;,, which can be shaped by C;, belonging to a set {2 =
{E1, Es, ..., Ex}. In our analysis, we focus on (annual or permanent) labor earnings

w;, of individual ¢ at time point s which is generated by a function f : ' x 2 — R, :

Wis = f(Ci, E<Ci)is) (1)

As it is common in most parts of the literature, we do not explicitly take into

9Note, however, that there is disagreement about the degree of compensation (see, e.g., the
discussion in Roemer (1998) and Fleurbaey (2008))



account the role of luck. Hence, we (implicitly) assume that luck belongs to the
sphere of individual responsibility and in our deterministic model, the individual is
held responsible for any random component that may affect the income and that
cannot be attributed to the observed circumstances/’] The same is true for potential
measurement errors in the earnings data.

We follow the ex ante approach of equality of opportunity and partition the
population of discrete agents i € {1,...N} into a set of types Il = {11, T5,...T}}, i.e.
subgroups of the population that are homogeneous in terms of their circumstancesE-]
The income distribution within a type is a representation of the opportunity set
which can be achieved for individuals with the same circumstances C; by exerting
different degrees of effort. EOp is achieved if the mean advantage levels u are

identical across types:
pF(w) = p(w), VL KT, € TLT; € 1 (2)

Measuring IOp thus means capturing the extent to which p*(w) # p'(w), for k # 1.
To compute a measure of IOp, a hypothetical smoothed distribution (Foster and

Shneyerov (2000)) is constructed: p*(w) = f(C;, E), which is obtained when each
k

individual outcome w?” is replaced by the group-specific mean for each type u*(w)
(for a given reference value of effort E).
Based on this smoothed distribution, we compute two scalar measures of IOp for

any (scale invariant) inequality index I:

0o = I({1f}) (3)

I({pf})
0, = ———= 4
where 0, is a measure of the absolute inequality of opportunity level (IOL), and 6,
is the inequality of opportunity ratio (IOR) measuring the share of total inequality
that can be attributed to circumstances. This allows to decompose the total income

inequality into inequality within types (i.e. effort inequality) and inequality between

10We further discuss — and relax — this assumption in Section 5.3. See also Lefranc et al. (2009)
for the extension of the EOp framework to explicitly take into account luck.

See Fleurbaey and Peragine (2009) or Checchi et al. (2010) for a extensive discussion of ex-
ante vs. ex-post approaches. We choose the ex-ante approach in our context because it is easier to
estimate it empirically when accounting for numerous circumstance variables and a large number
of types in the presence of small samples or cell sizes. Our method is, in general, also applicable
to the ex-post approach which will be discussed in more detail later on.



types (i.e. opportunity inequality).

In order to respect the axioms of anonymity, Pigou-Dalton transfer principle,
normalization, population replication, scale invariance and subgroup decomposab-
ility, we choose a member of the Generalized Entropy class (Shorrocks (1980)) as
inequality measure. By introducing the further requirement of path-independent de-
composability (see Foster and Shneyerov (2000)), the set of eligible indices reduces
to the mean logarithmic deviation (MLD) Iy = Zln e

2.2 Empirical strategy to estimate 10p

Lower bound of IOp In our empirical estimation approach we follow Bour-
guignon et al. (2007) and Ferreira and Gignoux (2011) who use a parametric spe-
cification to estimate lower bounds of IOp. Relying on a parametric approach allows
us to estimate the impact of numerous circumstance variables even in the presence
of small sample and cell sizes — which, unfortunately, is the case in the data that we
use for our empirical illustrationm Log-linearization of equation and adding an

error term yields the following empirical specifications

ln(wis) = OéCi + 5E'Ls + Uss (5)

Eis = HCZ + Vs (6)

Equation represents the direct effect of circumstances, equation @ the in-
direct effect of circumstances on effort. Since it is unlikely that we will observe all
relevant circumstance and effort variables that constitute individuals outcomes, es-
timating this model will likely yield biased estimates. However, in order to compute
IOp shares, it is not necessary to estimate the structural model and to derive causal
relationships. By substituting the effort equation (6)) into the earnings equation (F)),

we obtain the following reduced-form relationship:

12In contrast, non-parametric methods avoid the arbitrary choice of a functional form on the
relationship between outcome, circumstances and effort (e.g. Lefranc et al. (2009), Ferreira and
Gignoux (2011) or Aaberge et al. (2011)). The drawback of the non-parametric approach, however,
is that a consideration of more than one circumstance variable is difficult due to practical reasons
in the presence of small cell sizes which is usually the case in survey data. Access to large-scale
administrative panel data with information on circumstances (family background), which is not
available in Germany and rather restrictive in the US, would allow to estimate lower and upper
bounds of IOp also non-parametrically.



