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Abstract. We derive the Jeffreys prior for the parameter of the Multivariate Ewens Distribution and study some of its
properties. In particular, we show that this prior is proper and has no finite moments. We also investigate the impact of this
default prior on the a priori distribution of the number of species and the a priori probability of discovery of a new species,
which are usually employed in subjective prior elicitation. The effect of the Jeffreys prior for posterior inference is illustrated
using examples arising in the context of inference for species sampling models and Dirichlet process mixture models.

1. Introduction

The Multivariate Ewens Distribution (MED), also known as the Ewens Sampling Formula (ESF) (Ewens, 1972;
Johnson et al., 1997), is a probability distribution on the partitions of the set {1, 2, . . . , n}. It appears often in genetics
as the distribution of the number of distinct alleles in a sample of size n drawn from an infinite idealized population, or
as the limiting distribution of other, more general models (Kingman, 1978; Hoppe, 1987). More generally, the MED
belongs to the class of species sampling models, which describe distributions for exchangeable random partitions
(Aldous, 1985; Pitman, 1995; Lijoi et al., 2007). The MED also appears in the context of Bayesian nonparametric
statistics, where it is related to the number of unique values in a random sample of size n taken from a random
distribution that follows a Dirichlet process prior (Antoniak, 1974). Hence, in the context of Dirichlet process mixture
models, the MED acts as the prior distribution on the number and size of the clusters imposed by model.

This paper is concerned with Bayesian estimation and prediction under the MED model. Gamma priors, or mixtures
thereof, are commonly used as priors in this context because of the existence of simple Gibbs sampling algorithms
based on data augmentation (Escobar & West, 1995). Hyperparameters are elicited by either exploiting their link with
the expected number of distinct alleles (Escobar & West, 1995) or, in the case of nonparametric mixture models, their
link with the mean and variance of the observations (Walker & Mallick, 1997). Alternatively, Carota & Parmigiani
(2002) and Griffin & Steel (2004) propose eliciting priors on the probabilities of new alleles, which in turn imply
a prior on the parameter of interest. In either case, elicitation can be difficult because of the lack of relevant prior
information in specific applications. To deal with the lack of prior information, numerous authors have used very
dispersed Gamma priors. In this paper we derive the Jeffreys prior associated with the MED, show that this prior is
proper, and investigate some of its properties. Because of its invariance to transformations, the Jeffreys prior provides
a natural “default” or “non-informative” alternative to the priors discussed above without a substantial increase in
computational complexity.

The remaining of the paper is organized as follows: Section 2 briefly reviews the Multivariate Ewens Distribution
and derives the Jeffreys prior associated with its parameter. Section 3 discusses some of the properties of the Jeffreys
prior. Section 4 presents some illustrations in the context of species sampling models and Dirichlet process mixture
models. We conclude in Section 5 with some brief remarks and future directions.

2. The Jeffreys Prior for theMultivariate Ewens Distribution

Consider a partition of the set {1, 2, . . . , n} into K ≤ n subsets so that there are r j subsets of size j, where
∑n

j=1 r j = K,
and

∑n
j=1 jr j = n. For example, the n elements of the original set might represent individuals being sampled from an

infinite population, while the subsets into which they are divided could be interpreted as the species to which these
individuals belong. The Multivariate Ewens Distribution (MED) assigns such a partition a probability

p(K, r1, . . . , rn | β) =
Γ(β)Γ(n + 1)

Γ(β + n)
βK

n∏
j=1

1
jr jΓ(r j + 1)

,(1)

where 0 < β < ∞ is a parameter controlling the shape of the distribution.

