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We consider the problem of detection and localization of a small
block of weak activation in a large matrix, from a small number of
noisy, possibly adaptive, compressive (linear) measurements. This is
closely related to the problem of compressed sensing, where the task
is to estimate a sparse vector using a small number of linear measure-
ments. However, contrary to results in compressed sensing, where it
has been shown that neither adaptivity nor contiguous structure help
much, we show that in our problem the magnitude of the weakest
signals one can reliably localize is strongly influenced by both struc-
ture and the ability to choose measurements adaptively. We derive
tight upper and lower bounds for the detection and estimation prob-
lems, under both adaptive and non-adaptive measurement schemes.
We characterize the precise tradeoffs between the various problem
parameters, the signal strength and the number of measurements re-
quired to reliably detect and localize the block of activation.

1. Introduction. Compressive measurements provide a very efficient
means of recovering data vectors that are sparse in some basis or frame.
Specifically, several papers, including Candès and Tao (2006), Donoho (2006),
Candès and Tao (2007), Candès and Wakin (2008), and Wainwright (2009a)
have shown that it is possible to recover a k-sparse vector in n dimensions
using only k log n compressive measurements, instead of measuring all of the
n coordinates. Motivated by this line of research, there have been recent at-
tempts (Baraniuk et al., 2010, Soni and Haupt, 2011) at characterizing the
number of compressive measurements needed to recover vectors that are
endowed with some structure in addition to sparsity. Yet another exten-
sion of the compressed sensing framework has been to attempt to recover
vectors from few possibly adaptive compressed measurements, where sub-
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sequent measurements are designed based on past observations (see, e.g.,
Candès and Davenport, 2011). Finally, there has also been work on detec-
tion, instead of recovery, of sparse vectors from compressive measurements
(Arias-Castro, 2012). However, almost all of this work has been focused on
recovery or detection of (structured or unstructured) sparse data vectors
from (passive or adaptive) compressed measurements.

In this paper, we extend the compressed sensing paradigm to handle data
matrices. In the unstructured case, the treatment of data matrices is ex-
actly equivalent to the treatment of data vectors. The setting where data
matrices are distinct from data vectors is when the sparsity pattern is struc-
tured in a way that reflects some coupling between the rows and columns.
We consider one such setup where there is a sub-matrix or block of acti-
vation embedded in the data matrix. This is a natural model for several
real-world activations such as when we have a group of genes (belonging to
a common pathway for instance) co-expressed under the influence of a set of
similar drugs (Yoon et al., 2005), when we have groups of patients exhibit-
ing similar symptoms (Moore et al., 2010), when we have sets of malware
with similar signatures (Jang et al., 2011), etc. However, in many of these
applications, it is difficult to measure, compute or store all the entries of the
data matrix. For example, measuring expression levels of all genes under all
possible drugs is expensive, or recording the signatures of each individual
malware is computationally demanding as it might require stepping through
the entire malware code. However, if we have access to linear combinations
of matrix entries (i.e. compressive measurements) such as combined expres-
sion of multiple genes under the influence of multiple drugs then we might
need to only make and store few such measurements, while still being able
to infer the existence or location of the activated block of the data matrix.
Thus, the goal is to detect or recover the activated block (set of co-expressed
genes and drugs or malwares with similar signatures) using only few com-
pressive measurements of the data matrix, instead of observing the entire
data matrix directly. We consider both the passive (non-adaptive) and ac-
tive (adaptive) measurements. The non-adaptive measurements are random
or pre-specified linear combinations of matrix entries. In other cases, such
as mixing drugs, we might be able to adapt the measurement process and
sequentially design linear combinations that are more informative.

Summary of our contributions. Using information theoretic tools, we
establish lower bounds on the minimum number of compressive measure-
ments and the weakest signal-to-noise ratio (SNR) needed to detect the
presence of an activated block of positive activation, as well as to localize
the activated block, using both non-adaptive and adaptive measurements.
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Table 1

Summary of main findings under the assumption that n1 = n2 = n and k1 = k2 = k,
where the size of the matrix is n× n and the size of the activation block is k × k. The

number of measurements is m and µ/σ represents SNR per element of the activated block.

Detection Localization

Passive
µ
σ
≍ 1√

m
n
k2

µ
σ
≍ 1√

m
n√
k

Theorems 3 and 4

Active Theorems 1 and 2
µ
σ
≍ 1√

m
max

(

n
k2 ,

1√
k

)

Theorems 5 and 6

We also demonstrate minimax optimal upper bounds through detectors and
estimators that can guarantee consistent detection and recovery of weak
block-structured activations using few non-adaptive and adaptive compres-
sive measurements.

Our results indicate that adaptivity and structure play a key role and
provide significant improvements over non-adaptive and unstructured cases
for recovery of the activated block in the data matrix setting. This is unlike
the vector case where contiguous structure and adaptivity have been shown
to provide minor, if any, improvement (Candès and Davenport, 2011).

In our setting we take compressive measurements of a data matrix of size
(n1 × n2), the activated block is of size (k1 × k2), with minimum SNR per
entry of µ/σ, and we have a budget of m compressive measurements with
each measurement matrix constrained to have unit Frobenius norm.

Table 1 describes our main findings (assuming n1 = n2 = n and k1 =
k2 = k and paraphrasing for clarity) and compare the scalings under which
passive and active, detection and localization are possible.

For detection, akin to the vector setting, structure and adaptivity play
no role. The structured data matrix setting requires an SNR scaling as√

n1n2/(mk21k
2
2) for both non-adaptive and adaptive cases, which is same

as the SNR needed to detect a k1k2 sparse non-negative vector of length
n1n2 as demonstrated in Arias-Castro (2012). Thus, the structure of the
activation pattern as well as the power of adaptivity offer no advantage in
the detection problem.

For localization of the activated block, the structured data matrix set-
ting requires an SNR scaling as

√
n1n2/(mmin(k1, k2)) using non-adaptive

compressive measurements. In contrast, the unstructured setting requires a
higher SNR of

√
n1n2 log(n1n2)/m where m ≥ k1k2 log(n1n2) as demon-

strated in Wainwright (2009b). Structure, without adaptivity already yields
a factor of

√
k reduction in the smallest SNR that still allows for reliable

localization. Moreover, adaptivity in the compressive measurement design
yields further improvements. With adaptive measurements, identifying the
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activated block requires a much weaker SNR of max(
√

n1n2/(mk21k
2
2),
√

1/(mmin(k1, k2)))
for the weakest entry in the data matrix. For the sparse vector case, Arias-Castro et al.
(2011) showed that adaptive compressive measurements cannot recover the
non-zero locations if the SNR is smaller than

√
n1n2/m. A matching upper

bound was provided using compressive binary search in Davenport and Arias-Castro
(2012) and Malloy and Nowak (2012) for recovering the location of a single
non-zero entry in the vector. Thus, exploiting structure of the activations
and designing adaptive linear measurements can both yield significant gains
if the activation corresponds to a block in a data matrix.

