第 32 卷第 11 期	环	境	科	学	学	报	Vol. 32, No. 11
2012 年 11 月	Acta	Scie	ntiae	Circu	mstai	ntiae	Nov., 2012

蔡苏彦,孙琼,许宜铭.2012. 锌铝水滑石负载羧酸基酞菁锌可见光降解水中氯苯酚[J]. 环境科学学报,32(11):2725-2731 Cai S Y, Sun Q, Xu Y M. 2012. Immobilization of zinc phthalocyaninecarboxylate onto Zn/Al-hydrotalcites for chlorophenol degradation in water under visible light [J]. Acta Scientiae Circumstantiae, 32(11):2725-2731

锌铝水滑石负载羧酸基酞菁锌可见光降解水中氯苯酚

蔡苏彦,孙琼,许宜铭*

浙江大学化学系,杭州 310027 收稿日期:2012-01-10 修回日期:2012-02-11 录用日期:2012-03-01

摘要:以锌铝类水滑石为载体,1.0%(质量分数)水溶性羧酸基酞菁锌为光敏剂,制备了不溶于水的负载型光敏剂,并对其结构进行表征.结果 表明,在可见光和氧气作用下,该复合催化剂能够引发水中对氯苯酚、2,4-二氯苯酚和2,4,6-三氯苯酚的降解.但有机物降解的速率与载体的 锌铝比和煅烧温度有关.研究表明,最佳的锌铝比和煅烧温度分别为2.0和300℃.在反应过程中,载体及其煅烧产物具有电子导体的功能,可 加快光敏剂与氧气之间的电子转移过程,进而引发氯苯酚的降解.此外,该复合催化剂能被重复循环使用,但光敏活性逐渐降低. 关键词:酞菁锌;水滑石;氯苯酚;可见光;降解

文章编号:0253-2468(2012)11-2725-07 中图分类号:X703 文献标识码:A

Immobilization of zinc phthalocyaninecarboxylate onto Zn/Al-hydrotalcites for chlorophenol degradation in water under visible light

CAI Suyan, SUN Qiong, XU Yiming*

Department of Chemistry, Zhejiang University, Hangzhou 310027 Received 10 January 2012; received in revised form 11 February 2012; accepted 1 March 2012

Abstract: Layered double hydroxides (LDH) with different Zn/Al atomic ratios were used as a support of water soluble zinc tetracarboxylphthalocyanine (ZnPc) at 1.0%. In the presence of visible light and O_2 , this immobilized sensitizer was very active for the degradation of 4-chloro-, 2, 4-dichloro- and 2, 4, 6-trichlorophenol in water at pH 6.5, whereas in the presence of LDH or ZnPc, organic degradation was absent or very slow. However, the rate of organic degradation was influenced by the Zn/Al ratio and sintering temperature of LDH. The optimum Zn/Al ratio was 2.0 and sintering temperature was 300 °C. It is proposed that both LDH and its thermally decomposed products are able to function as an electron conductor for the electron transfer from the electronically excited ZnPc to O_2 , resulting in organic degradation. Moreover, the immobilized sensitizer could be repeatedly used, but its activity gradually decreased mainly due to slow bleaching of ZnPc sensitizer.

Keywords: Zinc phthalocyanine; hydrotalcites; chlorophenol; visible light; degradation

1 引言(Introduction)