Key words and phrases. Multivariate Ewens Distribution; Jeffreys Prior; Dirichlet Process; Ewens Sampling Formula.
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The partitions associated with the MED can alternatively be described in terms of a sequence of exchangeable
indicators ξ1, . . . , ξn such that ξi = k if the i individual in the population belong to species k. Assuming that the species
are labeled consecutively between at 1 and K, and letting mk =

∑n
i=1 I(ξi = k) be the number of individuals in species

k, then

p(ξ1, . . . , ξn | β) = p(K,m1, . . . ,mK | β) =
Γ(β)

Γ(β + n)
βK

K∏
k=1

Γ(mk).(2)

From (2) we can compute the probability mass function associated with the species of a new individual

p(ξn+1 = k | ξ1, . . . , ξn, β) =


p(K,m1, . . . ,mk + 1, . . . ,mK | β)

p(K,m1, . . . ,mk, . . . ,mK | β)
=

mk

β + n
k ≤ K

p(K + 1,m1, . . . ,mk, . . . ,mK , 1 | β)
p(K,m1, . . . ,mk, . . . ,mK | β)

=
β

β + n
k = K + 1.

This sequence of predictive distributions is sometimes called the Chinese restaurant process.
We are interested in estimating the parameter β based on either an observed sample ξ1, . . . , ξn, or the sufficient

statistic K. The following lemma provides an expression for a natural default prior for β.

Lemma 1. For n ≥ 2, the Jeffreys prior associated with (1) and (2) is given by

πJ
n(β) ∝

√√√
1
β

n−1∑
j=1

j
(β + j)2 .(3)

Proof. By definition, πJ
n(β) ∝ |I(β)|1/2 where I(β) = −E

[
d2

dβ2
log {p(K,m1, . . . ,mK | β)}

]
is the Fisher information

associated with β. Now,

−E
[

d2

dβ2 log {p(K,m1, . . . ,mK | β)}
]

= −ψ′(β) + ψ′(β + n) +
E{K}
β2 ,

where ψ′ denotes the trigamma function (Abramowitz & Stegun, 1965). Now, using the facts that E{K} =
∑n−1

j=0
β
β+ j

(e.g., see Antoniak, 1974) and ψ′(β + n) = ψ′(β) −
∑n−1

j=0
1

(β+ j)2 (e.g., see Abramowitz & Stegun, 1965) we get

IE(β) = −

n−1∑
j=0

1
(β + j)2 +

1
β2

n−1∑
j=0

β

β + j
=

1
β

n−1∑
j=0

j
(β + j)2 =

1
β

n−1∑
j=1

j
(β + j)2 ,

which directly leads to (3). �

In particular, note that, for n = 2 (the smallest sample size containing information about β), the Jeffreys prior on β
corresponds to a standard Cauchy prior on ν = β1/2.

3. Properties of the Jeffreys Prior for theMED

Surprisingly, the Jeffreys prior is proper. Indeed, note that for all n ≥ 2∫ ∞

0

√√√
1
β

n−1∑
j=1

j
(β + j)2 dβ ≤

∫ ∞

0

√√√
1
β

n−1∑
j=1

j
(β + 1)2 dβ =

√
n(n − 1)

2

∫ ∞

0

1
β3/2 + β1/2 dβ

=

√
n(n − 1)

2

∫ ∞

0

1
u2 + 1

du = π

√
n(n − 1)

2

Although the normalizing constant C(n) =
∫ ∞

0

√
1
β

∑n−1
j=1

j
(β+ j)2 dβ is not available in closed form, it is easily evalu-

ated numerically using quadrature methods. The prior is decreasing, which can be easily verified,

d
dβ

log{πJ
n(β)} = −

1
2β
−

∑n−1
j=1

j
(β+ j)3∑n−1

j=1
j

(β+ j)2

< 0.
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On the other hand, πJ
n(β) is log-convex. Indeed,

d2

dβ2 log{πJ
n(β)} =

1
2β2 +

3
{∑n−1

j=1
j

(β+ j)4

} {∑n−1
j=1

j
(β+ j)2

}
− 2

{∑n−1
j=1

j
(β+ j)3

}2

{∑n−1
j=1

j
(β+ j)2

}2 > 0.

To show this, note that the first term is clearly positive over the support of the prior. For the second term,

3


n−1∑
j=1

j
(β + j)4




n−1∑
j=1

j
(β + j)2

 − 2


n−1∑
j=1

j
(β + j)3


2

=

n−1∑
j=1

n−1∑
i=1

{
3i j

(β + j)4(β + i)2 −
2i j

(β + j)3(β + i)3

}

=

n−1∑
j=1

n−1∑
i=1

{
i j[3(β + i) − 2(β + j)]

(β + j)4(β + i)3

}

≥
1

(β + n)7

n−1∑
j=1

n−1∑
i=1

{
i jβ + 3i2 j − 2i j2

}

=
1

(β + n)7

β
n−1∑
j=1

n−1∑
i=1

i j +

n−1∑
j=1

n−1∑
i=1

i2 j

 > 0.