Related Work. Our work builds on a number of fairly recent contribu-
tions on detection and recovery of a sparse and weak unstructured signal
by adaptive compressive measurements. In Arias-Castro et al. (2011), the
authors show that, in the linear regression setting, the adaptive compres-
sive scheme offers improvements over the passive scheme which, in terms of
MSE, are limited to a log(n) factor. The authors also provide a general proof
strategy for minimax analysis under adaptive measurements. Arias-Castro
(2012) further applies this strategy to the problem of detection of an un-
structured sparse and weak vector signal under compressive adaptive mea-
surements. Malloy and Nowak (2012) shows that a compressive version of
standard binary search achieves minimax performance for localization in a
one-sparse vector. The work of Wainwright (2009b) which is based on an-
alyzing the performance of an exhaustive search procedure under passive
measurements, is relevant to our analysis of passive localization. Our analy-
sis provides a generalization of these results to the case of a structured and
weak signal embedded as a small contiguous block in a large matrix.

While we focus on detection and localization of the activation in this
paper, some other papers have considered estimation of sparse vectors in the
mean square error (MSE) sense using adaptive compressive measurements.
For example, Candès and Davenport (2011) establishes fundamental lower
bounds on the MSE in a linear regression framework, while Haupt et al.
(2009) demonstrates upper bounds using compressive distilled sensing. Some
other papers (Baraniuk et al., 2010, Soni and Haupt, 2011) have considered
different forms of structured sparsity in the vector setting, e.g. if the non-
zero locations in a data vector form non-overlapping or partially-overlapping
groups or are tree-structured. Finally, Negahban and Wainwright (2011) and
Koltchinskii et al. (2011) have considered a measurement model identical to
ours in the setting of low-rank matrix completion, but in that setting the
matrix under consideration is not assumed to be a structured sparse matrix
and the theoretical guarantees are with respect to the Frobenius norm.

The rest of this paper is organized as follows. We describe the problem
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set up and notation in Section 2. We study the detection problem in Section
3, for both adaptive and non-adaptive schemes. Section 4 is devoted to the
non-adaptive localization, while Section 5 is focused on adaptive localization.
Finally, in Section 6 we present and discuss some simulations that support
our findings. The proofs are given in the Appendix.

2. Preliminaries. Let A ∈ R
n1×n2 be a signal matrix with unknown

entries that we would like to recover. We are interested in a highly structured
setting where a contiguous block of the matrix A of size (k1×k2) has entries
all equal to µ > 0, while all the other elements of A are equal to zero. Define
the set of contiguous blocks,
(2.1)
B = {Ir×Ic : Ir and Ic are contiguous subsets of [n1] and [n2]

1, |Ir| = k1, |Ic| = k2}.

Then A = (aij) with aij = µ 1I{(i, j) ∈ B∗} for some (unknown) B∗ ∈ B. All
of our results extend to the case when the activation is not constant on B∗,
with min(i,j)∈B∗ aij replacing µ in all our results.

We consider the following observation model under which m noisy linear
measurements of A are available

(2.2) yi = tr(AXi) + ǫi, i = 1, . . . ,m,

where ǫ1, . . . , ǫm
iid∼ N (0, σ2), σ > 0 known, and the sensing matrices (Xi)i

satisfy either ‖Xi‖F ≤ 1 or E‖Xi‖2F = 1.
Under the observation model in Eq. (2.2), we study two tasks: (1) de-

tecting whether a contiguous block of positive signal exists in A and (2)
identifying the block B∗, that is, the localization of B∗. We develop efficient
algorithms for these two tasks that provably require the smallest number of
measurements, as explained below. The algorithms are designed for one of
two measurement schemes: (1) the measurement scheme can be implemented
in an adaptive or sequential fashion, that is, actively, by letting each Xi to be
a (possibly randomized) function of (yj ,Xj)j∈[i−1], and (2) the measurement
matrices are chosen all at once, that is, passively.

Detection. The detection problem concerns checking whether a positive
contiguous block exists in A. As we will show later, we can detect presence
of a contiguous block with much smaller number of measurements than is
required for localizing its position. Therefore, solving the detection problem
before trying to localize the block is often important. Formally, detection is

1We use [n] to denote the set {1, . . . , n}
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a hypothesis testing problem with a composite alternative of the form

(2.3)
H0 : A = 0n1×n2

H1 : A = (aij) with aij = µ 1I{(i,j)∈B}, B ∈ B.
A test T is a measurable function of the observations and the measure-

ments matrices (yi,Xi)i∈[m], which takes values in {0, 1}, T = 1 if the null
hypothesis is rejected and T = 0 otherwise. For any test T , we define its risk
as

R(T ) ≡ P0

[
T
(
(yi,Xi)i∈[m]

)
= 1
]
+max

B∈B
PB

[
T
(
(yi,Xi)i∈[m]

)
= 0
]
,

where P0 and PB denote the joint probability distributions of
(
(yi,Xi)i∈[m]

)

under the null hypothesis and when the activation pattern is B, respectively.
The risk R(T ) measures the maximal sum of type I and type II errors over
the set of alternatives. The overall difficulty of the detection problem is
quantified by the minimax risk R ≡ infT R(T ), where the infimum is taken
over all tests. For a sufficiently small SNR, the minimax risk is bounded away
from zero by a large constant, which implies that no test can distinguish H0

from H1. We precisely characterize the boundary for SNR below which no
test can distinguish H0 and H1.

Localization. The localization problem concerns recovery of the true
activation pattern B∗. Let Ψ be an estimator of B∗, with the risk, corre-
sponding to a 0/1 loss, given by

R(Ψ) = max
B∈B

PB

[
Ψ
(
(yi,Xi)i∈[m]

)
6= B

]
,

while the minimax risk of the localization problem is the minimal risk over
all such estimators Ψ. Like in the detection task, the minimax risk specifies
the minimal risk of any localization procedure. By standard arguments, the
evaluation of the minimax localization risk also proceeds by first reducing the
localization problem to a hypothesis testing problem (see, e.g., Tsybakov,
2009, for details).

Below we will provide a sharp characterization, through information the-
oretic lower bounds and tractable estimators, of the minimax detection and
localizations risks as functions of tuples of (n1, n2, k1, k2,m, µ, σ) and for
both the active and passive sampling schemes. Our results identify precisely
both the minimal SNR given a budget of m possibly adaptive measurements,
and the minimal number of measurements m for a given SNR in order to
achieve successful detection and localization.

