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In this paper we consider the follow ing coulped
(1+ n) — dimensional Kleirr Gordorr Schrodinger e
quations (KGS equations in short)
1

i+ 5 Ab=— R (1a)
- AP+ miP=| ¢|7 (1)
where
2,2, 2
T Oxi Ox3 Oxa

is the Laplacian opearator. This system is used to de-
scribe a classical model of the Yukawa interaction of
conserved complex nucleon field with neutral real
meson field. Here, ¢ is a complex scalar nucleon
field ® is a real scalar meson field, and m is the
mass of a meson. For the background materials of
model equations, we refer to the ];)aper“’2J and the
references therein. T he unique global existence theo
rem for the Cauchy problem to (1) with n= 3 is al-
ready established (see [ 1,3, 4]). Xia Jingna etc”!
gave a explict solitary wave solution for KGS equa-

tions by using socalled the homogeneous balance
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principle. U nfortunately, the results of [ 5] are not
complete since the authors did not study the bifurca
tion behaviour of phase portraits for the correspond
ing traveling wave equations. In this paper, we corr
sider bifurcation problem of solitary waves and peri-
odic waves for (1), by using the theory of dynamical
systems'® ' Under fixed parameter conditions, all
explicit formulas of solitary wave and periodic solur
tions can be easily obtained.

To find the travelling wave solusions of KGS e

quations, we first assume that

= emu(x,t),
Xx= (X1, %2, -5 %a), (2)
N= Z(Ijxj+ B.

j=1

Substituing (2) into (1), canceling ™, we have
u;+ unx = 0; (3d)
j=1 !

M+ 2u - [Zaf+ 2@“ 0, (3)

Fowndation item: Research is supported by the Natural Science Foundation of China( 10231020) and Y unnan province( 20010049) .



3 :Klein— Gordon- Schrodinger 177

- AP+ m?P- u’= 0. (3.)

Letting &= .Zijj— ct,u(x,t)= u(&), i
i<

follows

2
Su®P= <
u+ Hu 0, (4a)

—

su’ = 0, (4)

2
where o = Zajz, ¥i= Zl: ¥, e = Zoy Y.
j-

j=1
Denote that qi= u, pi= ug, 2= ¢ pr= %.
Then, (4) becomes the following 4 — dimensional

dynamical system

qi= p1, (5a)

q2= p2 (5)
2

s a’+ 2B _ 2

p1= 2 11T 29192 (5)

. m> 1 2

p2= 2 2927 2 291 (34)

T he phase orbits defined by the vector fields of sys
tem (5) determine all travelling wave solutions of
(1). Suppose that u(x,t) = u(&) is a continuous
solution of (1) for & € (- oo, ) and gimmu( &) =
a, g],i[nmu(“ct,) = B.It is well known that (i) u(x,
t) is called a solitary wave solution if a= B. (ii) u
(x, t) is called a kink or antikink solution if aZB.
U sually, a solitary w ave solution corresponds to a ho-
moclinic orbit. A kink (or antikink) wave solution
correspods to a heteroclinic orbit. Thus, to investi-
gate all bifurcations of solitary waves and periodic
waves of (1), we shall find all bounded solutions of
(5) depending on the parameter space of this sys
tem. The bifurcation theory of dynamical systems
(see [ 6]) plays an important role in our study.

T his paper is organized as follows. In section 1,
we condider the dynamical behaviour of (4) in a
plane. We obtain an explicit formula of solitary
wave solutions and periodic wave solutions of ( 4)
under given parameter conditions. In section 2, we
point out some possible bifurcation behaviour of (5)
and the Hamiltonian case in (5). Our study results

contain some results in [ 5] as special examples.

1 The solitary wave and periodic wave solu
tions of the completely integrable case

In this section, we consider the dynamical be
haviour of (4) on the plane u— a®= 0, for some a
> 0. Substituting u= a® and ¥= ai into (4a) and

(4y) , respectively, we obtain two uncoupled inte

grable systems

2
- TE28, L 20 (64)
Y a¥
mz a2
- 53 2%+ 3 ;9= 0, (6n)
Y°— ¢ Y°— ¢

which correspond to two planar dynamical systems

du dy a+ 2B 2 2

d§=0 dg= Ty T e (7Y
de dy m? a’ 2

d®_ dy _ ¢ ¢

g~ 48T o &2 vio o (7)

There exist two critical points of (7,) and (7))
at O1(u, y)= (0,0), O2(% y)=(0,0) and A,

2
(u,y) = Al[@,owz(@, y)= A2

2
{%, 0] , reapectively.

We assume that a*+ 2B> 0and v>— ¢*> 0.
In this case, the origin O and O, are saddle
points of (7), A1 and A2 are centers of (7). These

two systems have the first integrals

2
1 a+ 2B 2
Hi(u,y)= Eyz- P u’ + 3ayzu3,

(84)
1 2 : 2
Ho ®y)= 5y = g2 %4
2
a
—— ¢
3(vi- &) (8)

We see from (7) and ( 8) that corresponding to the
level curves defined by H 1= H 2= 0,two homoclinic
orbits connecting the origin of (7,) and (71,) have

the following parametric representations:

u(g) = i a24+—12B sechz[ﬁziazz-:{ 2B} . (9)

2
HE = Losech| =Y. 10
(8 = e {2 A (10
The relation u = a® gives the following parameter

conditions
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2 2
a+ 28 Y 6
o= h E[ W’@’ (16)
, 8 m? where rj = ri(h)(j = 1,2, 3) are functions of h.
O+ 28= a’’ Using (7) and (16) to culculate, we obtain
Le., 5 —
(2- a2)Y2: 2¢% a*< 2 (11) u(g): ri= (ri=rzjen {@é k}’

T hus, we have

L (12)

2aYy ]’

3m’
u(§) = 2a sech?

