不同酸介质对 TiO₂ 光催化还原 Cr(VI) 体系的影响

李俊杰 1 , 左永福 2 , 阎智英 1 , 方 华 1 , 王家强 1 (1.云南大学 应用化学系, 云南 昆明 650091; 2.大理州环境监测站, 云南 大理 671000)

摘要: 研究了不同酸介质对 TiO_2 光催化还原低浓度 Cr(VI) 体系的影响, 发现在 110~W 紫外灯、3~h 照射条件下 Cr(VI) 质量浓度低于 $20~\mu_g/mL$ 时受空白影响大. 通过在无 TiO_2 光催化剂的空白实验, 表明在 HCI 介质中不用考虑空白带来的影响, 而 H_2SO_4 , HNO_3 , CH_3COOH 均有不可忽略的影响.

关键词: 光催化还原; Cr(VI); TiO2; 酸介质; 空白影响

中图分类号: 0 643.32 文献标识码: A 文章编号: 0258-7971(2005) 05-0434-03

水体中的 Cr(VI) 是 1 种常见的重金属污染物,也是 1 种致癌物,其毒性比 Cr(III) 高出 100 多倍. 以 TiO_2 或改性的 TiO_2 光催化剂的研究较普遍 $[1^{-3}]$. 在用 TiO_2 作为催化剂,以光催化方法还原体系中的 Cr(VI) 的研究中,为了证实确是由于光催化剂的光催化作用而使 Cr(VI) 还原为 Cr(III),通常要做对照实验,即在相同条件,反应时不加光催化剂(空白反应) 或无紫外光照(暗反应) 以检验光催化剂的作用及 TiO_2 表面吸附等非光催化因素的影响. 文献曾报导在高浓度情况下 Cr(VI) 的空白影响可忽略 $[4^{-6}]$. 关于 Cr(VI) 离子的暗态吸附、Cr(VI) 离子初始浓度、PH 值、体系离子强度、体系气氛、温度等影响因素也有人研究[7]. 本文探讨低浓度不同酸介质条件下空白反应(无催化剂) 对整个光催化还原体系的影响.

1 实验部分

1.1 仪器和试剂

仪器: 光催化反应器(自制, 110 W 紫外消毒灯,最大发射波长 253.7 nm), Vis-722 分光光度计(四川仪表九厂), 800 型离心沉淀器(上海手术器械十厂).

试剂: K₂Cr₂O₇(A. R., 洛阳市化学试剂厂), HNO₃(A. R., 洛阳市化学试剂厂), HCl(A. R., 洛 阳市化学试剂厂), H₂SO₄(A.R., 洛阳市化学试剂 厂), CH₃COOH (99.5%, A.R., 洛阳市化学试剂 厂), TiO₂(P25, 德国).

- 1.2 实验方法 光催化还原实验在直径为 10 cm 的表面皿中进行,每次实验装入 100 mL 不同浓度的 Cr(VI) 反应液,同时加入 1.0 g/L TiO_2 粉末光催化剂,混合均匀调节好酸度(pH=2~3),然后整个器皿在 110 W 紫外灯下照射 3 h. 用同样的方法同时做相应 Cr(VI) 浓度溶液的空白实验.
- 1.3 分析方法^[8] 光照一定时间后, 取一定量反应液离心除去 TiO_2 粉末, 取清液分析反应液中的 Cr(VI) 离子质量浓度. 然后计算 Cr(VI) 的光催化还原率.

还原率 = $[(\rho_0 - \rho_i)/\rho_0] \times 100\%$

♀ ——Cr(VI) 离子的初始质量浓度:

 ρ_t —— 光照时间 t 后反应液中 Cr(VI) 离子的 质量浓度.

 $\operatorname{Cr}(V)$ 离子的质量浓度采用二苯碳酰二肼比色法测定 $^{[8]}$.

空白液可直接取,并用同法测定.

2 结果与讨论

2.1 不同酸介质的还原率 不同酸介质对 TiO_2 光催化还原低浓度 Cr(VI) 体系的影响列于表 1.