In(w;s) = (o + BH)C; + Bugs + wis (7)

(] Mis
This reduced-form equation can then be simply estimated by OLS to derive the
fraction of variance which is explained by circumstances. Including all available k
observed circumstances C¥ in equation @), the estimates @ measure the overall
effect of circumstances on labor earnings, combining both, the direct and indirect
effects. Based on this, we can construct a parametric estimate of the smoothed

distribution:

i = exp[UC + 07 /2] (8)

As we replace earnings outcomes by their predictions (with o? being the estim-
ated residual variance in the earnings equation, see Blackburn (2007)), all individuals
with the same circumstances necessarily have the same advantage levels. Thus, in
the case of absolute EOp, i.e. no income differences due to (observed) circumstances
CE | all predicted earning levels would be identical. Consequently, IOp can then be
measured as the inequality of these counterfactual earnings levels, where differences
are only due to differences in circumstances. By inserting into (3)), we derive
a measure of the absolute IOp level (IOL), whereas inserting into gives a
measure of the relative IOp share (IOR).

The approach has so far been in line with the existing literature such as Bour-
guignon et al. (2007), Checchi et al. (2010) and Ferreira and Gignoux (2011). It has
been recognized that this procedure leads to lower bound estimates of the true share
of unfair inequalities due to circumstances. The intuition to this is just like that of
an R2-measure which increases when adding another variable to the analysis: adding
another circumstance variable to the analysis increases the explained variation (or
at least does not decrease it in the case it is orthogonal), and hence the share of
inequality due to circumstances cannot decrease. In the next step, we suggest a new

estimator for IOp to tackle the lower-bound problem.

Upper bound of IOp Our method to derive an upper bound of IOp is based
on a two-step approach. First, we estimate a fixed effects model using panel data
to derive a measure of time-constant unobserved heterogeneity. Second, we use

this estimated unit effect to estimate the maximum extent of inequality which can



be attributed to inequality due to circumstances. The intuition for the difference
between lower and upper bounds of IOp is comparing the explained variance of
an earnings equation with all observed circumstance variables (lower bound) to
(one minus) the explained (within) variance of an fixed effects regression (upper
bound). However, instead of comparing the (explained) variances of the log earnings
equations, we compute an inequality measure with well-defined properties based on
the smoothed distributions|

To estimate the fixed-effects model, we apply our setting to a longitudinal data
structure. This implies that individual earnings at time point ¢ (with ¢ # s) might be
influenced by time-constant observable circumstances C; (economically exogenous by
definition), by time-varying observable effort variables E;; as well as time-constant
unobserved factors u;, time-specific unobserved factors u; and an independent error
term e€;:

Wi = f(Ci,Eit7 Uy Uy, 5@'1‘,) (9)

Log-linearization yields the empirical specification
ln(wit) = O(Ci + ﬁEzt + U; + Ut + Eit (10)

which corresponds to the data generating process of a fixed effects model with time-
specific effects. Thus u; takes up serial effects such as inflation and other time-specific
earnings shocks which are common for all individuals and ¢;; comprise unsystematic
factors which influence wages. Using this longitudinal design enables us to derive
consistent estimates for the effort variables despite their endogeneity with respect to
the unobserved circumstances. As opposed to other studies which assess the impact
of effort variables in EOp settings, we can also estimate the effect independently of
unobserved circumstances.

If one argues that all effort variables are not exogenous in the sense that they
vary over time (at least to some extent), then — given the time period is long enough
— all time-constant unobserved heterogeneity is attributable to exogenous circum-
stances. Furthermore, assuming that no circumstance variables were observable, all

circumstances were accounted for by the individual specific unit-effect ¢; :

13We do this, because the variance of logarithms — in contrast to the MLD and other GE-
measures — is not a good measure of inequality because it violates the Pigou-Dalton transfer
principle as well as the Lorenz criterion (Foster and Ok (1999)).



In(wir) = BEy + ¢ + u + it (11)

As data limitations do not allow us to look at the whole earnings history of
individuals, of course, we cannot be sure that there are no unobserved effects in c¢;,
which might rather be attributed to effort, such as long-term motivation and work
effort. As this cannot be ruled out, we argue that the time-constant unobserved het-
erogeneity ¢; is the maximum amount of circumstance variables which an individual
might not be held responsible forE] Estimating equation by a simple FE model
with period dummies then yields estimates for ¢;:

Ci = Wi — BkFEffzk — & (12)

We use this estimate of the person effect as an indicator for the maximum value
of time-constant circumstances which an individual should not be held responsible
— as by definition, it comprises all exogenous circumstances as well as some not
changing effort variables. Thus, this regression can be regarded as a pre-stage for
estimating our final model of interest, where we use ¢; as a circumstance variable
which includes all unobservable and observable (which we treat as unobserved) time-
constant circumstances of an individual.

When estimating our model of interest we go back to a cross-sectional setting and
use the annual earnings In(w;s) of time point s (with s # t) as dependent variable
(identical with the lower bound estimation) and simply estimate the reduced-form

(bivariate) model:
ln(wis) = wéz -+ Vis (13)

Again, as in the lower bound case, we construct a parametric estimate of the

smoothed distribution by replacing individual earnings by their predictions:

7P = explié; + 0%/2] (14)

Based on these predicted counterfactual levels, we derive upper bound measures
of I0p, by inserting into for the upper bound IOp level and into for

the upper bound IOp share in total inequality. Again, as our estimated circum-

4 Note that the estimation of the unit-effect relies on the consistent estimation of coefficients
in the FE model. Omitting any effort variables that interact with circumstances biases our results
upwards, emphasizing that we should interpret our results as upper bounds of IOp.