Along with a careful and detailed minimax analysis, we also describe
procedures for detection and localization in both the active and passive case
whose risks match the minimax rates.
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3. Detection of contiguous blocks. In this section, we provide a
sharp characterization of the minimax detection risk.

3.1. Lower bound. The following theorem gives a lower bound on the
SNR needed to distinguish H0 and H1.

Theorem 1. Fix any 0 < α < 1. Based on m (possibly adaptive) mea-
surements, if µ < µmin, where

µmin := σ(1− α)

√
16(n1 − k1)(n2 − k2)

mk21k
2
2

,

then any test to distinguish H0 from H1, defined in Eq. (2.3), has risk at
least α.

The result of Theorem 1 can be interpreted as follows: whatever the test
T and the risk level α are, there exists A = (aij) with aij = µ 1I{(i, j) ∈ B∗},
µ < µmin, such that R(T ) ≥ α. This gives a lower bound on the minimax
risk as infT R(T ) ≥ α.

The lower bound on possibly adaptive procedures is established by ana-
lyzing the risk of the (optimal) likelihood ratio test under a certain prior on
the alternatives. Careful modifications of standard arguments are necessary
to account for adaptivity. We closely follow the approach of Arias-Castro
Arias-Castro (2012) who established the analogue of Theorem 1 in the vec-
tor setting.

3.2. Upper bound. We now discuss the sharpness of the result established
in the previous section. We choose the sensing matrices passively as Xi =
(n1n2)

−1/21n11
′
n2

and consider the following test

(3.1) T
(
(yi)i∈[m]

)
= 1I

{∑

i

yi > σ
√

2m log(α−1)
}
.

Theorem 2. If µ > σ

√
8n1n2 log(α−1)

mk21k
2
2

then R(T ) ≤ α, where T is the

test defined in Eq. (3.1).

Results of Theorem 1 and Theorem 2 establish that the minimax rate
for detection under the model in Eq. (2.2) is µ ≍ σ(k1k2)

−1
√
m−1n1n2,

under the (mild) assumption that k1 ≤ cn1 and k2 ≤ cn2 for any constant
0 < c < 1. It is worth pointing out that the structure of the activation
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pattern does not play any role in the minimax detection problem. We will
contrast this to the localization problem below. Furthermore, the procedure
that achieves the adaptive lower bound (upto constants) is non-adaptive,
indicating that adaptivity can not help much in the detection problem.

4. Localization from passive measurements. In this section, we
address the problem of estimating a contiguous block of activation B∗ from
noisy linear measurement in Eq. (2.2), when the measurement matrices
(Xi)i∈[m] are independent with i.i.d. entries xi,ab ∼ N (0, (n1n2)

−1). The
variance of the elements is set so that E||Xi||2F = 1.

4.1. Lower bound. The following theorem gives a lower bound on the
SNR needed for any procedure to localize B∗.

Theorem 3. There exist two positive constant C,C ′ > 0 independent of
the problem parameters (k1, k2, n1, n2), such that if µ < µloc

min, where

µloc
min := Cσ

√
n1n2

m
max

(
1

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)
,

then infΨ R(Ψ) ≥ C ′ > 0 as n → ∞.

The proof is based on a standard technique described in Chapter 2.6 of
Tsybakov (2009). We start by identifying a subset of matrices from A which
are hard to distinguish. Once a suitable finite set is identified, tools for
establishing lower bounds on the error in multiple-hypothesis testing can be
directly applied. These tools only require computing the Kullback-Leibler
(KL) divergence between the induced distributions, which in our case are
two multivariate normal distributions.

The two terms in the lower bound feature two aspects of our construction,
the first term arises from considering two matrices that overlap considerably,
while the second term arises from considering matrices that do not overlap
at all of which there are possibly a very large number. These constructions
and calculations are described in detail in the Appendix.

4.2. Upper bound. We will investigate a procedure that searches over all
contiguous blocks of size (k1 × k2) defined in Eq. (2.1) and outputs one that
minimizes the squared error. Define the loss function f : B 7→ R as

(4.1) f(B) := min
µ

∑

i∈n

(
µ
∑

(a,b)∈B
xi,ab − yi

)2
.
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Then the estimated block B̂ is defined as

(4.2) B̂ := argmin
B∈B

f(B).

Note that the minimization problem above requires solving O(n1n2) univari-
ate regression problems and can be implemented efficiently for reasonably
large matrices.

The following results characterizes the SNR needed for B̂ to correctly
identify B∗.

Theorem 4. There exists a positive constant C > 0 independent of the
problem parameters (k1, k2, n1, n2), such that if

µ ≥ Cσ

√
n1n2

m
log(2/α)max

(
log max(k1, k2)

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)
,

then R(B̂) ≤ α, where B̂ is defined in Eq. (4.2).

Comparing to the lower bound in Theorem 3, we observe that the proce-
dure outlined in this section achieves the lower bound up to constants and
a log k factor. Under the scaling min(k1, k2) ≥ log max(n1 − k1, n2 − k2), we
obtain that the passive minimax rate for localization of the active blocks B∗

is µ ≍ Õ
(
σ
√

(mmin(k1, k2))−1n1n2

)
. This establishes that the SNR needed

for passive localization is considerably larger than the bound we saw earlier
for passive detection. This should be contrasted to the normal means prob-
lem, where the bounds for localization and detection differ only in constants
(Donoho and Jin, 2004).

The block structure of the activation allows us, even in the passive setting,
to localize much weaker signals. A straightforward adaptation of results on
the LASSO (Wainwright, 2009a) suggest that if the non-zero entries are
spread out (say at random) then we would require µ ≍ Õ

(
σ
√

n1n2
m

)
for

localization.

5. Localization from active measurements. In this section, we study
localization of B∗ using adaptive procedures, that is, the measurement ma-
trix Xi may be a function of (yj,Xj)j∈[i−1].

5.1. Lower bound. A lower bound on the SNR needed for any active
procedure to localize B∗ is given.
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Theorem 5. Fix any 0 < α < 1. Given m adaptively chosen measure-
ments, if µ < µloc,active

min , where

µloc,active
min := σ(1−α)max

(√
2max((n1 − k1)(n2/2− k2), (n1/2− k1)(n2 − k2))

mk21k
2
2

,

√
8

mmin(k1, k2)

)
,

then infΨ R(Ψ) ≥ α.