^{*} 收稿日期:2004-12-01

基金项目: 云南省自然科学基金资助项目(2003E0007R; 2003E0004Q); 云南省自然科学基金重点资助项目(2004E0003Z); 云南大学理(工) 科校级科研(2002Z002GC).

Cr(VI)质量浓度可根据图 1 得出.

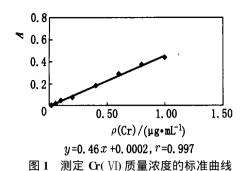


Fig. 1 Stand line of the Cr (VI) concentration

从表 1 可看出, 还原效果随 Cr(V) 质量浓度 升高而减弱. 浓度在 $20 \mu_g/mL$ 以下的还原率较高, 空白影响也大. 大于 $20 \mu_g/mL$ 则还原率和空白影响明显下降, 甚至在误差范围内检测不出光催化还原率, 说明在此条件下, 即 110W 紫外灯, 3h 照射, Cr(V) 质量浓度低于 $20 \mu_g/mL$ 时受空白影响很大, 质量浓度高于 $20 \mu_g/mL$ 时,则由于体系受光强影响极大[9],此条件下的光催化剂产生的电子不足以还原 Cr(V) 而降低还原率.

表 1 不同酸介质还原率和空白影响率(t=3h, pH=2~3)

Tab. 1 The comparision of the activities in the different acid medium (t = 3 h, pH = $2 \sim 3$)

ρ(Cr(VI))/ (μg• mL ⁻¹)	HC1		H NO ₃		CH ₃ COOH		H ₂ SO ₄	
	空白 影响率/ %	TiO ₂ 还原率/ %	空白 影响率/ %	TiO ₂ 还原率/%	空白 影响率/%	TiO ₂ 还原率/%	空白 影响率/ %	T iO ₂ 还原率/ %
10	0	96	29	99	34	98	13	71
20	0	81	24	98	5	89	5	33
40	0		8	51	0	55	0	
50	0		6	50	0	40	0	

产生上述现象的原因可用 Cr(VI) 在 TiO_2 表面的吸附机理来探讨. Cr(VI) 在 TiO_2 表面的吸附是其光催化还原反应进行的前提步骤, Cr(VI) 只有吸附到催化剂表面, 才能从 Ti^{3+} 或导带上得到电子而发生还原 $[^{10]}$. 用 HNO_3 , HCI, CH_3COOH 调节溶液的酸度时, 整个溶液体系呈现为悬浮液, TiO_2 粉末更有亲水性, 能充分吸附 Cr(VI). CH_3COOH 在低浓度的净还原率较低, 是因为存在竞争吸附, 乙酸分子离解后产生的 CH_3COO^- 负离子如 $H_2PO_4^{-[10]}$ 一样, 与 $HCrO_4^-$ 竞争吸附位 $[^{7}]$.

 H_2SO_4 介质体系中, TiO_2 粉末会沉积于底部, 上层为清液, 很明显 $Cr(\ VI)$ 被吸附的能力降低, 从 而使得用 H_2SO_4 介质的体系较其他 3 种酸还原率 相对低.

2. 2 空白影响 取 **10**, 20, 40, 50 µg/mL 不同浓度的 Cr(VI) 溶液分别用 HNO₃, HCl, CH₃COOH, H₂SO₄ 介质做空白实验, 用分光光度计测出反应前后的 Cr(VI) 质量浓度, 然后用还原率的算法得出空白影响率. 从表 1 可看出, HNO₃, CH₃COOH,

 H_2SO_4 介质的光催化体系都有空白影响率, 且浓度 越低影响率相应越大. 而在 HCl 介质的条件下, 空 白影响率为零. 说明低质量浓度下用 HCl 作介质 的 TiO_2 光催化还原 Cr(VI) 体系更能真实地反映 TiO_2 光催化还原率.

除 H Cl 外, 其他介质的 10, 20 µg/mL Cr(VI) 离子溶液经照射后, 溶液颜色明显变淡, 为此做了 一个光照和加热条件下的对照实验, 结果见表 2.