10



stance variable includes all observed and unobserved time-constant characteristics
of an individual which might have an influence on earnings, these measures can be
interpreted as upper bound estimates of IOp. Thus, by accounting for unobserved
circumstances and observed circumstances, we are able to estimate lower and upper

bounds of IOL and can identify a reasonable range for the true values of 10p.

Ex-ante vs. ex-post — upper and lower bounds for effort inequality In
the (empirical) EOp literature, two different approaches have been used to estimate
I0p (see, e.g., Fleurbaey and Peragine (2009)): ex-ante vs. ex-post. The (lower-
bound) IOp shares from the ex-ante approach are smaller than the IOp shares from
the ex-post approach (Checchi et al. (2010)). The difference between the two ap-
proaches can be explained with how unobserved factors are treated. Almas (2008)
argues that the ex-ante approach treats the unexplained variation as an respons-
ibility variable and hence gives a lower bound, whereas the ex-post approach, in
contrast, treats it as a circumstance which would give an upper bound. This, how-
ever, is only true for a given set of (observed) circumstances. Defining the upper
bound as in our case (observed vs. unobserved circumstances), gives lower and upper
bounds both for the ex-ante and ex-post approachesfrf]

The ex-ante (lower bound) approach differentiates between inequality due to
observed circumstances vs. residual inequality which is assigned to effort. This
gives a lower bound for IOp — as described above — and hence an upper bound for
effort inequality. Our (ex-ante) upper bound for circumstance inequality is also a
lower bound for effort inequality, as the unobserved (not changing) residual effort is
picked up by the circumstance IOp in this case.

While the ex-ante approach focuses on measuring inequality between types (in-
dividuals with the same circumstances), the ex-post approach looks at inequality
within tranches of individuals, i.e. people at the same quantile of the effort /outcome
distribution with different circumstances. Due to practical reasons, however, the

number of circumstances which are incorporated in the analysis is limited to a small

15The fact that the ex-post approach gives lower bounds only is also discussed by Aaberge
and Colombino (2011) who estimate optimal income tax rules using different social welfare func-
tions (SWF). They recognize that for the (ex-post) EOp approach "[...] there might be other
exogenous factors that affect individuals’ achievements" which are not captured by the observed
circumstances. Hence, the within-type distribution of income might still depend on unobserved
circumstances. Their solution is using an inequality measure based on an ’extended EOp-SWEF’
which (partially) accounts for the within-type inequality. Applying this approach in our setting
yields an intermediate case with an IOp measure between the lower and the upper bound.

11



number of types (e.g. 3 types according to father’s education). By doing this, the
residual is implicitly assigned to IOp. This is, however, not an upper bound as
adding another circumstances variable in this setting can still increase the contri-
bution of explained variance due to circumstances. It is straightforward to apply
our method for an upper bound of IOp to the ex-post setting as well by defining
types based on the unit effect. In the extreme case that everybody is his/her own
type, the upper bound of IOp equals outcome inequality, i.e. the share is 100%. In
our empirical application, we focus on the ex-ante approach due to practical reasons
and data limitations[™]

3 Data

We use the Cross-National Equivalent Files (CNEF) of the SOEP for Germany and
the PSID for the US for our estimations. The CNEF contains harmonized data from
the respective national panel surveys. The SOEP is a representative panel study
of households and individuals in Germany that has been conducted annually since
198417l We use information from all available waves from the SOEP from 1984 until
2009 (since 1991 also including East Germany). The PSID began in 1968 (since 1997
only biennially ) and the most current wave is from 2007. In our analysis we use
information from 1981 onwards, since specific information on the occupation and
industry of the individual is not available in previous PSID waves|™|

In line with the previous literature, the units of our analysis are individuals
aged 25-55 who are in (part- or full-time) employment. The dependent variables
are logarithmic real (annual or permanent) labor earnings, adjusted by consumer
prices indices. Inequality measures are based on the corresponding absolute levels
of earnings. To derive satisfying estimates of the unit-effect, a long time period is

needed. Consequently, we base our analysis only on those individuals who report

16Tn our application, we have more than 500 types for the lower bound approach. In order to
apply the ex-post approach based on percentiles of the earnings distribution, we would need at
least 100 observations per cell, i.e. in total more than 50,000 observations per year. Unfortunately,
we do not have access to such a large panel data set.

I7A detailed overview of the SOEP is provided by Haisken-DeNew and Frick (2003) and Wagner
et al. (2007). Issues concerning sampling and weighting methods or the imputation of information
in case of item or unit non-response is well documented by the SOEP Service Group.