The proof is based on an information theoretic arguments applied to spe-
cific pairs of hypotheses that are hard to distinguish. The two terms in the
lower bound reflect the two sources of hardness of the problem of exactly
localizing the block of activation. The first term reflects the hardness of ap-
proximately localizing the block of activation. This term grows at the same
rate as the detection lower bound, and its proof is similar. Given a coarse
localization of the block we still need to exactly localize the block. The hard-
ness of this problem gives rise to the second term in the lower bound. The
term is independent of n1 and n2 but has a considerably worse dependence
on k1 and k2.

5.2. Upper bound. The upper bound is established by analyzing the pro-
cedures described in Algorithms 1 and 2 for approximate and exact local-
ization. Algorithm 1 is used to approximately located the activation block,
that is, it locates a 2s × 2s blocks that contains the activation block with
high probability. The algorithm essentially performs the compressive binary
search on a collection of non-overlapping blocks that partition the signal
matrix. It is run on two collections, D1 and D2, defined as

D1 ≡ {B11 = [1, . . . , 2k1][1, . . . , 2k2] ∪B12 = [2k1 + 1, . . . , 4k1][1, . . . , 2k2] ∪ . . .

. . . ∪B1n1n2/4k1k2 = [n1 − 2k1, . . . , n1][n2 − 2k2, . . . , n2]
}

and

D2 ≡ {B21 = [k1, . . . , 3k1][k2, . . . , 3k2] ∪B22 = [3k1 + 1, . . . , 5k1][k2, . . . , 3k2] ∪ . . .

∪ . . . B2n1n2/4k1k2 = [n1 − k1, ..., n1, 1, . . . , k1][n2 − k2, ..., n2, 1, . . . , k2]
}
.

Notice, that one of these collections must contain a block with the full block
of activation. Algorithm 1 applied twice returns two blocks, one of which as
we show has the desired block with high probability.

Algorithm 2 is used next to precisely locate the activation block within
one of the two coarser blocks identified by Algorithm 1. Algorithm 2 is a
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Algorithm 1 Approximate localization
input Measurement budget m ≥ log p, (dyadic) ordered collection of size p of blocks D

of size (u1 × u2)

Initial support: J
(1)
0 ≡ {1, . . . , p}, s0 ≡ log p

For each s in 1, . . . , log2 p

1. Allocate: ms ≡ ⌊(m− s0)s2
−s−1⌋+ 1

2. Split: J
(s)
1 and J

(s)
2 , left and right half collections of blocks of J

(s)
0

3. Sensing matrix: Xs =
√

2−(s0−s+1)

u1u2
on J

(s)
1 , Xs = −

√

2−(s0−s+1)

u1u2
on J

(s)
2 and 0

otherwise.

4. Measure: y
(s)
i = tr(AXs) + z

(s)
i , for i ∈ [1, . . . ,ms]

5. Update support: J
(s+1)
0 = J

(s)
1 if

∑ms

i=1 y
(s)
i > 0 and J

(s+1)
0 = J

(s)
2 otherwise

output The single block in J
(s0+1)
0 .

modified compressive binary search procedure that is used to quickly zoom
in on the active rows and columns within a larger block.

The following theorem states that Algorithm 1 and Algorithm 2 succeed in
localization of the active block with high probability if SNR is large enough.

Theorem 6. If

µ ≥ σ
√

log(1/α)Õ

(
max

(√
n1n2

mk21k
2
2

,

√
1

min(k1, k2)m

))

and m ≥ 3 log(n1n2) then infΨR(Ψ) ≤ α.

The Õ hides a
√

log max(k1, k2) factor, and our upper bound matches the
lower bound up to this factor. It is worth noting that for small activation
blocks (when the first term dominates) our active localization procedure
achieves the detection limits. This is the best result we could hope for. For
larger activation blocks, the lower bound indicates that no procedure can
achieve the detection rate. The active procedure still remains significantly
more efficient than the passive one, and even in this case is able to detect
signals that are weaker by a (large)

√
n1n2 factor. This is not the case

for compressed sensing with vectors as shown in Arias-Castro et al. (2011).
The great potential for gains from adaptive measurements is clearly seen in
our model which captures the fundamental interplay between structure and
adaptivity.
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Algorithm 2 Exact localization

input Measurement budget 5m, a sub-matrix B ∈ R
4k1×4k2

Measure: yc
i = (4k1)

−1/2 ∑4k1
l=1 Blc + zci , for i = {1, . . . ,m} and c ∈ {1, k2 + 1, 2k2 +

1, 3k2 + 1}
Let l = argmaxc

∑m
i=1 y

c
i

Let r = l + k2
Let mb = ⌊ m

3 log2 k2
⌋

While r − l > 1

1. Let c = ⌊ r+l
2
⌋

2. Measure yc
i = (4k1)

−1/2
∑4k1

l=1 Blc + zci for i = {1, . . . ,mb}

3. If
∑mb

i=1 y
c
i ≥ τ , then l = c, otherwise r = c

output Set of columns {l − k2 + 1, . . . , l}

6. Experiments. In this section, we perform a set of simulation studies
to illustrate finite sample performance of the proposed procedures. We let
n1 = n2 = n and k1 = k2 = k. Theorem 4 and Theorem 6 characterize
the SNR needed for the passive and active identification of a contiguous
block, respectively. We demonstrate that the scalings predicted by these
theorems are sharp by plotting the probability of successful recovery against
appropriately rescaled SNR and showing that the curves for different values
of n and k line up.

Experiment 1. Figure 1 shows the probability of successful localization
of B∗ using B̂ defined in Eq. (4.2) plotted against n−1

√
km∗SNR, where the

number of measurements m = 100. Each plot in Figure 1 represents different
relationship between k and n; in the first plot, k = O(log n), in the second
k = O(

√
n), while in the third plot k = O(n). The dashed vertical line

denotes the threshold position for the scaled SNR at which the probability
of success is larger than 0.95. We observe that irrespective of the problem
size and the relationship between n and k, Theorem 4 tightly characterizes
the minimum SNR needed for successful identification.

Experiment 2. Figure 2 shows the probability of successful localization
of B∗ using the procedure outlined in Section 5.2., with m = 500 adaptively
chosen measurements, plotted against the scaled SNR. The SNR is scaled
by n−1√mk2 in the first two plots where k = O(log n) and k = O(

√
n)

respectively, while in the third plot the SNR is scaled by
√

mk/ log k as k =
O(n). The dashed vertical line denotes the threshold position for the scaled
SNR at which the probability of success is larger than 0.95. We observe that
Theorem 6 sharply characterizes the minimum SNR needed for successful
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Fig 1. Probability of success with passive measurements (averaged over 100 simula-
tion runs).
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Fig 2. Probability of success with adaptively chosen measurements (averaged over
100 simulation runs).

