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POSITIVITY AND TRANSPORTATION

MARCO CUTURI

Abstract. We prove in this paper that the weighted volume – or generating
function – of the set of integral transportation matrices between two integral
histograms r and c of equal sum is a positive definite kernel of r and c when the
set of considered weights forms a positive definite matrix. The computation of
this quantity, despite being the subject of a significant research effort in alge-
braic statistics, remains an intractable challenge for histograms of even modest
dimensions. We propose an alternative kernel which, rather than considering
all matrices of the transportation polytope, only focuses on a sub-sample of
its vertices known as its Northwestern corner solutions. The resulting kernel
is positive definite and can be computed with a number of operations O(R2d)
that grows linearly in the complexity of the dimension d, where R2 – the total
amount of sampled vertices – is a parameter that controls the complexity of

the kernel.

1. Introduction

Suppose that among 30 students in a classroom, 7 and 23 have light and dark
colored eyes respectively. You are also told that 12 of them have light hair while
18 have dark hair. What are all the possible populations of the 4 subgroups of
students with light/light, dark/dark, light/dark and dark/light eyes and hair color
respectively? Such quantities can be arranged in a 2 × 2 matrix whose row sum
vector must be equal to [7, 23]T and column sum vector must be equal to [12, 18],
[ 3 4
9 14 ] for instance, and more generally any integer values in the dots below that
satisfy these constraints:

[
12 18

7 • •
23 • •

]

Alternatively, suppose that two bakeries in a small village produce daily 7 and 23
loafs of bread each, while two restaurants in the same area each need 12 and 18 loafs
to serve their customers every day. What are all the possible morning delivery plans
of bread loafs that the two bakeries and shops can agree upon? These seemingly
trivial sets of matrices coincide, and are known in the statistics and optimization
literature as the sets of contingency tables and transportation plans respectively.

In statistics, the problem of enumerating all such tables arises naturally in hy-
pothesis testing. Suppose that by entering the aforementioned classroom you ob-
serve that the actual repartition of these groups is [ 5 2

7 16 ]. Such an observation
intuitively suggests that eye and hair color are related, but how confident should
you be about this statement? In the 2 × 2 case presented above, the Fisher exact
test (Yates, 1934) answers that question by computing the probabilities of all pos-
sible tables outcomes if one assumes that they have been generated as the product
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of independent Bernoulli variables with law p1 = 7/30 and p2 = 12/30. By com-
paring all these probabilities with that of the observed table, we can conclude how
reliable an independence hypothesis would be. In optimization, given a 2 × 2 cost
matrix which describes the cost (in gas, calories or time) of bringing a loaf from
each bakery to each shop, finding the delivery plan with minimal cost is known
as a transportation problem. Transportation problems are an extremely general
class of linear programs which are known to encompass all instances of network
flows (Bertsimas and Tsitsiklis, 1997, p.274).

Optimal transportation distances (Rachev and Rüschendorf, 1998; Villani, 2009)
are distances between probability densities which combine both perspectives out-
lined above, where the probabilistic view on contingency tables is matched with
the goal of computing an optimal transportation plan between two marginal prob-
abilities given a metric on the probability space of interest. Such distances have
been widely used in computer vision following the impulsion of Rubner et al. (1997)
who used it to compare histograms of image features. When used in information
retrieval tasks, transportation distances fare usually better in practice than other
classical distances for histograms (Pele and Werman, 2009).

Transportation distances have however two notable drawbacks. First, from a
geometric point of view, transportation distances are deficient in the sense that
they are not negative definite nor Hilbertian. Negative definiteness carries many
favorable properties, among which the possibility to create Euclidean embeddings
from which the metric can be accurately recovered, as well as the possibility to
turn the distance into a positive definite kernel by simple exponentiation, as a ra-
dial basis function. Because of this deficiency, there is no known positive definite
counterpart to transportation distances that can leverage the complexity of the set
of contingency tables. Second, from a computational point of view, the computa-
tional cost of computing transportation distances grows in most cases of interest at
least quadratically in the dimension d of the histograms, which can be prohibitive
for many applications.