2
®E) = %sechz % . (13)

We see from the above discussion that the fol
lowing conclusion holds.

Theorem 1
holds, i. e. , for any a € (0, JE)

Suppose that conditions ( 11)

(_:Zlaf+ 26)/(m’) =

[Z9(59- (3]

J
2{ _Zl,ow] 2.
=

T hen, KGS equations have uncountablely infi-

(2= &%) D} =
j=1

nite many (corresponding to different a) exact sol-

tary solutions

dx,t)= 3m e [@Z}yj(xj— ot z)} x
exp[i[é‘,wﬁ Bt]], (14)

2”; j;\g(x_;— OH)]
(15)

Obviously, by using more simple and natural

3m2

Plx,t)= 7 sech
a

method than one in [ 5], theorem 1 corrects and gen-
eralizes the maian result in [ 5] .
Under the condition of Theorem 1, H1 and H 2

defined by (8) determine the same Hamiltonian val-
6

ues. When h € {— ﬁ, (ﬂ , there exists a family

of closed orbits of (7a) and (7b) having the level
curves H = H>= h.Denote that
(1 + ZB 2 2 3

2h+ v ! a2 T
(ri— u)(u- r2)(u- r3),

ri-r
k= /r:_—rj (17)
where sn(x, k) is the Jacobian elliptic function with
the modulus & € (0, 1). Clearly, u(&) is a periodic
4
;J ri— rz2
where K (k) is the complete elliptic integral of the
first kind. The function ®(&) has the same formula
as (17).
Theorem 2 U nder the same condition of The

6
%,@,a € (O,J_Z) there

exist uncountablely infinite many families of periodic

function with the period T (k)= K(k),

orem 1, for h € [—

wave solutions of KGS equations as follows

b(x,t)= (ri— (ri1- rz)snz{—@'

2
jile— 30), b)) *
exp[ [qu,+ B;]] (18)

Nx,6)=ri— (ri—r2)*

R =t )

(19)

As a particular example, we consider the ( 1+

1) — dimensional case of (1). For n= 1, we have ¢
= Yz(l— (12). The condition of Theo

rem 1 becomes

= ay, v -

2

m 2 2
o= 21 Q) (20)

Hence, we have the following exact travelling

(12+ 2[3:

wave solution of (1)

_ 3w’ [ . }
u(x, t) = X J_—abech J—( ar)

exp(ifax + &)), (21)

3m’ —m
Hx,t) = A1- az)sech ) Jl——az( at)}.
(22)
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2 Possible bifurcation behaviour of (5) and

Hamiltonian case

In this section, we consider some possible bifur-
cations for the system ( 5). Clearly, in the 4— dimen-
sional phase space (g1, g2, p 1, p2), there are 3 equr
libriums of (5) at

2 L2

0(0,00,0), 4,
2 2
and A _ {_ ‘1+22[3m7 a+2267 0,(Jﬂ'f o+ 28>

0.At the equilibrium ( ¢, ¢%, pY, p9), the Jacobian

2 2
a’+ ZBm a’+ ZB,O,O}

matrax of the linearized system of (5) has the form

0 0 0 0
J(q1, g2, p1, p2) =

0 0 10
0 0 0

2

L= -;22[3— %qg %q? 0 0
2 0 m2

Ty o2 00

AN

T hus, the characteristic equations of the lin-
earized systems of (5) at the origin O and A + re

spectively has the forms as follows

2 2
{)3- o CZHAZ- “fTZB}: 0, (23

- C

V(¥ - %)

(24)
We know from (23) that if the condition a+
2B< 0, Y- <0 holds, (23) has two purely imag-

inarypairs of eigenvalues: = —2— i and

poll s 281

T Y i. Hence, we can investigate the prob-

lem of codimension two bifurcation for (5) at the o
rigin O.
We see from (24) that
}\2_ 1_[ m’ +
= N
7 ]2 7, 3
J[ S CzJ - A Lg %f)] - (25)
T hus, when >+ 28> 0, Y- < 0 and A=

m> } 2 N 4m2( o 2B)

2 YZ(YZ— 02)

> 0, (24) has two

- C

purely imaginary pairs of eigenvalues. We can inves
tigate the problem of codimension two bifurcation
for (5) at the equilibriums 4 =+.

On the other hand, we suppose that V= V-
i e.,c= 0.Under this condition, the system ( 5)
is a Hamiltonian system of two degree of freedom

which can be written as

q1
q2
diz-’z plzij:
P2
a+ 2B 2
o o 1 0| ¥ Topne
0 0 01 m’ 1 >
- 242+ 2q1
-1 0 00 Y Y
0 -1 0 0 pi
p2

w here

a’+ 2B 2 m? »

H(q1, q2,p1, p2) = - 2 11 ﬁqﬁ

1 1 1
?q%qﬁ P 1+ Y 3.
(26)
The dynamical behaviour of the phase orbits de
fined by (26) will give the properties of travelling

wave solutions of (1) . We will consider these prob

lems in a new paper.
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