7. Discussion. In this paper, we establish the fundamental limits for
the problem of detecting and localizing a block of weak activation in a data
matrix from either adaptive or non-adaptive compressive measurements. Our
bounds precisely characterize the tradeoff between signal-to-noise ratio, size
of matrix, size of sub-matrix and number of measurements. We also demon-
strate constructive computationally efficient procedures that achieve these
bounds. Contrary to recent results for sparse vectors which demonstrate
that contiguous structure for the activation and the ability to choose mea-
surements adaptively play a negligible role in detection and localization, our
results indicate that both the block-structure of the activation and adaptive
measurement design significantly improve the localization performance for
data matrices. An intuitive explanation for why adaptive sampling helps in
the structured case is that in this case it is possible to quickly focus the
sampling using a compressive binary search procedure, and then exploit the
structure for exact localization. In the unstructured case however the sig-
nal can be spread out and the adaptive procedure has no way to rule out
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candidate locations quickly and has to repeatedly measure essentially all
locations.

In this paper, we assumed that an ordering of rows and columns of
the data matrix is available. Such an ordering may be obtained by a pre-
processing step that clusters the rows and columns of the matrix. However,
the general problem of recovering an activated block within a randomly
permuted data matrix, commonly known as biclustering, is also important.
The biclustering problem can be harder than the un-permuted setting as
established in Kolar et al. (2011), at least when all the matrix entries can
be directly observed and we hope to address its compressive analog in future
work.

One important open question, that remains unsolved, is the problem of
finding the size of the activation block in a data dependent way. At the mo-
ment we are not aware of procedures that can localize the activation block
at the minimax SNR without the knowledge of its size. Butucea and Ingster
(2011) propose test procedures, under a slightly different model, for detec-
tion of the activation block that do not require the knowledge of the size,
but work with a collection of sizes that contain the true size. However, the
price for being agnostic to the size is reflected in the established rates, which
reflect the difficulty of detecting the hardest activation block in the collec-
tion. Therefore, even for the problem of detection, adaptation to the size is
an open problem.

APPENDIX A: PROOFS OF MAIN RESULTS

In this appendix, we collect proofs of the results stated in the paper.
Throughout the proofs, we will denote c1, c2, . . . positive constants that may
change their value from line to line.

A.1. Proof of Theorem 1. We lower bound the Bayes risk of any test
T . Recall, the null and alternate hypothesis, defined in Eq. (2.3),

H0 : A = 0n1×n2

H1 : A = (aij) with aij = µ 1I{(i,j)∈B}, B ∈ B.
We will consider a uniform prior over the alternatives π, and bound the

average risk
Rπ(T ) = P0[T = 1] + EA∼πPA[T = 0],

which provides a lower bound on the worst case risk of T .
Under the prior π, the hypothesis testing becomes to distinguish

H0 : A = 0n1×n2

H1 : A = (aij) with aij = EB∼πµ 1I{(i,j)∈B} .
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Both H0 and H1 are simple and the likelihood ratio test is optimal by the
Neyman-Pearson lemma. The likelihood ratio is

L ≡
EπPA[(yi,Xi)i∈[m]]

P0[(yi,Xi)i∈[m]]
=

Eπ
∏m

i=1 PA[yi|Xi]∏m
i=1 P0[yi|Xi]

,

where the second equality follows by decomposing the probabilities by the
chain rule and observing that P0[Xi|(yj,Xj)j∈[i−1]] = PA[Xi|(yj ,Xj)j∈[i−1]],
since the sampling strategy (whether active or passive) is the same irrespec-
tive of the true hypothesis.

The likelihood ratio can be further simplified as

L = Eπ exp

(
m∑

i=1

2yitr(AXi)− tr(AXi)
2

2σ2

)
.

The average risk of the likelihood ratio test

Rπ(T ) = 1− 1

2
||EπPA − P0||TV

is determined by the total variation distance between the mixture of alter-
natives from the null.

By Pinkser’s inequality Tsybakov (2009),

||EπPA − P0||TV ≤
√

KL(P0,EπPA)/2

and

KL(P0,EπPA) = −E0 logL

≤ −Eπ

m∑

i=1

E0
2yitr(AXi)− tr(AXi)

2

2σ2

= Eπ

m∑

i=1

E0
tr(AXi)

2

2σ2

≤ m

2σ2
||C||op,

where the first inequality follows by applying the Jensen’s inequality followed
by Fubini’s theorem, and the second inequality follows using the fact that
||Xi||2F = 1, where C ∈ R

n1n2×n1n2 .
To describe the entries of C, consider the invertible map τ from a linear

index in {1, . . . , n1n2} to an entry of A. Now, Cii = µ2
EπPA[Aτ(i) = 1] and

Cij = µ2
EπPA[Aτ(i) = 1, Aτ(j) = 1].
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To bound the operator norm of C we make two observations. Firstly,
because of the contiguous structure of the activation pattern, in any row of
C there are at most k1k2 non-zero entries. Secondly, each non-zero entry in
C is of magnitude at most µ2k1k2/(n1 − k1)(n2 − k2).

Now, noting that

||C||op ≤ max
j

∑

k

|Cjk| ≤ µ2k21k
2
2/(n1 − k1)(n2 − k2)

from which we obtain a bound on the KL divergence.
Now, this gives us that

Rπ(T ) ≥ 1− k1k2µ

√
m

16(n1 − k1)(n2 − k2)

proving the lower bound on the minimax risk.

A.2. Proof of Theorem 2. Define t = 1√
m

∑m
i=1 yi. It is easy to see

that under H0, t ∼ N (0, σ2) while under H1, t ∼ N (
√

m
n1n2

k1k2µ, σ
2). The

theorem now follows from an application of standard Gaussian tail bounds.

A.3. Proof of Theorem 3 . Without loss of generality we assume k1 ≤
k2. Consider, two distributions P1 and P2, where P1 is induced by matrix A1

when the activation block B = B1 = [1, . . . , k1][1, . . . , k2] and P2 is induced
by matrix A2 when the activation block B = B2 = [1, . . . , k1][2, . . . , k2 + 1].

Following the proof of Theorem 5.

KL(P1,P2) = EP1 log
P1

P2

=
1

2σ2
EP1

m∑

i=1

(tr(A2Xi)− tr(A1Xi))
2

=
µ2

σ2

mk1
n1n2

using the fact that Xi is a random Gaussian matrix with independent entries
of variance 1

n1n2
.