We try to address both issues in this work. The main contribution of this paper is
theoretical: after providing some background material and motivation in Section 2
we prove in Section 3 that the generating function of the set of all contingency
tables between two integral histograms is a positive definite kernel. Our second
contribution is practical: we propose in Section 4 a positive definite kernel that
leverages these ideas while still being computationally tractable.

2. Background

2.1. The Transportation Polytope and the Set of Contingency Tables. We
review in this section a few definitions, notations and results of interest to prove
our result. In the following, we write 〈 · , · 〉 for both the Frobenius dot-product and
the usual dot-product of vectors.

Given a dimension d fixed throughout this paper, for two vectors r, c ∈ R
d, let

U(r, c) be the transportation polytope of r and c, namely the subset of nonnegative
matrices in R

d×d defined as:

U(r, c)
def
= {X ∈ R

d×d
+ | X1d = r,XT1d = c},

where 1d is the d dimensional vector of ones. U(r, c) contains all nonnegative d× d
matrices with row and column sums r and c respectively. It is easy to check that
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U(r, c) is non-empty if and only if all coordinates of r and c are non-negative and
if the total masses of r and c are the same, that is rT1d = cT1d. We will consider
in most of this work integral vectors r and c taken in the set ΣN of d-dimensional
integral histograms with total mass N ∈ N,

ΣN
d

def
= {r ∈ N

d | r1 + · · ·+ rd = N}.

We will also focus accordingly on the subset U(r, c) of U(r, c) that contains all inte-
gral transportation matrices, alternatively known as contingency tables (Lauritzen,
1982; Everitt, 1992):

U(r, c)
def
= U(r, c) ∩N

d×d.

2.2. Weighted Volumes of Contingency Tables and Particular Cases of
Positivity. Ranging from early work by Yates (1934); Good (1976) to Diaconis and Efron
(1985); Cryan and Dyer (2003); Chen et al. (2005), the computation of elementary
statistics about U(r, c) has attracted considerable attention. Many of the ideas of
this paper build upon recent work by Barvinok, most notably on his study of the
generating function of U(r, c), defined for M ∈ R

d×d as

V (r, c ;M)
def
=

∑

X∈U(r,c)

e−〈X,M 〉.

The generating function can be related to the weighted volume (Barvinok, 2008,

p.2) of U(r, c), defined for any nonnegative d× d matrix K ∈ R
d×d
+ as:

T (r, c ;K)
def
=

∑

X∈U(r,c)

d∏

ij

k
xij

ij .

Both definitions are equivalent since if we agree that kij = e−mij then T (r, c ;K) =
V (r, c ;M). Because all of our results rely on K’s properties, we will mostly use the
weighted volume formulation in this paper. Some sections in this paper, notably
§2.3 below and §4, are better understood with the generating function formulation.

Cuturi (2007, Prop.2) proved that the cardinal of the set U(r, c) is a positive
definite kernel of r and c using the Robinson-Schensted-Knuth bijection (Knuth,
1970) that maps each contigency table to a pair of Young tableaux with contents
r and c and the same pattern. It is easy to see that the cardinal of U(r, c) is equal
to T (r, c;1d×d) or V (r, c ;0d×d). Cuturi (2007, Prop.1) also proved that T (r, c ;K)
is a positive definite kernel of r and c if both are binary histograms and K is a
nonnegative d × d positive definite matrix. Since the computation of T entails in
that case the computation of the permanent of a Gram matrix, Cuturi (2007) called
this kernel the permanent kernel. The main contribution of our paper is to prove
in Theorem 1 that the map (r, c) ∈ ΣN

d 7→ T (r, c ;K) is positive definite whenever
K is a d× d positive definite matrix.