18Note that the income reference period in both surveys is the year before the interview. Hence,
we actually cover the period 1983 until 2008 for Germany and 1981 until 2006 for the US.
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positive earnings for at least five subsequent points in timeF_g] We further restrict
our sample to individuals with data on parental background.

We first estimate lower bounds of IOp by using either log annual earnings of the
most current wave (2009 for Germany, 2007 for the US) or log permanent incomes —
proxied by average real earnings over the whole periodm In a second set of estim-
ations, we rely on permanent log earnings which are computed as the individual’s
mean income over the observation period.

As circumstance variables, we include gender, a dummy whether the individual
was born in a foreign country, categorical variables of the occupation and educa-
tion of the father, the degree of urbanization of the place where the individual was
born as well as the height and year of birth of the individual. In the case of Ger-
many, we include a dummy if the individual was born in East Germany, and for
the US we include a corresponding dummy whether the individual was born in the
South. Additionally, we include a variable for the US which indicates the race of
the individual. Summary statistics on the mean annual earnings and all employed
circumstance variables are illustrated in Table [2] in the Appendix.

In our longitudinal fixed effects earnings regressions, we include as effort variables
weekly working hours, age-standardized experience, individual’s education in years,
as well as industry dummies. We term these variables effort variables since they
can be affected by responsible individual choices. In the case that these variables
do not vary over time, they are included in the fixed effect and hence counted as a
circumstances. This is why the FE model gives an upper bound for IOp. Summary

statistics of these variables are illustrated in Table [3|in the Appendix.

4 Empirical results

4.1 Estimation of earnings equations

Derivation of lower bound of IOp The first step of our analysis is the estim-
ation of the log earnings equation (7)) for the most current survey wave (Germany:
SOEP 2009; US: PSID 2007) on all observable circumstances which are expected

to have an impact on individual labor earnings. The results of these reduced-form

19This is a rather arbitrary restriction. However, as our robustness checks show the number of
time points does not qualitatively change the results.

20Tn principle, it would be possible to compute more sophisticated measures of permanent income
as, e.g., recently proposed by Aaberge et al. (2011).
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OLS regressions are illustrated in Table [5| in the Appendix. The specifications in
the first column are based on the whole sample, in the second and third columns
the sample is restricted to male and female individuals, respectively. The first set
of regressions for each country is based on periodical incomes, the second set on
permanent incomes.

The first column for each set shows that women have significantly lower labor
earnings than men in all specifications — the well-known gender wage gap, with
values around 50%. A large fraction of the earnings difference is due to the fact
that women are more likely to be employed in part-time employment. However, the
effect is still negative and significant when only looking at full-time employed (result
available upon request), implying that there are further negative opportunities for
women.

The effect of being born in a foreign country is negative and significant in Ger-
many. In the US, being 'non-white’ reveals an earnings decreasing effect for per-
manent incomes but not for annual incomesfT| Being born in a disadvantaged region
is related to significantly lower earnings in both countries. In Germany, the effect
is more pronounced in the male subsample, whereas in the US, this is the case in
the female subsample. Individuals who were born in a larger city have on average
larger earnings than individuals who grew up in the countryside.

The regressions also reveal that the education of the father matters for the ac-
quisition of individual earnings. If the father has an upper secondary (college)
education, the children’s wages are significantly higher in both countries. Accord-
ingly, the occupational status of the father also matters in both countries. If the
father was occupied as a white-collar worker or as a professional rather than in blue-
collar professions, this is associated with significantly higher earnings in Germany.
In the US, a self-employed father seems to be particularly favorable for the earnings
acquisition of their children.

As expected, later born (i.e. younger) individuals have smaller earnings. Here
the effect is more robust in Germany. The same is true for body height, which has a
substantial positive impact in all specifications in Germany. Interestingly, in the US
this effect is only evident in the male subsample. Overall, the observed circumstances

can explain up to 26.3% of the overall variation in log earnings in Germany, and up

21 The 'non-effect’ of race for periodical incomes might be explained with the fact that blacks
are more likely to be out of the labor force or even in prison, which leads to underestimated racial
wage gaps in cross-sectional data (Chandra (2000)).
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t0 29.5% in the US. In a world of equal opportunities, these exogenous circumstances
should actually have no effect on earnings — hinting that at least some degree of IOp

exists in both countries.

Derivation of upper bound of IOp To derive upper bounds of IOp, the
first step is the FE estimation of the earnings equation (11]) on the observable time-
varying effort variables. Table[6]in the Appendix presents the results. Again, we run
separate regressions for periodical and permanent income as well as men and women.
Overall, the models explain up to 42% of the within-variation of real earnings in
Germany and up to 36% in the US. The unexplained part is a first hint for the
existence (and size) of the upper bound IOp.

In Germany, we find a clear non-linear relationship between age-standardized
experience and earnings in almost all specifications — with the exception of the male
subsample in the US. Not surprisingly, working hours have a significant positive
impact on earnings in both countries and the effect is robust across all specifications.
The same is true for education. With regard to the industry dummies, in both
countries, an occupation in the energy and mining, manufacturing, construction,
transportation, financial (only in the US) and health sector is associated with higher

earnings than if you are employed in the public sector (reference).