Now, noting that the minimax risk

R ≥ 1−
√
KL(P1,P2)/8

For the second part of the theorem, we consider P2, . . . ,Pt+1, where t =
(n1 − k1)(n2 − k2), each of which is induced by a B which does not overlap
with B1.
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The same calculation now gives

KL(P1,Pj) ≤
µ2

σ2

mk1k2
n1n2

Now, applying the multiple hypothesis version of Fano’s inequality (see The-
orem 2.5 in Tsybakov, 2009) we arrive at the second part of the theorem.

A.4. Proof of Theorem 4. Let zi,B =
∑

(a,b)∈B xi,ab and zB = (z1,B , . . . , zm,B)
′.

With this, we can write the loss function defined in Eq. (4.1) as

(A.1) f(B) := min
µ

||µzB − y||22.

Let ∆(B) = f(B) − f(B∗) and observe that an error is made if ∆(B) < 0
for B 6= B∗. Therefore,

P[error] = P[∪B∈B\B∗{∆(B) < 0}].

Under the conditions of the theorem, we will show that ∆(B) > 0 for all
B ∈ B\B∗ with large probability.

The following lemma shows that for any fixed B, the event {∆(B) < 0}
occurs with exponentially small probability.

Lemma 7. Fix any B ∈ B\B∗. Then

(A.2) P[∆(B) < 0] ≤ exp

(
−c1

(µ∗)2m|B∗\B|
σ2n1n2

)
+ c2 exp(−c3m).

Note that, under the assumptions of the theorem, the first term in Eq. (A.2)
dominates the second term and hence will be put into the constant c1.

Define N(l) = |{B ∈ B : |B∆B ∗ | = l}| to be the number of elements in
B whose with symmetric difference with B∗ is equal to l. Note that N(l) =
O(1) for any l. Using the union bound
(A.3)
P[∪B∈B{∆(B) < 0}]

≤
∑

B∈B,|B∆B∗|=2k1k2

exp

(
−c1

µ2k1k2m

σ2n1n2

)
+

∑

l<2k1k2

N(l) exp

(
−c1

µ2lm

σ2n1n2

)

≤ c2(n1 − k1)(n2 − k2) exp

(
−c1

µ2k1k2m

σ2n1n2

)
+ c3k1k2 exp

(
−c1

µ2min(k1, k2)m

σ2n1n2

)
.
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Choosing

µ = c1σ

√
n1n2

m
log(2/δ)max

(
logmax(k1, k2)

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)

each term in Eq. (A.3) will be smaller than δ/2, with an appropriately chosen
constant c1.

We finish the proof of the theorem, by proving Lemma 7.

Proof of Lemma 7. For any B ∈ B, let

µ̂B = argmin
µ

||µzB − y||22

= ||ZB ||−2
2 Z′

BY.

Note that µ̂B∗ = µ+ ||ZB ||−2
2 Z′

Bǫ.
Let

HB = ||ZB ||−2
2 ZBZ

′
B

H⊥
B = I− ||ZB ||−2

2 ZBZ
′
B

be the projection matrices and write

f(B∗) = ||H⊥
B∗ǫ||22

f(B) = ||H⊥
B(ZB∗µ∗ + ǫ)||22 = ||H⊥

Bǫ||22 + (µ∗)2||H⊥
BZB∗ ||22 + 2ǫ′H⊥

BZB∗µ∗.

Now,

∆(B) = ||H⊥
Bǫ||22 − ||H⊥

B∗ǫ||22︸ ︷︷ ︸
T1

+(µ∗)2||H⊥
BZB∗ ||22 + 2ǫ′H⊥

BZB∗µ∗
︸ ︷︷ ︸

T2

.

Let V1, V2 ∼ χ2
m−1. Observe that T1 ∼ σ2(V1 − V2).

P

[
|T1| ≥

σ2(m− 1)ǫ

2

]
≤ 2P

[
|χ2

m−1 −m+ 1| ≥ (m− 1)ǫ

4

]
≤ 2 exp

(
−3(m− 1)ǫ2

256

)(A.4)

using Eq. (B.4), as long as ǫ ∈ [0, 2).
To analyze the term T2, we condition on X, so that

T2|X ∼ N (µ̃, 4σ2µ̃)

where µ̃ = (µ∗)2||H⊥
BZB∗ ||22. This gives

P[T2 ≤ µ̃/2|X] = P[N (0, 1) ≥
√

µ̃/(4σ)|X].
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Next, we show how to control ||H⊥
BZB∗ ||22. Writing ZB∗ = ZB − ZB\B∗ +

ZB∗\B , simple algebra gives

||H⊥
BZB∗ ||22

= ||H⊥
BZB∗\B ||22 + ||H⊥

BZB\B∗ ||22 − 2Z′
B∗\BH

⊥
BZB\B∗

= ||H⊥
BZB∗\B ||22 + ||ZB\B∗ − ZB∗\B ||22 − ||ZB∗\B ||22 −

((ZB\B∗ − ZB∗\B)
′ZB)

2 − (Z′
B∗\BZB)

2

||ZB ||22

≥ ||H⊥
BZB∗\B ||22 + ||ZB\B∗ − ZB∗\B ||22 − ||ZB∗\B ||22 −

((ZB\B∗ − ZB∗\B)
′ZB)

2

||ZB ||22
.

Define the event

E(ǫ) =
{
||H⊥

BZB∗\B ||22 ≥
(1− ǫ)(m− 1)|B∗\B|

n1n2

}⋂{
||ZB\B∗ − ZB∗\B ||22 ≥ (1− ǫ)2m|B∗\B|

n1n2

}

⋂{
||ZB∗\B||22 ≤ (1 + ǫ)m|B∗\B|

n1n2

}⋂{
||ZB ||22 ≥

(1− ǫ)m|B|
n1n2

}

⋂{
|(ZB\B∗ − ZB∗\B)

′ZB| ≤
(1 + ǫ)m|B∗\B|

n1n2

}
,

such that, using the concentration results in Appendix B,

P[E(ǫ)C ] ≤ c1 exp(−c2mǫ2).

On the event E(ǫ) we have that

||H⊥
BZB∗ ||22 ≥

m|B∗\B|
n1n2

[
3(1 − ǫ)− (1 + ǫ)− (1 + ǫ)2

1− ǫ

|B∗\B|
|B|

]
− (1− ǫ)|B∗\B|

n1n2

≥ c1
m|B∗\B|
n1n2

.

Therefore,

(A.5)

P[T2 ≤ µ̃/2|X] ≤ P


N (0, 1) ≥ c1

µ∗

σ

√
m|B∗\B|
n1n2


+ P[EC ]

≤ exp

(
−c1

(µ∗)2m|B∗\B|
σ2n1n2

)
+ c2 exp(−c3mǫ2).