金属酞菁(MPc)是一类具有共轭大 π 键的类 卟啉大环化合物,这类配合物对可见光具有较强的 吸收,并具有较高的热和化学稳定性(沈永嘉, 1999).研究表明,在可见光作用下,MPc 能与 O₂发 生能量转移,产生单线态氧($^{1}O_{2}$),进而引发水中氯 苯酚、硫化物和甲基橙等环境污染物的降解和矿化 (Gerdes *et al.*,1997; fliev *et al.*,1999; Ozoemena *et al.*,2001; Xu *et al.*,2003; Hu *et al.*,2004).由 于该过程能在常温常压下发生,且金属酞菁价格低 廉,太阳能和氧气资源丰富.因此,利用 MPc 进行光 敏化水处理,应具有较好的发展前景.但以往的研 究大多使用具有不同金属离子的水溶性磺化酞菁, 这将不利于光敏剂的回收和循环利用.为此人们研 究了高分子树脂、有机粘土等载体,但负载后的金 属酞菁一般具有较高的聚合度和较低的光敏活性 (Hu et al.,2004; Xiong et al.,2005; Sun et al., 2008).此外,这些光敏化体系只能产生化学活泼性 较为有限的单线态氧,从而限制了它的应用范围. 例如,¹ O₂ 难以与分子式氯苯酚发生快速反应 (Ozoemena et al.,2001).

Supported by the National Basic Research Program of China (No. 2011CB936003)

作者简介:蔡苏彦 (1987—), 女, E-mail: hisoca_c@163.com; * 通讯作者(责任作者), E-mail: xuym@ css.zju.edu.cn

Biography: CAI Suyan (1987-), female, E-mail: hisoca_c@163.com; * Corresponding author, E-mail: xuym@css.zju.edu.cn

基金项目:国家重点基础研究发展计划(No. 2011CB936003)

水滑石是一类具有层状结构的阴离子型粘土, 被统称为 LDH. 它的氧化物层可由不同的二价和三 价金属离子构成,其层间是硝酸根等阴离子.由于 LDH 具有阴离子交换能力,研究人员试图将水溶性 的磺化酞菁铜和酞菁钯阴离子分别插入到 Zn/Al-LDHs 和 Zn/Al-LDH 的层间,用于在可见光下降解 水中亚甲基蓝和氯苯酚 (Parida et al., 2007; Xiong et al., 2007). 但这些负载型光敏剂基本上处于 LDH 的表面,并且具有较高的聚合度.在酞菁光敏剂中, 酞菁铜的活性较低,酞菁钯的活性较高,但酞菁钯 的成本也较高,可能不易被用于水处理.此外,这些 研究都没有涉及 LDH 的煅烧温度对金属酞菁负载 及其光敏化活性的影响. 众所周知, 经高温煅烧的 LDH 具有记忆效应,其遭到破坏的双层结构可在水 中重新恢复.因此,经煅烧的 LDH 可能会影响到金 属酞菁的分散状态及其光敏化活性.另一方面,研 究表明,在紫外光和氧气作用下,Zn/Al-LDH 也能 引发水中苯酚和氯乙酸的降解(Patzko et al., 2005; Valente et al., 2009). 也就是说, Zn/Al-LDH 本身也 具有半导体光催化的功能.因此,可预测在可见光 作用下,Zn/Al-LDH 负载的金属酞菁或许也能与 O, 发生电子转移,从而产生额外的金属酞菁阳离子自 由基和超氧自由基等活性物种(式(1)~(5)),加 快目标有机污染的降解,并拓展金属酞菁光敏化过 程的应用范围.

$$MPc + h\nu \rightarrow MPc^*$$
(1)

$$MPc^* + O_2 \rightarrow MPc + {}^1O_2$$
 (2)

$$MPc^{*} + ZnO \rightarrow MPc^{+} + ZnO(e_{cb}) \quad (3)$$

$$ZnO(e_{cb}^{-}) + O_2 \rightarrow ZnO + O_2^{-}$$
(4)

$$MPc^{++} + R \to MPc + R^{++}$$
(5)

因此,本文采用 Zn/Al-LDH 为载体,四羧酸基 金属酞菁为光敏剂,研究载体的 Zn/Al 摩尔比和煅 烧温度对光敏剂负载及其活性的影响.同时为正确 表达复合催化剂的可见光活性,选择无色的氯苯酚 作为模型底物,以带有420 nm 滤光片的卤钨灯为可 见光光源,研究在可见光和氧气作用下,Zn/Al-LDH 负载的金属酞菁光敏化体系能否产生如上所述的 活性物种,并在中性条件下降解水中氯苯酚、2,4-二 氯苯酚和2,4,6-三氯苯酚.