2.3. Relationships with the Optimal Transportation Distance. Given a d×
d cost matrix M , one can quantify the cost of mapping r to c using a transportation
matrixX as 〈X,M 〉. The minimum of this cost is called the optimal transportation
cost, defined as:

dM (r, c)
def
= min

X∈U(r,c)
〈X,M 〉.

A classical result of optimization in network flows (Bertsimas and Tsitsiklis, 1997,
Theo. 7.5) guarantees the existence of a contingency table X⋆ ∈ U(r, c) which



4 MARCO CUTURI

R
d×d

N
d×d

M

dM (r, c) = 〈X⋆,M〉 = minX∈U(r,c)〈X,M〉 U(r, c)

X⋆

V (r, c ;M) =
∑

X∈U(r,c) e
−〈X,M〉

{X ∈ R
d×d|〈X,M〉 = 〈X⋆,M〉}

{X ∈ R
d×d|〈X,M〉 = 〈X◦,M〉}

X◦

〈X◦,M〉 = maxX∈U(r,c)〈X,M〉

U(r, c)

Figure 1. Schematic representation of the set U(r, c) of contin-
gency tables seen as the intersection between the lattice of integral
matrices Nd×d with the transportation polytope U(r, c). Each red
dot stands for an integral plan X ∈ U(r, c). The inner color in each
red dot stands for the value of 〈X,M 〉, which can be seen to go
gradually from 〈X⋆,M 〉 to 〈X◦,M 〉, that is from the minimum to
the maximum of 〈·,M 〉 over U(r, c), or equivalently U(r, c). The
generating function V (r, c;M) of U(r, c) considers the contribu-
tions of all contingency tables.

achieves this minimum, as schematically represented in Figure 1. Such an optimal
table X⋆ can be obtained algorithmically in polynomial time (Ahuja et al., 1993,
§9).

The minimal cost dM (r, c) turns out to be a distance (Villani, 2009, §6.1) when-
ever the matrix M is itself a metric. This distance is also known as the Wasserstein
distance, Monge-Kantorovich’s, Mallow’s or Earth Mover’s (Rubner et al., 1997) in
the computer vision literature. The transportation distance is not negative definite
in the general case, as shown by counterexamples (Naor and Schechtman, 2007)
and embedding distortion results (Andoni et al., 2009). Although some metrics
M can yield a negative definite distance1, characterizing the negative definiteness
of dM remains an open question. Despite this fact, transportation distances have
been used in practice to derive a pseudo-positive definite kernel: both Jing et al.
(2004, §4.C) or Zhang et al. (2006, §2.3) introduce the exponential of (minus) the
minimum of 〈X,M 〉,

(1) kM (r, c) = e−dM(r,c) = exp

(

− min
X∈U(r,c)

〈X,M 〉

)

,

1Setting M = 1d×d − Id yields the total variation distance between discrete probabilities,
which is half the Manhattan or l1 distance between r and c. All these distances are known to be
negative definite.
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to form an undefinite kernel which can be used to compare histograms in practice.
We prove that, although the value exp(−〈X⋆,M〉) in itself is not a positive definite
kernel, the sum of each term exp(−〈X,M〉) over all possible contingency tables in
U(r, c) is positive definite when M has suitable properties. The generating function
Vrc can be interpreted as the exponential of (minus) the soft-minimum of 〈X,M 〉
over all contingency tables,

V (r, c ;M) = exp

(

− softmin
X∈U(r,c)

〈X,M 〉

)

= elog
∑

X∈U(r,c) e
−〈X,M 〉

=
∑

X∈U(r,c)

e−〈X,M 〉,

where the soft-minimum of a finite family of scalars (ui) is

softmin
i

ui
def
= − log

∑

i

e−ui .

This expression relates our results in this work to previous applications of soft mini-
mums to derive positive definite kernels from combinatorial distances for strings (Vert et al.,
2004), time series (Cuturi et al., 2007) and trees (Shin et al., 2011). These ideas
are summarized in Figure 1.