Combining Eq. (A.4) and Eq. (A.5) completes the proof.
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A.5. Proof of Theorem 5. The proof will proceed via two separate
constructions. At a high level these constructions are intended to capture
the difficulty of exactly and approximately localizing the activation block.

Construction 1 - approximate localization: Let us define three dis-
tributions: P0 corresponding to no bicluster, P1 which is a uniform mixture
over the distributions induced by having the top-left corner of the bicluster
in the left half of the matrix and P2 which is a uniform mixture over the
distributions induced by having the top-left corner of the bicluster in the
right half of the matrix.

We first upper bound the total variation between P1 and P2. This results
directly in a lower bound for the problem of distinguishing whether the top-
left corner of the bicluster is in the left or right half of the matrix, which in
turn is a lower bound for the localization of the bicluster.

Now notice that,

||P1 − P2||2TV ≤ 2||P0 − P1||2TV + 2||P0 − P2||2TV

≤ KL(P0,P1) +KL(P0,P2)

Notice that KL(P0,P1) is exactly the quantity we have to upper bound to
produce a lower bound on the signal strength for detecting whether there is
a bicluster in the left half of the matrix or not. At least from a lower bound
perspective this reduces the problem of localization to that of detection. We
can now apply a slight modification of the proof of Theorem 1 to obtain that

KL(P0,P1) = KL(P0,P2) ≤
mµ2k21k

2
2

(n1 − k1)(n2/2− k2)

Noting that the minimax risk R for distinguishing P1 from P2

R = 1− 1

2
||P1 − P2||TV ≥ 1−

√
mµ2k21k

2
2

2(n1 − k1)(n2/2− k2)

Construction 2 - exact localization: Without loss of generality we
assume k1 ≤ k2. Consider, two distributions P1 and P2, where P1 is induced
by matrix A1 when the activation block B = B1 = [1, . . . , k1][1, . . . , k2]
and P2 is induced by matrix A2 when the activation block B = B2 =
[1, . . . , k1][2, . . . , k2 + 1].
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Now, following the same argument as in the proof of Theorem 1, we have

KL(P1,P2) = EP1

m∑

i=1

(
− 1

2σ2

[
(yi − tr(A1Xi))

2 − (yi − tr(A2Xi))
2
])

=
1

2σ2
EP1

m∑

i=1

[
tr(A2Xi)

2 − tr(A1Xi)
2 + 2yitr(A1Xi)− 2yitr(A2Xi)

]

=
1

2σ2
EP1

m∑

i=1


tr(A2Xi)− tr(A1Xi)︸ ︷︷ ︸

ti




2

=
1

2σ2
EP1

m∑

i=1

t2i

Now, with some abuse of notation,

ti = µ




∑

j∈B1\B2

Xij −
∑

j∈B2\B1

Xij




≤ µ


 ∑

j∈B1∆B2

|Xij |




By using Cauchy-Schwarz we get

t2i ≤ 2µ2k1
∑

j∈B1∆B2

X2
ij ≤ 2µ2k1

since ||Xi||2F = 1.
This gives us that,

KL(P1,P2) ≤
mk1µ

2

σ2

Together with a similar construction for the case when k2 ≤ k1 we get

KL(P1,P2) ≤
mmin(k1, k2)µ

2

σ2

Once again noting (by Pinsker’s theorem),

R ≥ 1−
√

KL(P1,P2)/8 ≥ 1−
√

mmin(k1, k2)µ2

8σ2
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Combining the approximate and exact localization bounds we get,

R ≥ max

(
1−

√
mmin(k1, k2)µ2

8σ2
, 1−

√
mµ2k21k

2
2

2(n1 − k1)(n2/2− k2)

)

Thus, we get for any 0 < α < 1, R ≥ α if

min

(√
mmin(k1, k2)µ2

8σ2
,

√
mµ2k21k

2
2

2(n1 − k1)(n2/2− k2)

)
≤ 1− α

A.6. Proof of Theorem 6. As with the lower bound the localization
algorithm and analysis is naturally divided into two phases. An approximate
localization phase and an exact localization one. We will analyze each of
these in turn. To ease presentation we will assume n1 is a dyadic multiple
of 2k1 and n2 a dyadic multiple of 2k2. Straightforward modifications are
possible when this is not the case.

Approximate localization: The approximate localization phase pro-
ceeds by a modification of the compressive binary search (CBS) procedure
of Malloy and Nowak (2012) (see also Davenport and Arias-Castro (2012))
on the matrix A.

We will run this modified CBS procedure twice on two sets of blocks of
the matrix A. The first set consists of the blocks

D1 ≡ {B11 = [1, . . . , 2k1][1, . . . , 2k2] ∪B12 = [2k1 + 1, . . . , 4k1][1, . . . , 2k2] ∪ . . .

. . . ∪B1n1n2/4k1k2 = [n1 − 2k1, . . . , n1][n2 − 2k2, . . . , n2]
}

The second set consists of the blocks

D2 ≡ {B21 = [k1, . . . , 3k1][k2, . . . , 3k2] ∪B22 = [3k1 + 1, . . . , 5k1][k2, . . . , 3k2] ∪ . . .

∪ . . . B2n1n2/4k1k2 = [n1− k1, ..., n1, 1, . . . , k1][n2− k2, ..., n2, 1, . . . , k2]
}

Notice that the entire block of activation is always fully contained in one
of these blocks. The output of the CBS procedure when run on these two
collections is two blocks - one from the first collection and the second from
the second collection. We define an approximate localization error to be the
event in which neither of the two blocks returned fully contains the block of
activation.

Without loss of generality let us assume that the activation block is fully
contained in some block from the first collection. Once we have fixed the
collection of blocks the CBS procedure is invariant to reordering of the
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blocks, so without loss of generality we can consider the case when the
activation block is contained in B11.

The analysis proceeds exactly as in Malloy and Nowak (2012), we detail
the differences arising from having a block of activation as opposed to a
single activation in a vector. Notice, that the binary search procedure on
the first collection of blocks proceeds for

s0 ≡ log

(
n1n2

4k1k2

)

rounds. Now, we can bound the probability of error of the procedure by a
union bound as

Pe ≤
s0∑

s=1

P [ws < 0]

where

ws ∼ N
(
ms2

(s−1)/2k1k2µ√
n1n2

,msσ
2

)

Recall, the allocation scheme: for m ≥ 2s0, ms ≡ ⌊(m − s0)s2
−s−1⌋ + 1

and observe that
∑s0

s=1ms ≤ m
Now, using the Gaussian tail bound

P [N(0, 1) > t] ≤ 1

2
exp(−t2/2)

we see that

Pe ≤
1

2

s0∑

s=1

exp

(
−ms2

sk21k
2
2µ

2

4n1n2σ2

)

Now, observe that ms ≥ (m− s0)s2
−s−1 and m ≥ 2s0, so ms ≥ ms2−s−2.