2 实验部分(Experimental)

2.1 原料和试剂 所有试剂均为分析纯,包括 Zn(NO₃) · 6H₂O、 Al(NO₃)₃ · 9H₂O、苯酚、4-氯苯酚、2,4-二氯苯酚和 2,4,6-三氯苯酚等. 实验用水为超纯电导水,溶液 pH 值采用 HClO₄或 NaOH 稀溶液调节.

2.2 Zn/Al-LDH 载体的合成

按文献方法(Patzko et al.,2005)合成层间阴离 子为硝酸根的 Zn/Al-LDH. 具体操作为:在 N₂保护 和快速搅拌下,将 20% 的 NaOH 溶液滴加到摩尔比 分别为 2.0、1.5 的 Zn(NO₃)₂和 Al(NO₃)₃混合溶液 中,并调节 pH 值至 9 左右;然后在 80 ℃下搅拌 20 h,过滤,水洗至中性,过夜烘干,研磨. 这两种 LDH 分别标记为 ZnAl-2 和 ZnAl-1.5. 此外,以 NaOH 和 Na₂CO₃混合溶液代替 NaOH 溶液,合成出 Zn/Al 摩 尔比为 3.0 及层间阴离子为碳酸根的 Zn/Al-LDH, 该产物标记为 ZnAl-3.

2.3 复合催化剂的制备

采用偏苯三酸酐和 AlCl₃、ZnCl₂、FeCl₃、CoCl₂为 前驱体,按照苯酐-尿素法(Lagorio *et al.*,1993)分别 合成了 2,9,16,23-四羧酸基酞菁铝、锌、铁、钴,分别 标记为 ZnPc、AlPc、FePc、CoPc. 然后,在 Zn/Al-LDH 的水悬浮液中逐滴加入金属酞菁水溶液,使金属酞 菁和载体的质量百分比为 1.0%.经过夜吸附平衡 后,过滤得到微蓝色固体,再在 60℃下烘干,研磨备 用.

2.4 物理性质表征

用 D/max-2550/PC 衍射仪(Rigaku 公司,日本) 进行固体的 X 射线衍射测定, X 射线源为铜靶, 工 作电压和电流分别为 40 kV 和 40 mA.用 UV-2550 光度计(Shimadzu 公司,日本)测定固体的漫反射吸 收光谱, 粉末压片, BaSO₄空白参比, 并根据 Kubelka-Monk 函数, 将反射率换算成相应的吸光度(F_R). 用 ASAP2020 型吸附仪(Micromeritics 公司,美国), 以 N₂为吸附质, 测定固体的比表面积.

2.5 可见光催化降解

以卤钨灯作为可见光光源,并用波长大于 420 nm 的滤光片滤掉其中的少量紫外光.除特殊说明 外,所有反应均在中性的水溶中进行.首先,将 50 mg 催化剂加入到 50 mL(40 mg·L⁻¹)的对氯苯酚 (4-CP)水溶液中,避光搅拌1h以达到吸附平衡.在 光照过程中,每隔一定时间移取2 mL 悬浮液,膜过 滤.采用高效液相色谱分析滤液中有机物的浓度变 化.用 P680 高效液相色谱(Dionex 公司,美国)分析 有机物浓度,该仪器配备 Apollo C18 反相柱, UVD170U 紫外检测器,流动相为体积比为 60% 的 甲醇水溶液.

通过循环实验考察催化剂的稳定性,所用催化 剂是1.0% ZnPc 负载的预先经 300 ℃煅烧的 Zn/ Al-2,反应体系 pH 为12.为保证每次循环的初始条 件相同,本实验使用了两个不同反应器同时进行光 照,两个反应器均含有起始浓度为 20 mg·L⁻¹的 4-CP. 在光照过程中,从其中一个反应器每次移取 2 mL 悬浮液,用于有机物分析.每次循环结束后,从 另一个不取样的反应器中移取部分悬浮液,以补足 因分析 而 流失的催化剂;再加入适量的 1000 mg·L⁻¹ 4-CP 水溶液,使它在两个反应器中的初始 浓度均恢复到 20 mg·L⁻¹;然后暗平衡 1 h,再继续 光照.整个循环实验结束后收取反应器中的固体, 在 60 ℃下烘干,再测定该固体的吸收光谱.