4.2 Lower and upper bounds of I0p

In the next step, the coefficients of the reduced-form OLS regression (7)) are used to
predict counterfactual advantage levels ﬁLB in annual earnings which are only due
to differences in circumstances. Thus, if there were an absolute EOp, all predicted
advantage levels 7i"" would be exactly the same. This smoothed distribution 77“”
is then used to compute the lower bound IOp measures.

The upper bound measures are derived from the FE model. Based on the first-
stage FE wage regressions, we predict the unit-effects for all individuals, as suggested
by equation . In the next step, we use these indicators of the maximum amount
of circumstances ¢; as independent variables to estimate equation . Now, the
dependent variable are the individual’s logarithmic labor earnings in 2009 (2007)
for Germany (the US). The coefficients of this OLS regression are then used to
predict counterfactual advantage levels ﬁUB in annual earnings which are only due

to differences in the unobserved heterogeneity.
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The MLD for inequality in outcomes (total bar) as well as the counterfactual
smoothed distributions for the lower (dark grey) and upper (medium grey) bounds
are presented in Figure . Inequality in periodical (permanent) incomes is reported
in the upper (lower) panel both for the US and Germany for the full sample as well
as separated by gender. Furthermore, for each subgroup, the left bar is based on

gross earnings whereas the right bar is based on net earnings.

Inequality levels We start by examining annual labor earnings (upper panel).
Our results reveal a MLD of 0.26 (0.21) for Germany and 0.35 (0.29) in the US for
gross (net) earnings. Not surprisingly, redistribution reduces outcome inequality in
both countries and in all samples. Inequality of outcomes is substantially larger
in the US than in Germany in all samples, which is in line with previous findings.
In Germany, the inequality in earnings is substantially smaller (higher) if we look
at the male (female) sample separately. This indicates that men are more likely
employed in full-time jobs and thus earnings are distributed more homogenously
than across women — which have a much higher variation in hours worked. In the
US, the outcome inequality levels are similar in the male and female subsamples.
Inequality in permanent incomes is substantially lower in the US than inequality
in annual incomes. In Germany, this is only the case for the female subsample
whereas the decrease is rather small for the full sample which could hint at lower
income mobility in Germany (van Kerm (2004)). Therefore, inequality in permanent
incomes is surprisingly similar between Germany and the US.

The lower bound IOp estimations control for a full range of observed circum-
stance variables such as gender, country and region of origin, height as well as father’s
education and occupation. Based on annual incomes, the MLD levels are rather sim-
ilar between Germany (0.07) and the US (0.06) for the full samples. However, the
difference is statistically significant as suggested by the bootstrapped confidence in-
tervals in Table (4] in the Appendix. Redistribution has only a small effect on the
lower bounds in both countries. When looking at the male and female subsamples
separately, the IOp levels decrease. This is a first indication that gender is an im-
portant (observed) circumstance and in line with the large male-female wage gap
found in Table [5| The results for permanent incomes are almost identical suggesting
no great difference between the two income concepts in terms of (lower bound) IOp
levels.

The upper bound IOp levels are also rather similar for annual income in all
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Figure 1: Upper and lower bound indices of 10p
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Source: Own calculations based on SOEP and PSID. The two graphs on the top
illustrate IOp levels in annual incomes (2009 for Germany, 2007 for the US); the graphs
at the bottom IOp levels in permanent incomes.

samples in both countries. With MLD values of 0.12 for both countries in the full
sample, the IOp levels are significantly (and about two times) larger than the lower
bound estimates that control for a comprehensive set of observed circumstances.
Again, we interpret these numbers as upper bounds of IOp, since they represent
all constant characteristics of an individual which may have an impact on labor
earningsﬁ When looking at permanent incomes, the pictures changes. The IOp
level is similar to annual incomes only for Germany in the full sample and the male
subsample. When looking at the female subsample separately as well as in all US

samples, the IOp levels increase significantly.

22Tt should be noted that the upper bounds of IOp decrease if we, e.g., add the marital status
or the number of children in the FE wage regressions, which can be expected to have an indirect
impact on annual earnings. This provides additional evidence that our results can indeed be
interpreted as upper bounds of IOp.
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IOp shares In order to get a feeling for the relative importance of I0p, Figure
presents the range for IOp shares, i.e. the IOp levels divided by the MLD for
outcome inequality (between group inequality as fraction of total inequality). The
upper (lower) line corresponds to the upper (lower) bound share. Again, results are
presented for periodical (permanent) incomes in the upper (lower) panel both for
the US and Germany for the full sample as well as separated by gender for gross
(left, darker bar) and net (right, lighter bar) earnings.

Figure 2: IOp shares in outcome inequality
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illustrate IOp shares in annual incomes (2009 for Germany, 2007 for the US); the graphs
at the bottom IOp shares in permanent incomes.

