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Abstract: A thin layer of the event horizon vicinity under the twe-dimension black hole spacetime with a global
monopole is considered as a system of the Casimir type. T he energy- momentum tensor is derived in Boulware vacuum,
Hartle- Haw king vacuum and Unruh vacuum respectively. The values are derived in the massless scalar field which sat-
isfies t he Dirichlet boundary conditions. By the Wald s axioms, the result is the same with one by t he usual regularized
methods Meanwhile, energy, energy density, and pressure acting on Dirichlet walls at the asymptotically flat bade
ground are also calculated. A ccording to the energy, the Casimir force is derived.
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Casimir effect is caused by the vacaum quantum fluctuation of the electromagnetic field. This effect is ir
troduced by Casimir to calculate the vacuum energy appling the corresponding boundary conditions in the
quantum field theory. He also predicted that the attractive force between the two infinitely large parallel con
ducting plates was related to the Planck parameter, the light velocity and the geometrical configuration' ',
but was independent on charges. Afterward, Casimir and Poldtre also explained the attractive force between
the two uncharged objects as the delay of Van der Waals effect. The phenomenon that uncharged parallel
plates attract each other is called the Casimir effect, and the corresponding force is called the Casimir one. Dur-
ing the process of studying the Casimir effect, the Casimir energy, which is margin of the vacuum energy be-
tween all kinds of fields with various boundaries and the fields without the boundaries, should be researched.
T herefore, the Casimir force can also be derived.

Casimir effect plays an important role in many fields such as quantum field theory, atomic and molecular
physics, condensed matter physics, gravitation, cosmology and mathematical physics etc. M any factors can af
fect the Casimir effect, such as constrains, the space topology, temperature etc. Particulaily the flat background
or the curved background is one of the important ones. In reference |, the Casimir effect of the massless
scalar field have been investigated in several different backgrounds. But the Casimir effect in the global
monopole background has not been investigated up to now.

In this paper, considering a thin layer of the event horizon vicinity under the given black hole spacetime as
asystem of the Casimir style, we investigate the Casimir effect of the massless scalar field in the global
monopole background. When we investigate the Casimir effect, we must calculate the renormalized energy- mo-

ment tensor. Since the energy-moment tensor of the constrained field can not be easily calculated, we only do

our research in the twe-dimension spacetime. This twe-dimension black hole is asymptotically flat and satisfies
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Dirichlet boundary conditions. Although many regularized methods can be used ®™'# such as Green’ s function
method, zeta function regularization, dimensional regularization, and pointsplitting method etc., we apply the

3 and get the result derived by the usual regularized m ethods. M eanw hile the Casimir effect

Wald’ s axioms
is discussed. The Wald’ s axioms are as follows:

(1) Expectation values of energy-momentum are conserved.

(2) In the Minkowski spacetime, the stand result should be obtained.

(3) For off diagonal elements, the stand result should be obtained.

(4) Causality holds.

(5) The energy momentum tensor contains no local curvature tensor depending on derivatives of the ma
trix higher than second order.

T his paper is organized as follows: In section I the geometrical property of the given black hole is de-
scribed and the useful geometrical quantities are also calculated. And the most general form of the energy meo-
mentum tensor is obtained. In section II, The expectation values of the renormalized energy momentum ten
sors for the massless scalar field in the given spacetime are calculated in Boulware vacuum, Hartle- Hawking
vacuum and U nruh vacuum. M eanw hile we calculate the energy, energy density, and pressure acting on Dirich-
let walls at the asymptotically flat background, and derive the Casimir force. Finally, in section I, the results

are discussed.
1 The background spacetime and the general form of the energy momentum tensor

As the background of this paper, the line element of the twe dimension black hole with a global monopole
[ 15]

is
2 Y] 2m 2 2 2 _&2—1 2
ds"=— | 1= 8T = =—+ 5|d; "+ | 1- 8T - =iy 2| dr’, (1)
r r r

where m, Nl and Q are the mass, the scale of the symmetry breaking and the charge of the black hole respee-

R

tively. The even horizon of the black hole is

m+ Jm’= (1- 8% Q°>

(2)

1- gm’
The Hawking tem perature T'1 of the event horizon is
(1 smr)” [p
po o H=8EALE 3

2 2,2
m - (1- 8T)Q —4,in order to reach the best conclusions in the M inkow ski space-
(m+ M- (1- 81°) Q")

time, we make the conformal transformation to the line element (1), and obtain

ds* = f(r)(- di*+ dR?), (4)

where P =

where

flr)= 1= gmP- 2 S p(p) (5

N
T he nor-zero Christoffel symbols of the line element (4) are

1 0f(r) mr — Q3

Ii= [ir= The= Dhr= > = R (6)
T he Ricci scalar of the line element (4) is
- 2(2mr - 3Q?
R(r)= =200 ()
[16—19]