It is now straightforward to verify that if

µ ≥
√

16σ2n1n2

mk21k
2
2

log

(
1

2δ
+ 1

)

we have Pe ≤ δ.
Let us revisit what we have shown so far: if µ is large enough then one

of the two runs of the CBS procedure will return a block of size (2k1 × 2k2)
which fully contains the block of activation, with probability at least 1− 2δ.

Exact localization: In the 1− δ probability event described above, we
have a block of at most (4k1×4k2) which contains the full block of activation
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(for simplicity we disregard the fact that we know that the block is actually
in one of two (2k1 × 2k2) blocks).

Let us first identify the active columns. First, notice that one of the first,
k2+1st, 2k2+1st or 3k2+1st column must be active. Let us devote 4m mea-
surements to identifying the active column amongst these. The procedure is
straightforward: measure each column m times, and pick the largest.

It is easy to show that the active column results in a draw fromN (
√
k1µm/2,mσ2)

and the non-active columns result in draws from N (0,mσ2).
Using the same Gaussian tail bound as before it is easy to show that if

µ ≥
√

32σ2

k1m
log(2/δ)

we successfully find the active column with probability at least 1− δ.
So far, we have identified an active column and localized the columns

of the activation block to one of 2k2 columns. We will use m more mea-
surements to find the remaining active columns. Rather, than test each of
the 2k2 columns we will do a binary search. This will require us to test at
most t ≡ 2⌈log k2⌉ ≤ 3 log k2 columns, and we will devote m/(3 log k2) mea-
surements to each column. We will need to threshold these measurements
at √

log

(
3 log k2

δ

)
2mσ2

3 log k2

and declare a row as active if its average is larger than this.
It is easy to show that this binary search procedure successfully finds all

active columns with probability at least 1− δ if

µ ≥
√

32σ2 log k2
mk1

log

(
3 log k2

δ

)

We repeat this procedure to identify the active rows.
Putting everything together: Total number of measurements used:

1. Two rounds of CBS: 2m
2. Identifying first active column and first active row: 8m
3. Identifying remaining active rows and columns: 2m

This is a total of 12m measurements. Each of these steps fails with a prob-
ability at most δ, for a total of 6δ.
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Now, re-adjusting constants we obtain, if

µ ≥ max

(√
192σ2n1n2

mk21k
2
2

log

(
3

δ
+ 1

)
,

√
384σ2 log max(k1, k2)

mmin(k1, k2)
log

(
18 log max(k1, k2)

δ

))

then we successfully localize the matrix with probability at least 1− δ.
Stated more succinctly we require

µ ≥ Õ

(
max

(√
σ2n1n2

mk21k
2
2

,

√
σ2

min(k1, k2)m

))
.

This matches the lower bound up to log k factors.

APPENDIX B: COLLECTION OF CONCENTRATION RESULTS

In this section, we collect useful results on tail bounds of various random
quantities used throughout the paper. We start by stating a lower and upper
bound on the survival function of the standard normal random variable. Let
Z ∼ N (0, 1) be a standard normal random variable. Then for t > 0

(B.1)
1√
2π

t

t2 + 1
exp(−t2/2) ≤ P(Z > t) ≤ 1√

2π

1

t
exp(−t2/2).

B.1. Tail bounds for Chi-squared variables. Throughout the paper
we will often use one of the following tail bounds for central χ2 random
variables. These are well known and proofs can be found in the original
papers.

Lemma 8 (Laurent and Massart (2000)). Let X ∼ χ2
d. For all x ≥ 0,

P[X − d ≥ 2
√
dx+ 2x] ≤ exp(−x)(B.2)

P[X − d ≤ −2
√
dx] ≤ exp(−x).(B.3)

Lemma 9 (Johnstone and Lu (2009)). Let X ∼ χ2
d, then

(B.4) P[|d−1X − 1| ≥ x] ≤ exp(− 3

16
dx2), x ∈ [0,

1

2
).

The following result provide a tail bound for non-central χ2 random vari-
able with non-centrality parameter ν.
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Lemma 10 (Birgé (2001)). Let X ∼ χ2
d(ν), then for all x > 0

P[X ≥ (d+ ν) + 2
√

(d+ 2ν)x+ 2x] ≤ exp(−x)(B.5)

P[X ≤ (d+ ν)− 2
√

(d+ 2ν)x] ≤ exp(−x).(B.6)

Using the above results, we have a tail bound for sum of product-normal
random variables.

Lemma 11. Let Z = (Za, Zb) ∼ N2(0, 0, σaa, σbb, σab) be a bivariate

Normal random variable and let (zia, zib)
iid∼ Z, i = 1, . . . , n. Then or all

t ∈ [0, νab/2)

P

[∣∣∣∣∣n
−1
∑

i

ziazib − σab

∣∣∣∣∣ ≥ t

]
≤ 4 exp

(
− 3nt2

16ν2ab

)
,(B.7)

where νab = max{(1 − ρab)
√
σaaσbb, (1 + ρab)

√
σaaσbb}.

Proof. Let z′ia = zia/
√
σaa. Then using (B.4)

P[| 1
n

n∑

i=1

ziazib − σab| ≥ t]

= P[| 1
n

n∑

i=1

z′iaz
′
ib − ρab| ≥

t√
σaaσbb

]

= P[|
n∑

i=1

((z′ia + z′ib)
2 − 2(1 + ρab))− ((z′ia − z′ib)

2 − 2(1− ρab))| ≥
4nt√
σaaσbb

]

≤ P[|
n∑

i=1

((z′ia + z′ib)
2 − 2(1 + ρab))| ≥

2nt√
σaaσbb

]

+ P[|
n∑

i=1

((z′ia − z′ib)
2 − 2(1 − ρab))| ≥

2nt√
σaaσbb

]

≤ 2P[|χ2
n − n| ≥ nt

νab
] ≤ 4 exp(− 3nt2

16ν2ab
),

where νab = max{(1−ρab)
√
ΣaaΣbb, (1+ρab)

√
ΣaaΣbb} and t ∈ [0, νa/2).

Corollary 12. Let Z1 and Z2 be two independent standard Normal

random variables and let Xi
iid∼ Z1Z2, i = 1 . . . n. Then for t ∈ [0, 1/2)

(B.8) P[|n−1
∑

i∈[n]
Xi| > t] ≤ 4 exp(−3nt2

16
).
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