3 结果与讨论 (Results and discussion)

3.1 催化剂表征

XRD 分析结果表明,本文合成得到的 ZnAl-1.5 和ZnAl-2 均为层间含有硝酸根的Zn/Al-LDH,而 ZnAl-3则是含有层间碳酸根的 Zn/Al-LDH, 它们的 层间距分别为 8.8384、8.9088 和 7.5322 Å(1 Å = 0.1 nm), 与文献报道的数值基本一致(Patzko et al., 2005; Seftel et al., 2008). 以ZnAl-2 为例,图 1 表示载体的煅烧温度和金属酞菁负载对 XRD 的 影响.由图1A可见,未经高温煅烧的样品呈现典型 的 LDH 衍射峰,其层间的阴离子为硝酸根.负载 ZnPc 后, XRD 衍射峰向高角度方向偏移, 表明 LDH 层间距变小.这是因为在样品制备过程中,反应液 暴露于空气中,溶入的碳酸根能与 ZnAl-2 层间的硝 酸根发生离子交换反应,从而生成了层间阴离子部 分为碳酸根的 LDH (Meyn et al., 1990). 如果将该 样品继续在水中搅拌3h,则它就完全转化为碳酸根 型 LDH (图 1A,曲线 c). 经过 300 ℃煅烧, ZnAl-2 的层状结构几乎完全崩塌,仅剩下少量的硝酸根型 LDH (图1B,曲线 a). 与此同时,样品呈现氧化锌 晶体的特征衍射峰 (PDF#65-3411). 负载 ZnPc 后,ZnO的衍射峰不变,而硝酸根型 LDH 则转变为 碳酸根型 LDH. 当该样品在水搅拌 3 h 后, LDH 的 层状结构仅得到部分的恢复(图1B,曲线 c). 这是 由于样品含有 ZnPc,它的存在可能阻碍了 LDH 记 忆效应的出现(Mandal et al., 2009). 此外,所有 ZnPc 负载的样品都没有出现 XRD 衍射峰向低角方 向移动的现象.也就是说,体积较大的酞菁阴离子

没有进入 LDH 层间, 而仅是吸附在 LDH 的外表面, 这与文献(Costantino *et al.*, 1999) 中报道的低浓度 染料吸附结论一致.

图 1 未煅烧(A)和经300 ℃焙烧(B)的 ZnAl-2 固体的 XRD
图(样品为: a. ZnAl-2; b. ZnPc 负载的 ZnAl-2; c. 在水中搅
拌3h后的样品b. * 和#分别表示硝酸根和碳酸根为层
间阴离子的 LDH)

Fig. 1 XRD patterns of synthesized ZnAl-2(A) and 300 °C sintered ZnAl-2(B) (Samples were (a) ZnAl-2, (b) ZnPc-loaded ZnAl-2, (c) sample b stirred in water for 3 h. Symbol * and # represent NO₃⁻ and CO₃²⁻ anions in the LDH layers, respectively)

在水溶液中,羧酸基金属酞菁具有较好的溶解 度,它对光的最大吸收峰位于 688 nm. 但它们吸附 在载体后则不溶于水,这说明金属酞菁与载体之间 存在着较强的相互作用. 图 2 是 ZnPc 负载样品的 可见光漫反射光谱. 由图 2 可知,与在均相水溶液 中的光谱相比,固体样品的吸收峰红移了大约 17 nm,且半峰宽较大.由于载体本身只吸收紫外光,该 可见光吸收带应归结于在酞菁环上的π→π* 跃迁. 同时该光谱表明,载体与 ZnPc 之间存在较强的相互 作用,使酞菁电子激发态的能量降低较多,从而导 致它的吸收峰红移. 但与树脂、粘土等其他载体相 比 (Hu *et al.*, 2004; Parida *et al.*, 2007; Xiong *et al.*,2007),本文所用的 Zn/Al-LDH 对金属酞菁 分散作用较强,从而明显降低了 ZnPc 的聚合度. 一般来说,光敏剂的聚集体比单体具有更短的电子激 发态寿命,从而不利于它的光敏化反应 (lliev et al., 1999; Ozoemena et al., 2001; Xu et al., 2003). 但载体经 300 ℃焙烧后反而使 ZnPc 的吸收 峰和强度出现略有变宽和下降的现象,这表明载体 双层结构被破坏,改变了 ZnPc 的聚集状态.