In the process of regularization, the trace is non-zero, and is given as follows
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_ R(r)
Ta(r) = AT (8)
For the two-dimension black hole, the trace of the energy-momentum tensor is
- (2mr- 3Q°
e (9)
Based on Wald’ s first axiom, the renormalized energy-momentum tensor satisfies the conservation equation
Tyu= 0, (10)
and can split into equations’”>
dri
de+ M7 - TRTh= 0, (11)
dri
dR ap t FtRTR FRtTt— 0. (12)
Since Th= — T\ and T{= Ti- Tk, we get
dr
dR+2F1RT1—0 (13)
dT i
d_RR+ 2FtRTR— {RTE. (14)
Substituting Eq. (6) into Eq.(13), we can get
d
()T =0 (15)
T he solution of Eq. ( 15) is
=), (16)
where a is a constant of integration. In the same way, Eq. (14) becomes
i Ry La Ir a
dr(f(r)Th)— 2_f_uar Ta. (17)
T he solution of Eq. ( 17) is
R 1
Tsz(r)[H(r)+ By, (18)
where
_ 1 J’ A Dty
H(r)= ) 4 To(r )dr, (19)

and B is a constant of integration, while the point r, the position of the event horizon. From Equations (2),

(6) and (9) , Eq.(19) becomes

H(r)=

2
[’" g, Q—} D, (20)
2 2
2mQ
where D = L m4 - m5 + Q? and r, is the outer event horizon of the black hole. The limiting v alues
24]-[ T+ I+ I+
of H(r) are follows as
it r - oo(r - rg) then H(r) = 0,
| m’ 2mQ? Q°
oAl 4 - " 5t Tel=-D.
243-[ I+ I+ I+

In any two-dimension background, the most general form of the energy-momentum tensor is given by

w | Ta(r) = ST r)H (1) 0 } o [—B _]
T _l 0 f_l(r)H(r)+f (r) o 8- (21

Where a and B are two unknown parameters. We will apply the second and the third Wald’ s axioms to deter

24T

if r "+ oothenH (r) =-

mine their values.
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We put two" parallel plates” at r; and r/H( r = ryt+ L) in the massless scalar field. The massless scalar
field satisfies Dirichlet boundary condition at r and r u- Next we will investigate the renormalized energy

mom entum tensor in different vacua.

2 The energy- momentum tensor in different vacua

20]

2.1 Boulware vacuum In Boulware >, is no particles exists at infinity. T he renormalized energy momen-

tum tensor should coincide at infinity with the standard energy-momentum tensor in the Minkowski space-

time *'+2 ], e.g.

w_oo_m =1 (‘):|
Tv= 24L2[ 0 ' (22)

Since the black hole has asymptotically flat spacetime, e. g. Minkow ski spacetime at inifnity, for r_ + oo the
Eq. (21) should coincide with the Eq. (22). Thus we can get the parameter o and B as

2
a= 0, B= E%H D. (23)
T herefore, the renormalized energy-momentum tensor in the Boulw are vacuum is
TS r)= " Yr)H(r 0 1 ’TP -1 0
TW”: 0( ) f ( ) ( ) . ‘|+f_1(r)|:_%i+ D]|: i| . (24)
0 S (r)H(r) 0 1

Eq.(24) canbe written as
n)u u i

T\(’> = TV(gravitalima]) + T\{boundary)a (25)
where 1l denotes the renomalized energy-momentum tensor in the Boulware vacuum!'”. The first term de-
notes the contribution due to the gravitation background, and the second term denotes the contribution due to
the boundary.

d . .
For r ~+ oo, the energy density, pressure, and energy are given by

(Mt _ T

P=T:" =- YTRE (26)
__ pmr__ T
p=- TR I (27)
EL—J"”‘de— —= 28
(L)= - T24L- (28)
T he corresponding Casimir force between the boundaries is
__OE(L) _ 1
F(L)=- =53] 7=~ TR 0, (29)

and is an attractive force.
2.2 Hartle Hawking vacoum In Hartle Hawking vacuum'®’, the black hole is in thermal equilibrium state
with an infinite reservoir of black body radiation with temperature T, and the standard energy momentum

tensor (22) will be modified by an additional term for the thermal equilibrium with temperature T'.

2 2
w_ T2 2 O_L[-l 0}
e L2 9 Z (30
where T is the Hawking temperature of the black hole, the standard energy-momentum tensor becomes
W m[-10 (1—8m224P[— 1 (‘)]
Tv = 24L2|: 0 ‘:|+ 24T 0 . (31)
For r + o, the Eq. (21) should coincide with the Eq. (31). T hus we can get the parameter a and B as
a= 0, (32)
T 2 B 2,5
B (1- 8m°) (1 8m)P+D. (33)

ur? T 247
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T he renorm alized energy-momentum tensor is

gu | Ta(r) = fN(r)H(r) ]
TV:{ / » ]+fl(r)
i 0 . N r)lH (Or)
1- 8m 1- 8’ -
™ TR T +D][ J ’ (34)

where Udenotes the renormalized energy-momentum tensor in Hartle- Haw king vacuum' ', Thus the energy-
momentum tensor TY” " is

TV = T\L/l(gravilalbnal) + Tl\f(boundary) + T\lfl(bath), (35)
where the last term denotes the contribution due to thermal bath with temperature T'y.