The IOp shares are significantly higher for Germany than for the US for annual
incomes, which is due to lower absolute levels of outcome inequality while having
similar values of IOp — which is in line with the findings of Almas (2008). The lower
bound shares equal 30% in Germany and 16% in the US — the latter is comparable
to previous findings (Pistolesi (2009)). Based on these results, it would be possible
to deduce that individual earnings are mainly driven by individual’s effort choices

and only to a lesser extent by circumstances. Our upper bound estimates, however,
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suggest that earnings are to a larger extent pre-determined by exogenous circum-
stances. We find upper bounds of I0p of around 50% in Germany and 35% in the
US. The differences are statistically significant.

Thus, it seems that there is substantially less IOp in the US compared to Ger-
many, i.e. one could conclude that equality of opportunity is higher in the "land
of opportunities". However, using permanent instead of annual incomes matters for
inequality levels, especially in the US, where IOp levels are much higher for per-
manent incomes (comparable to the findings of Pistolesi (2009)). In Germany, the
difference between inequality levels for the two income concepts is much smaller.
Therefore, inequality levels (and hence the IOp shares) are similar for both income
concepts. Hence, the IOp shares for permanent incomes are higher in the US than
in Germany.

Again, the lower bound IOp shares are substantially smaller when we look at
the female and male sample separately. This again hints at gender as an important
source of I0p. However, the effect is not as strong for the upper bounds based on
the unit-effect as circumstance variable. This indicates that a large share of the

inequality in outcomes can be explained by unobserved heterogeneity of individuals.

Gross vs. net incomes We find that the differences between gross and net
income inequality, i.e. the redistributive effects of the tax benefit systems, are rather
similar between Germany and the US. This might be surprising at a first glance,
since European welfare states are usually said to be more redistributive. But in
our exercise, as we focus on the working age population, this is not the case. The
main difference in redistribution between Germany and the US is due to benefits
(especially for the unemployed) and not due to the progressivity of the income tax
which is rather similar in both countries. In our sample, we focus on individuals who
are working. They pay taxes and receive almost no benefits — except for child credits
which are comparable between both countries. Hence, the redistributive effects for

this subgroup of the population is rather similar between Germany and the US.
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5 Discussion of Results

5.1 ’Explaining’ the results

Annual vs. permanent incomes The result that IOp in permanent incomes
in the US is much higher than for annual incomes — which is not the case for Germany,
might be explained by different mobility patterns between both countries. In general,
mobility is higher in the US (van Kerm (2004)). However, in the US much higher
persistence and hence lower mobility — compared to European countries — is observed
at the tails of the distribution (Bjorklund and Jéntti (2009)). Whereas in countries
like Germany, mobility is on average lower, it is more equally spread across the
distribution. In the US, in contrast, there is much higher mobility in the middle,
but, compared to other countries, the probability for the poor (rich) to make it to
the top (bottom) is much lower. This persistence of inequality at the tails of the
distribution might help to explain IOp levels in permanent incomes are much higher
in the US, i.e. the rags-to-riches story is less common than usually thought, as it
has been shown that IOp is generally higher at the tails (Aaberge et al. (2011)).

Gross vs. net incomes We have seen that there is basically no difference
between the IOp shares between gross and net earnings in both countries. This does
not imply that policy does not matter — in contrast, the IOp levels are considerably
lower in both countries. However, the results indicate that there is no differential
effect of the tax benefit system in our sample. This is not surprising for two reasons.
First, tagging, i.e. the use of exogenous circumstance information to determine
tax liabilities and benefit eligibility, is usually not explicitly used in existing tax
benefit systems due to anti-discrimination laws. Second, we focus on the working
population between 25-55. These individually usually pay taxes but receive little
benefits in both countries. Implicit tagging, i.e. designing rules and conditions such
that individual with certain circumstances are more likely to be eligible for it, is
much less common in the tax system than for benefits. Hence, one would expect that
existing tax benefit systems do not account for the source of inequalities — whether
equitable (due to effort) or not (due to circumstances) — when redistributing income.
Therefore, in order to improve the fairness (and efficiency) of the redistributive

system, tagging on circumstances has to be increased (Ooghe and Peichl (2010)).

20



Policy simulation As we have seen, gender differences play an important
role for the EOp gap. Most of it was due to the indirect effect that women tend
to work fewer hours. Part of this is due to the tax benefit rules — especially the
system of joint taxation which yields high marginal tax rates for the second earner —
usually the wife. Based on IZA’s behavioral microsimulation model for the German
tax and transfer system (IZAWMOD, see Peichl et al. (2010) for an overview), we
simulate the abolishment of the joint taxation system in Germany by introducing
pure individual taxation to illustrate the importance of policy for the extent of EOp.

The abolishment of joint taxation increases (decreases) married women’s (men’s)
labor supply®] When looking at the resulting IOp levels, we find that this policy
change indeed leads to lower IOp (the upper and lower bound indices decrease by
more than 10% each). Given the fact that this policy affects only married couples
and that we focus on the intensive margin, this reduction is quite substantial. Fur-
thermore, this policy is also associated with higher tax revenue which could be used
to promote child care policies to further increase female labor force participation

and reduce 10p.