表 2 光照和加热条件下的对照实验 (t= 3 h, pH= 2~ 3)

Tab. 2 The comparision of the activities under the UV light irradiation and in the normal heating

$\begin{array}{c} \rho(\operatorname{Cr}(\ VI))/\\ (\mu g^{\bullet}\ mL^{-1}) \end{array}$	紫外光照时的 空白影响/%	加热时的 空白影响/%
10	33	0
20	20	0

表 2 的数据说明, 低浓度的空白影响主要是由

于光能的介入而非热能, 紫外光照射对 Cr(VI) 的稳定性有影响, 从而改变了初始浓度. 具体机理尚待研究.

3 结 论

在低浓度 Cr(V) 的光催化体系中影响还原率的因素除了 pH、催化剂量、紫外灯功率等外,不同的酸介质,吸附不一样,还原率自然也不同. $HCl \cap$ 质中 Cr(V) 最稳定,空白影响为零,更能真实地反映 TiO_2 光催化的效果.

参考文献:

- [1] 刘 强, 柳清菊, 王宝玲, 等. 纳米 TiO_2 的制备及光催化特性的研究[J]. 云南大学学报(自然科学版), 2002, 24(1A):53-55.
- [2] 毛绍春, 高文键, 李春林, 等. UV/ Fenton/ TiO₂ 法处理 含酚废水的研究[J]. 云南大学学报(自然科学版), 2004, 26(5A): 154-156.
- [3] 周 艺,魏 坤,唐绍裘,等. Gd³⁺ 掺杂纳米 TiO₂ 自 然光催化降解甲基橙的研究[J]. 云南大学学报(自然 科学版), 2002, 24(1A): 43-45.

- [4] KHALIL L B, MOURAD W E, POPHAEL M W. Photocatalytic reduction of pollutant Cr (VI) over some semiconductors under UV/visible light illumination[J]. Appl Catal, B: Envir, 1998, 17: 267—273.
- [5] Luis A Garcia Rodenas, Ariel D Weisz, Graciela E Magaz, et al. Effect of light on the electrokinetic behavior of TiO₂ particles in contact with Cr (VI) aqueous solutions [J]. J Colloid Interface Sci, 2000, 230: 181-185.
- [6] YOUNG Ku, JUNG Irr liang. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Wat Res, 2001, 35 (1):135-142.
- [7] 付宏祥, 吕功煊, 张 宏, 等. Cr(VI) 离子在 TiO₂ 表面 的吸附与光催化还原消除[J]. 环境科学, 1998, 19 (3):80-83.
- [8] 国家环保局. 水和废水监测分析方法[M]. 第 3 版. 北京: 中国环境科学出版社,1998.
- [9] 付宏祥, 吕功煊, 李树本. 有机物存在下 Cr(VI) 离子的光催化还原[J]. 物理化学学报, 1997, 13(2): 106—112.
- [10] 付宏祥,吕功煊,李树本.Cr(V) 离子在 TiO_2 表面的 光催化还原机理研究[J]. 化学物理学报, 1999, 12 (1): 112-116.

The effect of different acidic medium on potocatalytic reduction of Cr (VI)

LI Jurr jie¹, ZUO Yong-fu², YAN Zhr ying¹, FANG Hua¹, WANG Jiar qiang ¹
(1. Department of Applied Chemistry, Yunnan University, Kumming 650091, China;
2. Dali Monitoring Statio of Environment, Dali 671000, China)

Abstract: The effect of different acidic medium on the activity for the photocatalytic reduction of Cr (VI) with TiO_2 was studied, especially for the low concentration of Cr (VI). It was found that blank test effect was significant when Cr (VI) concentration was below 20 μ g/mL under UV light irradiation 110 W and 253. 7 nm. The blank test also indicated that without TiO_2 , the UV light has negligible effect on the reduction of Cr (VI) when HCl was used as acidic medium, whereas UV light has significant effect when HNO₃, CH₃COOH, and H₂SO₄ was used.

Key words: photocatalytic reduction; Cr (VI); TiO₂; acidic medium; blank test effect