g . .
For r + oo, the energy density, pressure, and energy are given as follows

(- STIPZ)“P]
— (Ut _
p= 1= [ R (36)
[_m 1- gmp)*
p=- T%QR:__24L2+( AT )P] , (37)
N P I YA = 8Tm2)4LP] _ A
E(L,Tn) = ‘[1 PdR = - Sap t AT == |+ 6TH . (38)
T he corresponding Casimir force ' between the boundaries is
OE(L, Tw) n_, (1= 8Wr)tp L g
F(L,Tu)=- 2 =- = - =T 39
(L, Tw) oL Jn,~ 24L?T 24 VR (39
and is not always an attractive force. It is clear that the Casimir force has the follow ing properties:
(a) attractive,
1 )
L < = ; 40
2w (1- gwp)* [P (40)
(b) zero,
1 T
L = = ; 41
2w (1- gwp)* [P (41
(c) repulsive,
1 I
L > = . 42
2Tw ™ (1- gm?)? [P (42)

T herefore the distance L dominates property of the Casimir force.

2.3 Unruh vacoum In unruh vacuum' >V , the twe-dimensional black hole is in a thermal state with Hawlk-
5, 26

ing temperature T''>> ! Because of Hawking radiation, an outward flux can be detected at infinity in the

vacuum. The standard energymomentum tensor (22) will be modified by an additional term

wE[- 1 -1 - 8m2z41>[— I - ]
L « | _
fv= 12[1 1}_ 487 S (4
T he renormalized energy-momentum tensor (21) should now coincide at infinity with the following stress
tensor
T (‘)] (1- snrfﬂp[— 1 - ]
= 24L2[ o 1T 48w N (44
T herefore we get
_ (- 8m)p
T Tsn (45)
_ 1- 8WP)  (1- 8TP)°P
B= YWE + AR T + D. (46)
T he renormalized energy-momentum tensor 745" becomes
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[ -1
Ta(r) - H 0
pw_ [To0 =1 omn .
! 0 £ ()
W1- 8WY) (1- 8WE)°P (1= 8m)*p
2412 48T 48T 47
(1= 8WP)*p W1- 8WP) (1= 8WE)P |
L 48T 2417 48m
where & denotes the renormalized energy momentum tensor in Unruh vacuum' . The renormalized energ y-
mom entum tensor T42" is
T\(/g)u: T&gm»ilalional)"" T\l’l(l)ound;u'))"' Tllfl(radialion), (48)

where the last term represents the contribution due to Hawking radiation.

d . . . . .
In the vacuum, for r = oo, the detected energy density, pressure, and energy at infinity are given as fok

lows
n_ (1= 8MW)tP
p= 1 = [ Bt (49)
n (1 8m)?
p=- TPR=— [24L2+ 487 P] , (50)
_ [ e [ T (- 8Tﬂ'l2)4LP]_ I A
E(L. Tu) = .r PdR = - [ S+ 48T == 2t 2l (31
T he Casimir force F between the boundaries is
OE(L.Tu) T (- gmP)tp A
F(L, Tw) =- { oL g = 24t T 4gm Tt IR (52)
and has following properties:
(a) attractive,
1 Jom
L < = ; 53
L2 (1- sw?)? [P (33
(b) zero,
1 Jam
L= = ; 54
J2rn T (1- sw?)? [P (39
(c) repulsive,
L> =—-= L (55)
J2oryw  (1- 8m?)* [P

T he property of the Casimir force is also decided by the distance L .
Removing the last term in Eqgs. (39) and (52) respectively, we can derive the net force. The reason is that
in both vacua (Hartle Hawking and U nruuh vacua ) the forces acting on both sides of each Dirichlet wall are
the same, and their total contribution to the net force is zero!'” . Therefore the net force acting on the Dirichlet
walls is
JT
2V

Obviously the net force is always negative.

Froa=- (56)

3 Conclusions

From Ref.[ 27] we can know that if the energy-momentum tensor of a certain field with one exterior

boundary in the Minkowski spacetime is obtained, it can also be obtained for the same field with the same

boundary in curved spacetime.
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In this paper, we explicitly calculate the renormalized energy momentum tensor of a massless scalar field
satisflying Dirichlet boundary conditions in the black hole spacetime with a global monopole. The renormalized
energy momentum tensor is treated in the Boulware, Hartle- Haw king, and U nruh vacua separately. In all these
vacua, for r  + oo, the energy density, pressure and energy acting on Dirichlet walls are obtained. The values
of the above-mentioned quantities are all negative. We also calculate the Casimir force and find it to be negative
in Boulw are vacuum. But in HartleH aw king and U nruh vacua it can be attractive, repulsive, and zero depend-
ing on distance L between the Dirichlet walls. Otherwise, the Casimir force is independent of the black hole
change. We also evaluate the net force exerted on the Dirichlet walls and find it to be always negative. When
N= 0, the results are coincide with ones in the twe-dimension Reissner Nordstrom spacetime. When Ti= 0 and

Q= 0, the results are the same with ones in the two-dimension Schw armschild spacetime' 7.
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mental Values. And finally , the quantization conditions about Planck scale is discussed.
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