2.4. Generalized Permutations. We close this section by providing some tools
to prove the result. We write SN for the group of permutations over the set
{1, · · · , N}. For any vector α of size N and permutation π ∈ SN , we write απ

for the permuted vector with coordinates απ = [απ(1) απ(2) · · · απ(N)] and αp··q for

the subvector [αp · · · αq] when 1 ≤ p ≤ q ≤ N . For two vectors ρ, γ of {1, · · · , d}N ,
the 2×N array

(ρ ; γ)
def
=

[
ρ1 ρ2 · · · ρN
γ1 γ2 · · · γN

]

,

is called a generalized permutation (Knuth, 1970). To any generalized permutation
(ρ ; γ) corresponds a d× d integral matrix χ(ρ ; γ) defined as (Fulton, 1997, p.41):

(2) [χ(ρ ; γ)]ij
def
=

N∑

n=1

1ρt=i · 1γt=j , 1 ≤ i, j ≤ d.

Consider the following example where d = 3, N = 8 and

ρ =
[
1 2 2 2 1 3 1 3

]
, γ =

[
1 1 2 1 3 3 3 3

]
, (ρ ; γ) =

[
1 2 2 2 1 3 1 3
1 1 2 1 3 3 3 3

]

, χ(ρ ; γ) =





1 0 2
2 1 0
0 0 2



 .

If we consider now the permutation π = [3 6 8 5 2 1 4 7] we have that

ρ =
[
1 2 2 2 1 3 1 3

]
, γπ =

[
2 3 3 3 1 1 1 3

]
, (ρ ; γπ) =

[
1 2 2 2 1 3 1 3
2 3 3 3 1 1 1 3

]

, χ(ρ ; γπ) =





2 1 0
0 0 3
1 0 1



 .

Note that if ρ and γ have respectively ri and ci elements i among their N coefficients
for all 1 ≤ i ≤ d, then χ(ρ ; γ) ∈ U(r, c). One can see above that the corresponding
histograms are r = [3, 3, 2] and c = [3, 1, 4] and that both χ(ρ ; γ) and χ(ρ ; γπ) have
row and column sums r and c.
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3. The Weighted Volume as a Positive Definite Kernel

Theorem 1. Let K ∈ R
d×d
+ . The map (r, c) 7→ T (r, c ;K) is positive definite if K

is positive definite.

The proof relies on the following observation: Barvinok (2008) showed that the
weighted volume of U(r, c) of two integral histograms r and c of total mass N can
be formulated as the expectation of the permanent of a random N ×N matrix. To
do so, Barvinok shows that the weighted volume – a sum indexed over all contigency
tables X ∈ U(r, c), can be rewritten as a sum indexed over all permutations π in
SN , up to a correcting term known as the Fisher-Yates statistic (Equation (5) in
the Appendix). The crux of Barvinok’s proof lies in a randomization scheme –
using draws from the exponential law – to cancel out the Fisher-Yates statistic. We
adopt a similar route to prove the positivity of T , by proving that the inverse of
the Fisher-Yates statistic – defined as k2 below – is itself positive definite to obtain
the result.

Proof. Suppose that K ∈ R
d×d
+ is positive definite and consider two integral his-

tograms r, c in ΣN
d . We represent r as a N -dimensional vector ρ ∈ {1, · · · , d}N ,

ρ
def
= [ 1, · · · , 1

︸ ︷︷ ︸

r1 times

, 2, · · · , 2
︸ ︷︷ ︸

r2 times

, · · · , d, · · · , d
︸ ︷︷ ︸

rd times

],

and consider the analogous representation γ for c. Let k1 and k2 be the following
kernels on (ρ, γ):

k1(ρ, γ) =

N∏

t=1

k(ρt, γt) , where k(i, j) = kij for 1 ≤ i, j ≤ d,

k2(ρ, γ) =
1

r1! · · · rd!
·

1

c1! · · · cd!

d∏

ij

xij ! , where X = χ(ρ ; γ). (see §2.4, Eq. (2))