5.2 Robustness checks

Different inequality measures Although the other measures from the GE
family violate the path-independent decomposability axiom, it is still insightful to
see that the results are not driven by the choice of MLD which can be seen in Figure
Bl For both, Germany and the US, the resulting lower and upper bound IOp shares
of the MLD compared to the Theil (1) index (GE(1)) are very similar. With respect
to the half squared coefficient of variation (GE(2)), which is particularly sensitive
to changes at the top of the income distribution, we do observe some differences.
Using this inequality measure generally leads to lower IOp shares in all samples.
The differences are more pronounced in the US than in Germany, and the range of

IOp shares particularly decreases in the case of annual incomes.

Different samples In order to further check the sensitivity of our results, we

examine different samples. The results are illustrated in Table [I} First, we restrict

23The largest effect of the policy change can be observed at the extensive margin, which is not
relevant in our case since we only look at individuals who are already working. However, we can
also observe labor supply effects at the intensive margin which then lead to different individual
earning outcomes for married couples.
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Figure 3: IOp shares in outcome inequality for different inequality measures
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Source: Own calculations based on SOEP and PSID. The two graphs on the top
illustrate IOp shares in annual incomes (2009 for Germany, 2007 for the US); the graphs
at the bottom IOp shares in permanent incomes.

our sample to full-time employed individuals. For Germany, this leads to a decrease
of the lower bound share of IOp of almost ten percentage points. This substantial
decrease may be explained by the less explanatory power of the gender dummy when
only looking at full-time employed individuals. The upper bound increases, on the
other hand. For the US, the results remain fairly similar to those in the baseline
sample. Thus, the qualitative differences between Germany and the US remain.
Note, however, that the sample size are substantially smaller than in the baseline
estimations. When we restrict our sample to prime-aged 30-45 aged individuals, the
results are very similar as those in the baseline estimations, except for the US where
we find a substantial increase in the upper bound IOp share.

In our baseline estimations we derive the unit-effect based on observations from
unbalanced panels. Thus, we also run estimations which we base on balanced panels
over a time period of ten years. The results for the most current balanced panel are

very similar as our baseline results. For Germany, however, we find a considerable
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Table 1: Sensivity analysis

Germany UsS
Annual Permanent Annual Permanent

N LB UB N LB UB N LB UB N LB UB
Baseline 3,410 28.2 473 7,632 29.0 56.6 | 1,293 163 33.5 7,081 30.2 70.0
Full-time employed only 1,894 19.1 679 5034 21.8 727 590 154 329 4,539 26.7 55.5
Age range 30-45 only 1,364 29.5 56.7 4,767 35.0 715 375 22.3  46.3 5,199 30.1 79.7
Balanced-panel 10 years
2008-1999 (2005-1992) 1,327 273  63.6 1,503  31.1 78.6 859 19.1 446 1,498 40.2 76.0
1998-1989 (1991-1982) 841 33.1 438 889 38.9 60.0 | 1,704 20.1 529 2,427 33.5 86.7
Missing values circumstance variables
Without father’s occ. 3,856 26.0 48.5 9,296 28.9 55.1 | 1,475 148 31.3 8,026 28.1 69.2
Without father’s occ., 4,091 239 458 9,801 26.0 523 | 1,634 14.2 321 8,938 24.8 684
region, ethnicity, urbanity
Only gender, birth, height | 4,633 20.6 45.2 11,273 22.8 52.1 | 1,741 9.7 322 9850 184 67.1

Source: Own calculations based on SOEP and PSID. N illustrates the underlying
number of observations, LB (UB) the lower (upper) bound IOp share. Year intervals
without (with) brackets indicate time periods for Germany (the US). All robustness

checks rely on log gross earnings as dependent variables.

decrease of the upper bound for the previous time period, whereas in the US the
upper bound share is larger when looking at the earlier time period.

Finally, we also test the responsiveness of our results with respect to sample selec-
tion due to missing values in circumstances variables. As expected, the lower bound
decreases when reducing the circumstance set. In line with our model the results
for the upper bound IOp shares remain very stable and are therefore independent

of the circumstances set.

5.3 The role of luck

So far, we have assumed that luck belongs to the sphere of individual responsibility.
In the (philosophical) debate about whether luck should be compensated or not, a
distinction is made between "brute luck’ on the one hand and ’option luck’ on the
other. The former is a random shock not associated with any (effort-related) choices
(e.g. being struck by a lightning), whereas the latter is a consequence of a choice (e.g.
winning or losing money while gambling) and should not be compensated. Hence,
by neglecting (brute) luck, we (implicitly) assumed that all individual shocks are
option luck, which was reasonable since our empirical analysis was mainly meant to

illustrate the difference between lower and upper bound estimates.
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Additionally accounting for brute luck gives the true’ upper bound. However,
the empirical identification of the two forms of luck is not straightforward. Nonethe-
less, our approach of estimating an upper bound can be extended following Lefranc
et al. (2009). In order to illustrate this, and as a further robustness check, we now
assume that all unobserved factors are non-responsibility characteristics, i.e. brute
luck. Hence, we modify equation in the following way in order to separate the

effect of observed effort variables and unobserved factors:
In(wis) = P& + BEis + vig (15)