- 图 2 固体样品的漫反射吸收光谱(a'和 b'分别为未煅烧和经300 ℃煅烧过的 ZnAl-2;a 和 b 分别是相应的负载 ZnPc 样品; c. 50 mg·L⁻¹ ZnPc 水溶液)
- Fig. 2 Diffusion reflectance spectra of (a') as-synthesized ZnAl-2, and (b') the sintered ZnAl-2 at 300 °C (Curves (a) and (b) are referred to the corresponding samples loaded with ZnPc, and curve (c) is referred to 50 mg·L⁻¹ ZnPc solution in water)
- 3.2 可见光催化降解活性

以经 300 ℃煅烧4 h 的 ZnAl-2 为载体,合成了 金属酞菁含量均为1.0% 的负载型 AlPc、CoPc、FePc 和 ZnPc. 图 3 为这些复合催化剂在可见光和氧气作 用下敏化降解对氯苯酚 (4-CP) 的相对活性.由图 3 可知,随着光照的进行,水溶液中 4-CP 的浓度逐渐

下降. 在相同条件下, ZnAl-2 本身并没有活性; 4-CP 不发生光解, 它在催化剂上的吸附也很低(<5%). 因此, 实验观察到的 4-CP 消失完全是金属酞菁光敏 化过程引发的.显然, 这些负载型光敏剂的活性大 小为 ZnPc > AlPc > FePc > CoPc.一般说来, 主族元 素比过渡元素形成的金属酞菁具有较高的光敏化 活性, 而 ZnPc 又比 AlPc 具有更高的光敏化活性 (Gerdes *et al.*, 1997).本实验表明, LDH 的存在并 没有改变金属酞菁之间的相对活性, 它只是起到了 载体的作用.由于 ZnPc 的光敏活性较高, 以下将考 察载体的煅烧温度和 Zn/Al 比的影响.

将 ZnAl-2 在不同温度下煅烧 4 h,然后采用相同的方法在这些载体上分别负载 1.0% 的 ZnPc.由图 4A 可知,这些负载型光敏剂具有明显不同的活性.在未经煅烧的载体上,ZnPc 表现出较高的光敏活性,但大约 2 h 后,4-CP 的浓度下降变得十分缓慢,表明该催化剂逐渐失活.在经过煅烧的载体上,ZnPc 的光敏活性却表现得较为稳定.在整个反应过程中,4-CP 的浓度随光照时间的变化都遵循一级动力学方程.在所有煅烧过的载体中,经 300 ℃煅烧的

图 4 ZnAl-2 煅烧温度对 ZnPc 光敏化降解对氯苯酚的影响 (A)及 400 ℃煅烧样品降解过程中 4-CP 和苯醌(BQ)浓度随光照时间的变化 (B)

Fig. 4 Influence of ZnAl-2 sintering temperature on the sensitized degradation of 4-chlorophenol (A) and the concentration changes of 4-CP and BQ in solution (B), corresponding to sintering temperature 400 ℃ 载体最好. 但当载体的煅烧温度高于 300 ℃时,负载型 ZnPc 的光敏活性又出现随煅烧温度上升而下降的趋势.