The kernel k2 is the inverse of the Fisher-Yates statistic (Equation (5) in the Ap-
pendix) associated to an integral transportation table X and its marginals r and c.
k1 is trivially positive definite. The first group of terms of k2 is trivially positive
definite as a product f(r)f(c) where f(r) = 1

r1!···rd!
. We prove that the other term,

the product of factorials of xij , is positive definite in Lemma 3 using the proof
strategy of a related result provided in Lemma 2. Lemma 4 proves that when a
kernel κ on two vectors is symmetric (the definition is provided in the lemma),
the sum

∑

π∈SN
κ(ρ, γπ) is itself positive definite. We use this result on the prod-

uct κ(ρ, γ) = k1(ρ, γ)k2(ρ, γ) which is trivially symmetric as the product of two
symmetric kernels. We then prove in Lemma 5 that

∑

π∈SN

κ(ρ, γπ) = T (r, c ;K).

Since the summation over all permutations in the left hand side is positive definite
by Lemma 4, we conclude that T (r, c ;K) is itself a positive definite kernel as the
product of two positive definite kernels.
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4. Northwestern Kernel

The weighted volume T (r, c ;K) cannot be computed exactly even for small di-
mensions d, and approximations (Barvinok, 2008) are currently both too expensive
and too loose to be of practical interest in a machine learning context. We adopt
in this section an alternative approach, in which we propose to restrict the sum
of elementary contributions exp(−〈X,M 〉) to a subset of extreme points of U(r, c)
and obtain a kernel whose computational complexity grows linearly in both the
dimension d and the size of the sample of extreme points. The main tool for this
approach is provided by the Northwestern corner rule to generate a vertex of U(r, c),
which we recall in Section 4.1. We define the Northwester kernel in Section 4.2 and
prove that it is positive definite. For any matrix M ∈ R

d×d, we write Mσσ′ for the
row and column permuted matrix whose i, j element is mσ(i)σ′(j).

4.1. The Northwestern Corner Rule to Generate Vertices of U(r, c). The
Northwestern corner rule is a heuristic that produces a vertex of the polytope
U(r, c) in up to 2d operations. The rule starts by giving the highest possible value
to x11, and at each step when a highest possible value is given to entry xij it
moves on to xij+1 in case xij filled column j, or xi+1j in case xij filled row i. The
rule proceeds until xnn has received a value. Here is an example of this sequence
assuming r = [2, 5, 3] and c = [5, 1, 4]:




• 0 0
0 0 0
0 0 0



 →





2 0 0
• 0 0
0 0 0



 →





2 0 0
3 • 0
0 0 0



 →





2 0 0
3 1 •
0 0 0



 →





2 0 0
3 1 1
0 0 •



 →





2 0 0
3 1 1
0 0 3





We write NW(r, c) for the unique Northwestern corner solution that can be ob-
tained through this heuristic. There is, however, a much larger number of North-
western corner solutions that can be obtained by permuting arbitrarily the order
of r and c separately, computing the corresponding Northwestern corner table, and
recovering a table of U(r, c) by inverting again the order of columns and rows.
Setting σ = (3, 1, 2), σ′ = (3, 2, 1) we have that rσ = [3, 2, 5], cσ′ = [4, 1, 5] and
σ−1 = (2, 3, 1), σ′ = (3, 2, 1). Observe that:

NW(rσ , c
′
σ) =





3 0 0
1 1 0
0 0 5



 ∈ U(rσ, cσ′), NWσ−1σ′−1 (rσ, cσ′) =





0 1 1
5 0 0
0 0 3



 ∈ U(r, c).

Let N (r, c) be the set of all Northwestern corner solutions that can be produced
this way:

N (r, c)
def
= {NWσ−1σ′−1 (rσ, cσ′), σ, σ′ ∈ Sd}.