We then construct a parametric estimate of the smoothed distribution explicitly
taking into account the error term v,y :

172" = explve; + Dy + 0%/2 (16)
Based on these predicted counterfactual levels, we then derive new upper bound
measures of IOp taking into account luck. This gives an upper upper bound estimate
of IOp as we do not only capture time-constant effort (in the unit effect) but also
unobserved effort as well as option luck in the error term. The results are illustrated
in Figure [dl The darker grey bar line shows the range between the lower and upper
bound as previously defined, whereas the upper, lighter grey line shows the difference
to the upper bound when additionally accounting for luck.

When accounting for luck, the upper bound does not change much in the German
data for the full sample and the female subsample. The change is higher for the male
subsample as well as in the US data for all samples. These results point towards a
higher importance of unobserved effort or indeed luck in the cases where the luck-
adjusted upper bound is much higher. The results for the US are also much more in
line with the findings for permanent incomes, where we found higher upper bound
IOp shares for the US than for Germany.

To sum up, our approach of estimating an upper bound does not depend on the
assumption about the responsibility cut for luck. With the appropriate data and
identification strategy that would allow for separating brute luck from option luck,

it would be possible to estimate the ’true’ upper bound.
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Figure 4: Upper and lower bounds of IOp when accounting for luck
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6 Conclusion

The existing literature on EOp provides only lower bound estimates of IOp. We
suggest a two-stage estimator based on a fixed effects model to tackle this issue.
The maximum amount of circumstances which an individual should not be held
responsible is the person’s fixed effect, as by definition, it comprises all exogenous
circumstances as well as some not changing effort variables. Using this unit effect as
a circumstance measure enables us to quantify the maximum amount of inequality
which can be attributed to IOp. We apply the method to a rich set of harmonized
micro-level panel data for Germany and the US in order to empirically illustrate our
new estimator and to compare it to the well-known lower bound.

The IOp levels are rather similar between Germany and the US in terms of the
lower and upper bounds for annual incomes and the lower bound for permanent
incomes. For the latter, the upper bound levels are higher in the US than in Ger-
many. The IOp shares are higher for Germany (30-50%) than for the US (16-35%)

for annual incomes which is due to lower absolute levels of outcome inequality while
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having similar values of IOp. This result might help to explain why attitudes towards
inequality and redistribution differ substantially between both countries (Figure
in the Appendix). Contrary to Germany, the majority of respondents in the US
thinks that larger income differences are necessary as incentives, while 40% of the
respondents think that the most important reason why people live in need is lazi-
ness — the numbers are only half as high in Germany. However, when moving to a
measure of permanent income, we find larger (lower and upper bound) IOp shares
for the US, which increase to 30% and 70% respectively. However, we do not find a
substantial increase for Germany. We explain this difference with different degrees of
mobility and persistence in different parts of the distribution (Bjorklund and Jéntti
(2009)). The persistence of inequality at the tails of the distribution suggests that
the rags-to-riches (or vice versa) story is less common than usually thought.

To sum up, we find significant and robust differences between lower and upper
bound estimates for both countries for all specifications. At a first sight, the high
1Op shares for the upper bound might seem surprising. However, it should be noted
that our estimate of unobserved heterogeneity also includes all unobserved abilities
and innate talent. This is in line with Bjorklund et al. (2011), who indicate that the
intelligence quotient (IQ) is the most important circumstance among the variables
that they consider to explain differences in earnings. In addition, results from the
literature on sibling correlations also emphasize the importance of family background
and genetic material (Solon (1999), Bjorklund et al. (2009)). Furthermore, recent
results from the literature on the effect of human capital on wage dispersion show
that individual characteristics (e.g. Bagger et al. (2010)) as well as initial conditions
(e.g. Hugget et al. (2011)) account for most of the variation in annual as well
as lifetime earnings. Although we do not claim that our upper bound estimates
present the true amount of IOp, they provide evidence that the existing lower bound
estimates substantially underestimate IOp and thus might demand for too little
redistribution to equalize inequalities due to circumstances.

Our results also reveal the importance of gender as one driving force of 10p.
The effect of gender is considerably smaller when only looking at full-time employed
individuals. Thus, the gender opportunity gap is mainly due to the indirect effect of
gender on earnings: women are more likely employed in part-time jobs. Introducing
a policy change which is likely to increase female labor supply — such as the move
from joint to individual taxation — indeed reduces the IOp bounds by about two

percentage points. This suggests that policies can be a useful tool to change I0p —
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and also that existing policies might actually increase IOp. It would be interesting to
analyze the effect of tax systems that are based on exogenous characteristics (Ooghe
and Peichl (2010)) on IOp in future research.
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Figure 5: Attitudes towards inequality and redistribution
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