为解释不同催化剂之间的活性差异,本文对比 了具有相同浓度的 ZnPc 在均相水溶液中的光敏活 性. 由图 4A 的曲线 e 可知, 在该水溶液中, 4-CP 的 光降解并不明显.显然,该光敏体系能够产生10, (式(1)~(2)). 但在中性条件下, 4-CP 基本上以分 子形式存在,它与 1 O,的反应较慢(Gerdes et al., 1997). 另一方面,该对比实验清楚地表明,负载于 LDH 的 ZnPc 光敏体系一定产生了除¹0,以外的其 它活性物种,进而引发 4-CP 降解(图 4A,曲线 a~ d). 在该光敏化过程中,Zn/Al-LDH 充当电子载体, 促进 $ZnPc * 与 O_{2}$ 之间的电子转移,从而产生 O_{2}^{-1} 、 ZnPc⁺⁺等活性物种(式(3)~(5)). 但与 ZnO 半导 体相比,Zn/Al-LDH 的电荷转递功能较差.因此,部 分负载的 ZnPc * 可能也与 0,发生了能量转移,产 生¹O₂. 但在中性介质中,¹O₂与 4-CP 反应产生的苯 醌(BQ)可能对 ZnPc * 具有淬灭作用 (Hu et al., 2004),从而导致 ZnPc 逐渐丧失光敏活性(图4A,曲 线 a). 载体经 300 ℃煅烧后,其层状结构崩塌,产生 了更具有电荷转递功能的 ZnO 晶体 (图 1B).因 此,该负载型 ZnPc 表现出较高和较稳定的光敏化活 性. 当载体的煅烧温度高于 300 ℃时, 其负载的 ZnPc 反而表现出较低的光敏活性.氮气吸附-脱附 实验结果表明,在煅烧温度为300、400和500℃时, 这些催化剂的比表面积分别为 68.5、54.1 和 36.0 m²·g⁻¹. 由于光敏化反应发生在催化剂表面,因此, 4-CP 降解反应的速率随载体煅烧温度的升高而 下降.

载体的煅烧温度对负载 ZnPc 后催化剂光敏化 降解 4-CP 的产物种类没有影响,主要是对苯醌 (BQ). 以图 4A 中曲线 c 所对应样品的可见光降解 4-CP 过程为例,分析对此光敏化反应进行产物分析 (图 4B),发现随着光照时间的延长,4-CP 浓度逐渐 减小,产物 BQ 浓度逐渐增加,但与 4-CP 的浓度减 小量并不成正比,且随着反应的进行,产物 BQ 的增 加量逐渐减小.这说明随着反应的进行,生成的产物 BQ 被进一步降解而生成小分子.当反应在 pH < 12 下进行时,4-CP 完全转化为小分子产物,而几乎 没有 BQ 生成.

由于载体具有半导体功能(Patzko et al., 2005; Seftel et al., 2008),本文又考察了 LDH 中 Zn/Al 摩

尔比的影响. 首先, 通过共沉淀法合成出 Zn/Al 比 分别为1.5、2.0和3.0的LDH,并被分别记为Zn/ Al-1.5、Zn/Al-2 和 Zn/Al-3. XRD 分析结果表明,这 3种样品层间结构被完全破坏的焙烧温度分别为 400、300 和 200 ℃. 然后, 以这些焙烧过的 Zn/Al-LDH 为载体,采用相同方法分别负载了 1.0% ZnPc. 实验结果表明,在可见光作用下,这些复合催 化剂对水溶液中 4-CP 的降解都表现出较高的光敏 化活性. 在 Zn/Al-1.5、Zn/Al-2 和 Zn/Al-3 负载的 ZnPc存在下,4-CP降解的表观速率常数分别为 1.34×10⁻³、1.61×10⁻³和0.59×10⁻³min⁻¹.该实 验结果表明, Zn/Al 摩尔比为 2.0 并经过 300 ℃煅 烧的 LDH 是 ZnPc 光敏剂的最佳载体. 随着载体中 Zn/Al 比的增加, ZnPc 的光敏活性出现先升高后降 低的变化趋势. 由于 ZnO 是载体中最有效的电子导 体,其含量增加必定会加快ZnPc*与O,之间的电子 转移,从而提高 4-CP 的降解效率. XRD 分析表明, 当 Zn/Al 比从 2.0 上升到 3.0 时,载体中 ZnO 的粒 径从 68.1 nm 下降到 6.2 nm,结晶度明显变差.研 究表明,半导体的结晶度越好,其传导电子的能力 就越强(Becker et al., 2011). 在图 4 所用的样品中 也发现了类似的现象. 当 Zn/Al-2 的煅烧温度分别 为300、400和500℃时,ZnO粒径分别为68.1、54.8 和45.4 nm. 这或许也是 ZnPc 的光敏活性随载体煅 烧温度上升而下降的原因之一.