Note that all Northwestern corner solutions only have by construction up to 2d− 1
nonzero elements. The Northwestern corner rule produces a table which is by
construction unique for r and c, but there is an exponential number of pairs or
row/column permutations (σ, σ′) that may share the same table (Stougie, 2002,
p.2). N (r, c) is a subset of the set of extreme points of U(r, c) (Brualdi, 2006,
Corollary 8.1.4). NW(r, c) is an optimal transportation between r and c if the cost
matrix M is a Monge matrix (Hoffman, 1961), that is a matrix M that satisfies the
inequalities

∀1 ≤ i, j, k, l ≤ d, mij +mkl ≤ mil +mkj .
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Note however that a distance matrix cannot be a Monge matrix since the inequality
above applied to k = j and l = i would imply that 0 < 2mij ≤ mii +mjj = 0.

4.2. Random Sampling of Northwestern Corner Solutions. We propose in
this section a kernel which uses arbitrary row/column permutations of r and c to
recover extreme points of U(r, c) and sum their individual contribution:

Theorem 2. Let R be an arbitrary subset of permutations in Sd. The Northwestern

kernel sampled on R and parameterized by a matrix M , defined as

N(r, c ;K,R)
def
=

∑

σ,σ′∈R

exp (−〈M,NWσ−1σ′−1(rσ, cσ′) 〉) ,

is a positive definite kernel if K, the element-wise exponential of −M , is positive

definite.

Proof. As in the proof of Theorem 1, consider the representation of an integral
histogram r ∈ ΣN

d as a N dimensional vector ρ that replicates ri times the index i
for all i from 1 to d. We also define, for any permutation σ of Sd, the vector ρσ as

ρσ
def
= [σ(1), · · · , σ(1)

︸ ︷︷ ︸

rσ(1) times

, σ(2), · · · , σ(2)
︸ ︷︷ ︸

rσ(2) times

, · · · , σ(d), · · · , σ(d)
︸ ︷︷ ︸

rσ(d) times

].

ρσ for σ ∈ Sd should not be confused with ρπ for π ∈ SN (§2.4): for any permu-
tation σ ∈ Sd there exists at least one permutation π ∈ SN such that ρσ = ρπ
but the converse is not usually true. We show in Lemma 1 that for σ, σ′ ∈ Sd,
NWσ−1σ′−1 (rσ, cσ′) = χ(ρσ, γσ′), and thus,

N(r, c ;K,R) =
∑

σ,σ′∈R

e−〈M,χ(ρσ,γσ′ ) 〉 =
∑

σ,σ′∈R

k1(ρσ, γσ′),

where k1 is defined in Theorem 1. N(r, c ;K,R) is positive definite as a convolution
kernel.

Lemma 1. Let σ and σ′ be two permutations of Sd. Then

NWσ−1σ′−1 (rσ, cσ′) = χ(ρσ, γσ′).

Proof. We write Eij for the d × d matrix of zeros except for the (i, j) element
set to 1. We prove the result by induction on the total mass N . For N = 1
the result is trivial since the only transportation matrix in U(r, c) in that case is
Eσ(i1)σ(i2), where i1 and i2 are such that ri1 = ci2 = 1. Suppose now that the

result is true for all histograms of mass N and consider the case where rT1d =
cT1d = N + 1. Let i1 and i2 be the smallest indices such that rσ(i) > 0 and
cσ′(i) > 0 respectively. As a consequence, the first elements of ρσ and γσ′ are σ(i1)
and σ(i2) respectively. Consider the two vectors ρ∗ and γ∗ of length N equal to
ρσ and γσ′ without these two first elements. Setting r̃ and c̃ to r and c except for
the fact that r̃σ(i1) = rσ(i1) − 1 and c̃σ(i2) = rσ(i2) − 1, we have by induction that
NWσ−1σ′−1 (r̃σ, c̃σ′) = χ(ρ∗, γ∗), since the two histograms have total mass N and
their representations are respectively ρ∗ and γ∗. By definition of the Northwestern
corner rule, adding a unit of mass to the i1’s and i2’s components of r̃σ and c̃σ′ only
changes the very first iteration of the rule, since all coordinates of r̃σ and c̃σ′ up
to but not including i1 and i2 respectively are null by construction. Applying the
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rule yields a transportation table with an added unit in location (i1, i2), providing
thus the identity

NW(rσ, cσ′) = NW(r̃σ , c̃σ′) + Ei1i2 ,

which implies that

(3) NWσ−1σ′−1(rσ , cσ′) = NWσ−1σ′−1 (r̃σ, c̃σ′) + Eσ(i1)σ′(i2).