Figure 1 presents graphs of πJ
n for different values of n.
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1.
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β

πJ

n = 20
n = 100
n = 300

Figure 1. Density of the Jeffreys prior associated with the MED for some selected values of n.

The moments of πJ
n(β) do not exist. Indeed,

∫ ∞

0
βs

√√√
1
β

n−1∑
j=1

j
(β + j)2 dβ >

∫ ∞

0
βs−1/2

√√√n−1∑
j=1

j
(β + n)2 dβ =

√
n(n − 1)

2

∫ ∞

0

u2s

u2 + n
du = ∞

for any s ≥ 1. Instead, consider the median of πJ
n(β) as a function of n. Again, although no closed-form expression

is available for this median, it can be computed numerically. Figure 2 suggests that the median grows more or less
linearly with the sample size n, with Med{β} ≈ 0.36n + 1 for n ≤ 400.
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Figure 2. Median of πJ
n(β) as a function of the sample size n.

Alternatively, we can consider the impact of the Jeffreys prior on the prior distribution of the number of species by
computing prior moments such as the prior mean,

E{K | n} = E{E(K | β, n)}
∫ ∞

0

n−1∑
j=0

β

β + j

 πJ
n(β)dβ,

and the prior variance

Var{K | n} =

∫ ∞

0

n−1∑
j=0

(
β j

{β + j}2

)
πJ

n(β)dβ +

∫ ∞

0

n−1∑
j=0

β

β + j


2

πJ
n(β)dβ −


∫ ∞

0

n−1∑
j=0

β

β + j

 πJ
n(β)dβ


2

.

The left panel in Figure 3 presents graphs for the prior mean and prior standard deviation as functions of n. Just like
the median of πJ

n(β), both of these quantities grow almost linearly with n. Moreover, note that E{K} ≈ n/2, and that
the prior standard deviation grows somewhat more slowly than E{K}. More generally, we can compute the marginal
prior probability distribution on the number of species,

Pr(K = k | n) =

∫
Pr(K = k | β, n)πJ

n(β)dβ = |S (n, k)|A(n, n, k)

where

A(n,m, k) =

∫ ∞

0
βk Γ(β)

Γ(β + n)
πJ

m(β)dβ.(4)

and |S (n, k)| is the absolute value of the Stirling number of the second kind. For illustrative purposes, Figure 3 shows
the marginal distribution Pr(K = k | n = 100). The effect of the Jeffrey’s prior is striking; the resulting distribution
is U-shaped and roughly symmetric around n/2 (which is compatible with our observations about E(K | n)). Hence,
under this prior the model prefers a priori either a very small or a very large number of species, with values around the
mean/median actually having very low prior probabilities.

Yet another direction is to consider the effect of πJ
n(β) on the priori probability of discovery of a new species,

η = β/(β + n + 1). In particular, Figures 3 and 3 present graphs of the expected value and the variance of η,

E {η | n} =

∫ ∞

0

(
β

β + n + 1

)
πJ

n(β)dβ, Var {η | n} =

∫ ∞

0

(
β

β + n + 1

)2

πJ
n(β)dβ −

{∫ ∞

0

(
β

β + n + 1

)
πJ

n(β)dβ
}2

,

as functions of n. Note that the values of both of these summaries are quite stable, with the expected probability of
discovery of a new species varying between 0.38 and 0.40 over the range considered here.
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Figure 3. Left panel: expectation and standard deviation of the number of unique alleles, E{K | n}
and Var{K | n} as a function of the sample size n. Note that they both appear to grow linearly with
n. Right panel: full marginal distribution p(K = k | n) =

∫ ∞
0 p(K = k | β)πJ

n(β)dβ for n = 100.
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Figure 4. Expectation (left panel) and variance (right panel) of the probability of discovery a new
species, E {β/(β + n + 1)}, as a function of the sample size n.