此外,复合光敏剂也能引发其他有机物降解. 例如,采用经 300 ℃ 煅烧的 Zn/Al-2 为载体,负载 1.0% ZnPc,在该催化剂和可见光作用下,水中的对 氯苯酚、2,4-二氯苯酚和 2,4,6-三氯苯酚都能发生 降解,它们的表观速率常数分别为 0.99 × 10⁻³、 2.60 × 10⁻³和 2.35 × 10⁻³ min⁻¹.由于这些有机物 的起始浓度不同,比较它们之间的降解速率没有意 义.但这可以说明该复合光敏化体系可能具有较大 的应用范围,至少可被用于降解水中的氯苯酚类污 染物.

在实际应用过程中,催化剂的稳定性十分重要.为此,本文以 4-CP 作为反应底物,测试了负载型光敏剂的循环稳定性,反应在 pH = 12 的条件下进行,以同时发挥¹O₂和 O₂⁻⁻、ZnPc⁺⁻等活性物种的反应活性.由图 5 可知,经过 55 h 的 5 次循环后,该复合催化剂仍具有较高的光敏活性,但随着循环次数的增多,4-CP 的降解速率逐渐变慢.一方面是由于 4-CP 的降解产物与 4-CP 竞争活性物种,导致 4-

CP 降解速率下降. 另一方面,也可能说明光敏剂的 活性逐渐下降. 为此,本研究回收了循环试验结束 后的固体样品,通过紫外-可见漫反射光谱观察到该 催化剂确实发生了部分光致漂白. 但与溶解于水的 ZnPc 相比 (Gerdes *et al.*, 1997; Ozoemena *et al.*, 2001; Xu *et al.*, 2003),负载于 LDH 上的 ZnPc 显然 具有较高的光稳定性.

图 5 负载型 ZnPc 光敏化降解 4-CP 的循环反应曲线

Fig. 5 Cycle test of the immobilized ZnPc sensitizer for 4-CP degradation

4 结论(Conclusions)

通过对不同金属酞菁负载催化剂的可见光活 性比较,选择 ZnPc 作为染料光敏剂.实验表明,该 负载型催化剂的光降解活性与载体的锌铝比和前 处理温度有关,最佳的锌铝比和煅烧温度分别为 2.0和300℃.在反应过程中,载体及其煅烧产物具 有电子导体的功能,从而促使光敏剂与氧气之间发 生显著的电子转移反应,进而引发氯苯酚的降解. 与均相反应相比,该负载型体系不仅实现了光敏剂 的循环利用,避免二次污染,而且它也能使氯苯酚 等在中性条件下发生显著的降解.因此,该类负载 型光敏剂具有一定的研究和应用价值.

责任作者简介:许宜铭(1961一),男,教授,主要研究方向 为光催化与高级氧化技术.