By definition of χ we have that

(4) χ(ρσγσ) = χ(ρ∗, γ∗) + Eσ(i1)σ′(i2)

we get by combining Equations (4) and (3) above with the induction hypothesis
that NWσ−1σ′−1 (rσ, cσ′) = χ(ρσ, γσ′).

Remark 1. The evaluation of N(r, c ;K,R) requires O(d|R|2) steps since comput-

ing each of the |R|2 contributions exp(−〈M,NWσ−1σ′−1 (rσ, cσ′) 〉) for a couple σ, σ′

requires up to 2d products. The size of R ⊂ Sd can be controlled from a few permu-

tations to an exhaustive enumeration, which would entail an overall complexity of

the order of O(dd!2).

5. Conclusion and Future Work

We have proved in this paper that the fundamental ingredient of transportation
distances, the polytope of contingency tables, can be used to define a positive
definite kernel between two histograms. While the cost matrix of a transportation
problem between two histograms r and c needs to be a distance matrix for the
optimum to be itself a distance of r and c, we have proved that the generating
function of the same polytope is positive definite whenever the cost matrix is itself
positive definite. This quantity is computationally intractable, and we have resorted
to a summation that only considers a subset of extreme points of the polytope to
define the north-western kernel. Future research includes the proposal of suitable
subsets R of permutations of Sd tuned with data, as well as other approximation
schemes.

Appendix: Intermediate Results for the Proof of Theorem 1

Lemma 2. Let a, b ∈ {0, 1}N be two binary vectors. The kernel (a, b) 7→ 〈a, b 〉! is
positive definite.

Proof. For N = 1 the kernel is always equal to 1 and is thus trivially positive
definite. For N > 1, the recursion 〈a, b 〉! = 〈aN−1

1 , bN−1
1 〉! (aNbN 〈aN−1

1 , bN−1
1 〉+1)

provides the expression

〈a, b 〉! =
N−1∏

t=1

(at+1bt+1〈a1··t, b1··t 〉+ 1) ,

which shows that 〈a, b 〉! is the product of N−1 positive definite kernels on different
features of a and b.

Remark 2. Rather than the lemma itself, we will use the identity above in the

proof of Lemma 3. We conjecture that this result can be extended to integral vectors.

Numerical counterexamples show that this result cannot be generalized to vectors of

R
N through Euler’s or Hadamard’s Γ function.



10 MARCO CUTURI

Lemma 3. Let ρ, γ ∈ {1, · · · , d}N . The kernel (ρ, γ) 7→
∏

ij xij !, where X =

χ(ρ; γ), is positive definite.

Proof. An integral vector ρ ∈ {1, · · · , d}N with N components can be represented
as a family of d binary row vectors ρ1, · · · , ρd of length N where for n ≤ N ,

ρin
def
= 1ρn=i. For instance,

if ρ =
[
1 1 2 2 2 1 3 1 3 3

]
, then





ρ1

ρ2

ρ3



 =





1 1 0 0 0 1 0 1 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1





These d binary vector representations can be used to obtain the matrix χ(ρ ; γ).
Indeed, it is easy to check that ifX = χ(ρ , γ) then xij = 〈ρi, γj 〉. As a consequence,
we have that for all indices i, j the coefficient xij ! = 〈ρi, γj 〉!. We obtain that the
product of factorials