4. Illustrations

4.1. Species sampling models. In this subsection we consider the use of our Jeffreys prior for inference under the
MED model. We consider first a series of simulations where data is generated under a MED with true parameters
βT = 1 or βT = 2. We consider two different scenarios, corresponding to n = 100 and n = 1, 000 individuals, and
for each of these scenarios we study the frequentist properties of Bayesian interval estimators generated under two
different default priors: the Jeffreys priors derived in this paper, and a diffuse Gamma with shape parameter 0.001 and
rate 0.001 (which has mean 1). The choice of a diffuse Gamma prior centered around β = 1 reflects standard practice
in the literature.
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βT n α Summary Priors
Jeffreys Gam (0.001, 0.001)

1

100
0.90 Coverage 0.89 0.86

Width 1.85 (0.59) 1.74 (0.62)

0.95 Coverage 0.95 0.89
Width 2.24 (0.71) 2.11 (0.74)

1000
0.90 Coverage 0.90 0.86

Width 1.40 (0.34) 1.34 (0.35)

0.95 Coverage 0.94 0.94
Width 1.67 (0.38) 1.61 (0.39)

2

100
0.90 Coverage 0.91 0.86

Width 2.84 (0.75) 2.74 (0.76)

0.95 Coverage 0.95 0.94
Width 3.43 (0.90) 3.32 (0.91)

1000
0.90 Coverage 0.91 0.88

Width 2.07 (0.37) 2.02 (0.38)

0.95 Coverage 0.94 0.95
Width 2.48 (0.44) 2.42 (0.45)

Table 1. Results of a simulation study to explore the frequentist coverage and expected length of
100α% credible intervals for β generated under three different priors.

β η = β/(β + n + 1)
Post. mean 95% Cred. Interval Post. mean 95% Cred. Interval

Jeffreys 2763.3 (2526.9, 3015.8) 0.516 (0.494, 0.538)
Gam (0.001, 0.001) 2751.3 (2518.1, 3002.4) 0.515 (0.493, 0.537)

Table 2. Posterior credible inferences for β and η = β/(β + n + 1) (the probability of discovery of a
new species) under two different “non-informative” prior distributions for the sequencing tag data.

Markov chain Monte Carlo algorithms were used to obtain samples from the posterior distribution under each prior.
All inferences are based on 100,000 iterations of the chain obtained after a burn-in period of 5,000 iterations. For
the Jeffreys prior, we employed a random walk Metropolis-Hasting algorithm with Gaussian proposals for log β; the
variance of the proposal was τ2 = 0.05 for n = 1, 000 and τ2 = 1 for n = 100, which resulted in average acceptance
rates of 70% and 60% respectively. For the Gamma prior, we employed the latent variable approach discussed in
Escobar & West (1995), which does not require any tunning parameter.

Table 1 presents empirical coverage probabilities and interval lengths for symmetric credible sets constructed.
These summaries were estimated on the basis of 2, 000 randomly generated datasets. As expected, the frequentist
coverage probability of 90% and 95% symmetric credible intervals under the Jeffreys prior seems to coincide with their
nominal posterior probability. On the other hand, the dispersed Gamma prior produces intervals that are somewhat
tighter than the Jeffreys prior, but which they tend to have lower empirical coverage rates (particularly, for 90%
coverage).

As a second illustration, we consider a real dataset discussed in Mao & Lindsay (2002), Mao (2004), and Lijoi
et al. (2007). The data consists of a n = 2586 randomly selected expressed sequence tags taken form a large cDNA
library made from the 0 mm to 3 mm buds of tomato flowers. The number of distinct tags observed in this sample is
K = 1825. Table 2 presents estimates of the MED parameter β under the same two priors discussed in the simulation
study. The same MCMC algorithms described in the simulation study were used in this analysis. Note that, although
inferences for β differ somewhat among the two priors, inferences for the probability of discovery of a new species,
η = β/(β + n + 1), are almost identical in both cases.
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4.2. Dirichlet process mixture models. The Dirichlet process (DP) (Ferguson, 1973; Antoniak, 1974; Sethuraman,
1994) defines a prior distribution on the space of discrete measures and has been widely used in the context of non-
parametric Bayesian inference. However, because of the discrete nature of distributions, the DP is not typically used
to model the data directly, but as a prior for the mixing distribution in a kernel convolution. In that case, the data
generating process for an independent and identically distributed sample y1, . . . , yn is assumed to be