参考文献(References):

Becker J, Raghupathi K R, St Pierre J, et al. 2011. Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation [J]. J Phys Chem C,115: 13844-13850

Costantino U, Coletti N, Nocchetti M. 1999. Anion exchange of methyl

characterization of the intercalates obtained [J]. Langmuir, 15: 4454-4460

- Gerdes R, Wohrle D, Spiller W, et al. 1997. Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers [J]. Journal of Photochemistry and Photobiology A,111: 65-74
- Hu M Q, Xu Y M, Xiong Z G. 2004. A novel photosensitizer of palladium (II) phthalocyanine tetrasulfonate for chlorophenol oxidation under visible light irradiation [J]. Chemistry Letters, 33 (9): 1092-1093
- Hu M Q, Xu Y M, Zhao J C. 2004. Efficient photosensitized degradation of 4-chlorophenol over immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogen peroxide [J]. Langmuir, 20 : 6302-6307
- Iliev V, Alexiev V, Bilyarska L. 1999. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds [J]. Journal of Molecular Catalysis A, 137: 15-22
- Lagorio M G, Dicelio L E, Román E S. 1993. Visible and near-IR spectroscopic and photochemical characterization of substituted metallophthalocyanines [J]. Journal of Photochemistry and Photobiology A,72: 153-161
- Mandal S, Tichit D, Lerner D A, et al. 2009. Azoic dye hosted in layered double hydroxide: Physicochemical characterization of the intercalated materials [J]. Langmuir, 25:10980-10986
- Meyn M, Beneke K, Lagaly G. 1990. Anion-exchange reaction of layered double hydroxides [J]. Inorganic Chemistry, 29: 5201-5207
- Ozoemena K, Kuznetsova N, Nyokong T. 2001. Comparative photosensitized transformation of polychlorophenols with different sulfonated metallophthalocyanine complexes in aqueous medium [J]. Journal of Molecular Catalysis A,176: 29-40
- Ozoemena K, Kuznetsova N, Nyokong T. 2001. Photosensitized transformation of 4-chlorophenols in the presence of aggregated and non-aggregated metallophthalocyanines [J]. Journal of Photochemistry and Photobiology A,139: 217-224
- Parida K M, Baliarsingh N, Sairam Patra B. 2007. Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue [J]. Journal of Molecular Catalysis A, 267: 202-208
- Patzko A, Kun R, Hornok V, et al. 2005. ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution [J]. Colloids and Surfaces A,265: 64-72
- Seftel E M, Popovici E, Mertens M, et al. 2008. Zn-Al layered double hydroxides: Synthesis, characterization and photocatalytic application [J]. Microporous and Mesoporous Materials, 113: 296-304
- 沈永嘉.1999. 酞菁的合成与应用[M]. 北京:化学工业出版社
- Shen Y J. 1999. Synthesis and Application of Phthalocyanine [M]. Beijing: Chemical Industry Press (in Chinese)
- Sun A H, Xiong Z G, Xu Y M. 2008. Removal of malodorous organic sulfides with molecular oxygen and visible light over metal phthalocyanine [J]. Journal of Hazardous Materials, 152: 191-195

Valente J S, Tzompantzi F, Prince J, et al. 2009. Adsorption and

photocatalytic degradation of phenol and 2,4-dichloropehnoxiacetic acid by Mg-Zn-Al layered double hydroxides [J]. Applied Catalysis B,90: 330-338

- Xiong Z G, Xu Y M, Zhu L Z, et al. 2005. Enhanced photodegradation of 2, 4, 6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite [J]. Langmuir, 21:10602-10607
- Xiong Z G, Xu Y M, Zhu L Z, et al. 2005. Photosensitized oxidation of substituted phenols on aluminum phthalocyanine-intercalated organoclay [J]. Environmental Science and Technology, 38: 651-657
- Xiong Z G, Xu Y M. 2007. Immobilization of palladium

phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2, 4, 6-trichlorophenol under visible light irradiation [J]. Chemistry of Materials, 19: 1452-1458

- Xu Y M, Chen Z X. 2003. Photo-oxidation of chlorophenols and methyl orange with visible light in the presence of copper phthalocyaninesulfonate [J]. Chemistry Letters, 32(7): 592-593
- Xu Y M, Hu M Q, Chen Z X, et al. 2003. Mineralization of 4chlorophenol under visible light in the presence of aluminum and zinc phthalocyaninesulfonate [J]. Chinese Journal of Chemistry, 21: 1092-1097