d∏

ij

xij ! =
d∏

i,j

〈ρi, γj 〉!,

is thus a product of kernels evaluated on all possible pairs among the d× d repre-
sentations for ρ and γ. Although one might be tempted to interpret this product
as a convolution kernel (Haussler, 1999) or a mapping kernel (Shin and Kuboyama,
2008), one should recall that such results only apply to sums of local kernels and
not to products. Such products of kernels on parts are not, as simple counterexam-
ples can show, positive definite in the general case. Using the decomposition which
was used in the proof of Lemma 2, we have however that:

d∏

ij

xij ! =

d∏

i,j

〈ρi, γj 〉! =
d∏

i,j

N−1∏

t=1

(

ρit+1γ
j
t+1〈ρ

i
1··t, γ

i
1··t 〉+ 1

)

,

=

N−1∏

t=1

d∏

i,j

(

ρit+1γ
j
t+1〈ρ

i
1··t, γ

j
1··t 〉+ 1

)

=

N−1∏

t=1



1 +

d∑

i,j

ρit+1γ
j
t+1〈ρ

i
1··t, γ

j
1··t 〉



 ,

where we have used in the last operation the fact that only one of all d2 products
(ρit+1γ

j
t+1)ij is nonzero, since

ρit+1γ
j
t+1 =

{

1, if ρt+1 = i and γt+1 = j,

0, else.

The product of factorials is thus a product of N−1 positive definite kernels indexed
by t and defined on ρ and γ, where each of these N−1 kernel is 1 plus a convolution
kernel operating on the d decompositions of ρ1··t and γ1··t as d binary feature vectors,
that is

d∏

ij

xij ! =

N−1∏

t=1

(1 + kt(ρ, γ)) ;

where

kt(ρ, γ) =

d∑

i,j

ht(ρ
i, γj) and ht(a, b) = at+1bt+1〈a1··t, b1··t 〉.
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Lemma 4. Let α = (α1, · · · , αN ) and β = (β1, · · · , βN ) be two lists of N elements

in a set X . Let k be a symmetric kernel in XN , that is a kernel invariant under

a permutation of the order of both α and β: ∀π ∈ SN , k(α, β) = k(απ, βπ). Then
(α, β) 7→

∑

π∈SN
k(α, βπ) is positive definite.

Proof. The function g defined below is, by Haussler’s (1999) convolution kernels
framework, a positive definite kernel of α and β:

g(α, β) =
∑

π′∈SN

∑

π∈SN

k(απ′ , βπ).

Using the symmetric property of κ, we have that

g(α, β) =
∑

π′∈SN

∑

π∈SN

k(α, βπ′−1◦π) = N !
∑

π∈SN

k(α, βπ).

which proves the result.

Lemma 5.
∑

π∈SN
κ(ρ, γπ) = r1! · · · rd! · c1! · · · cd!T (r, c ;K)

Proof. For any couple of vectors ρ, γ we have that both k1 and k2 only depend on
X = χ(ρ ; γ). This is implicitly the case in the definition of k2 and one can check
that

k1(ρ, γ) =

N∏

t=1

k(ρt, γt) =

d∏

ij

k
xij

ij , where X = χ(ρ ; γ).

With every permutation π of we associate a transportation table χ(ρ ; γπ) which we
call the pattern of π. Following (Barvinok, 2008, §2,p.7), we know that the number
of permutations π that share the same pattern X for X ∈ U(r, c) only depends on
X , r and c through a formula known as the Fisher-Yates statistic n(X) of X ,

(5) n(X)
def
= card{π ∈ SN |χ(ρ ; γπ) = X} =

r1! · · · rd! · c1! · · · cd!
∏

ij xij !
.

We thus have that
∑

π∈SN

κ(ρ, γπ) =
∑

X∈U(r,c)

n(X)k1(ρ, γπ)k2(ρ, γπ)

=
∑

X∈U(r,c)

r1! · · · rd! · c1! · · · cd!
∏d

ij xij !

d∏

ij

k
xij

ij

∏d

ij xij !

r1! · · · rd! · c1! · · · cd!
= T (r, c ;K).
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