yi | G ∼
∫

p(yi | θ)G(dθ), G | β ∼ DP(β,G0),

where DP(β,G0) denotes a Dirichlet process prior with centering measure G0 and precision parameter β, and p(yi|θ)
is a kernel indexed by the finite-dimensional parameter vector θ. Such a model can alternatively be described in terms
of a series of partition indicators ξ1, . . . , ξn and component-specific parameters ϑ1, ϑ2, . . . , such that

yi | ξi, ϑ1, ϑ2, . . . ∼ p(yi | ϑξi ), ξ1, . . . , ξn | β ∼ MED(β), ϑk ∼ G0,

where MED(β) represents the multivariate Ewens distribution with parameter β.
We ran two simulation studies to investigate the impact of the (marginal) Jeffreys prior on posterior inferences

for the DP mixture model. First, a dataset consisting of 50 observations was generated from a negative binomial
distribution with mean 20 and variance 220, and a DP mixture of Poisson kernels with an unknown precision parameter
β and a Gamma baseline measure was fitted to this data (the baseline measure was selected so that it had mean 20 and
variance 200). Note that, because the negative binomial can be represented as a scale mixture of Poissons, the true
data generating process corresponds to the limit of the Poisson DP mixture prior when K = n = 50 (which can be
obtained by letting β→ ∞).

We considered two different prior distribution for β, namely, the Jeffreys prior introduced in this paper and the
“non-informative” Gam(0.001, 0.001). A variant of the collapsed Gibbs samplers described in Neal (2000) was used
to fit the model. In the case of the Jeffreys prior, we used a version of the algorithm that integrates over β, so that the
posterior full conditional distribution for ξi is given by

p(ξi = k | ξ1, . . . , ξi−1, ξi+1, . . . , ξn) =


m−k

A(n, n,K−)
A(n − 1, n,K−)

p(yi|y−,G0) k ≤ K−

A(n, n,K− + 1)
A(n − 1, n,K−)

p(yi|G0) k = K− + 1,

(5)

where A(n,m, k) was defined in (4) and the negative exponent denotes the appropriate quantities computed after ex-
cluding observation i.

We focused our analysis on the posterior distribution of the number of occupied mixture components K. The
posterior mean for K was very similar in both cases, 9.1309 under the Jeffreys prior and 9.0468 under the diffuse
Gamma prior, with configurations including more than 16 mixture components having negligible posterior probability.
Having a number of occupied clusters that is smaller than n is not really surprising; because the Dirichlet process prior
strongly favors clustering, we expect the model to underestimate the number of mixture components. What is really
interesting is that the Jeffreys prior seems to favor a larger number of clusters than the Gamma prior. Indeed, the
posterior distribution of K under the Jeffreys prior seems to be stochastically greater than the posterior distribution
under the Gamma prior (the same phenomena appeared when we repeated the simulation study with other datasets).
This suggest that the Jeffreys prior does a slightly better job at identifying the true number of components in this case.

Finally, in order to evaluate whether the previous behavior is due to a systemic bias in the Jeffreys prior towards
larger values of K, we ran a similar experiment where data was generated instead from a Poisson distribution with
mean 20. Hence, in this case K = 1 corresponds to the truth. In this case, the posterior distribution for K under both
models was identical (up to Monte Carlo error), so systematic bias does not seem to be present.

5. Concluding remarks

To the best of our knowledge, this is the first derivation of the Jeffrey’s prior associated with the MED. Our numer-
ical evaluations suggest that it might represent a reasonable default prior in situations where little prior information is
available, including hierarchical models such as nonparametric mixture models based on the Dirichlet process. How-
ever, the Jeffreys prior explicitly depends on the sample size observed. Hence, any statistical procedures derived under
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this prior will depend on the stopping rule associated with the experiment; for example, the results will vary depending
on whether data is analyzed sequentially or in batches.
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