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Abstract

In this paper we develop a theory of matrix completion for the extreme case of noisy 1-bit observa-
tions. Instead of observing a subset of the real-valued entries of a matrix M , we obtain a small number
of binary (1-bit) measurements generated according to a probability distribution determined by the real-
valued entries of M . The central question we ask is whether or not it is possible to obtain an accurate
estimate of M from this data. In general this would seem impossible, but we show that the maximum
likelihood estimate under a suitable constraint returns an accurate estimate of M when ‖M‖∞ ≤ α and
rank(M ) ≤ r. If the log-likelihood is a concave function (e.g., the logistic or probit observation models),
then we can obtain this maximum likelihood estimate by optimizing a convex program. In addition,
we also show that if instead of recovering M we simply wish to obtain an estimate of the distribution
generating the 1-bit measurements, then we can eliminate the requirement that ‖M‖∞ ≤ α. For both
cases, we provide lower bounds showing that these estimates are near-optimal.

1 Introduction

The problem of recovering a matrix from an incomplete sampling of its entries—also known as matrix
completion—arises in a wide variety of practical situations. In many of these settings, however, the ob-
servations are not only incomplete, but also highly quantized, often even to a single bit. In this paper we
consider a statistical model for such data where instead of observing a real-valued entry as in the original
matrix completion problem, we are now only able to see a positive or negative rating. This binary output
is generated according to a probability distribution which is parameterized by the corresponding entry of
the unknown matrix M . The central question we ask in this paper is: “Given observations of this form,
can we recover the underlying matrix?”

We will see that O(rd) measurements are sufficient to accurately recover a d × d, rank-r matrix from
such data. Before describing this result and others in more detail, we provide a brief review of the matrix
completion problem and the closely related problem of 1-bit compressed sensing.

1.1 Matrix completion

Matrix completion arises in a wide variety of practical contexts, including collaborative filtering [17], system
identification [32], sensor localization [3, 44, 45], rank aggregation [16], and many more. While many of
these applications have a relatively long history, recent advances in the closely related field of compressed
sensing [14, 7, 13] have enabled a burst of progress in the last few years, and we now have a strong base
of theoretical results concerning matrix completion [19, 10, 11, 24, 25, 36, 29, 9, 41, 42, 27, 15, 26, 28].
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A typical result from this literature is that a generic d × d matrix of rank r can be exactly recovered
from O(r dpolylog(d)) randomly chosen entries. Similar results can be established in the case of noisy
observations and approximately low-rank matrices [25, 36, 29, 9, 42, 27, 15, 26, 28].

Although these results are quite impressive, there is an important gap between the statement of the
problem as considered in the matrix completion literature and many of the most common applications
discussed therein. As an example, consider collaborative filtering and the now-famous “Netflix problem.”
In this setting, we assume that there is some unknown matrix whose entries each represent a rating for a
particular user on a particular movie. Since any user will rate only a small subset of possible movies, we are
only able to observe a small fraction of the total entries in the matrix, and our goal is to infer the unseen
ratings from the observed ones. If the rating matrix is low-rank, then this would seem to be the exact
problem studied in the matrix completion literature. However, there is a subtle difference: the theory
developed in this literature generally assumes that observations consist of (possibly noisy) continuous-
valued entries of the matrix, whereas in the Netflix problem the observations are “quantized” to the set of
integers between 1 and 5. If we believe that it is possible for a user’s true rating for a particular movie to
be, for example, 4.5, then we must account for the impact of this “quantization noise” on our recovery. Of
course, one could potentially treat quantization simply as a form of bounded noise, but this is somewhat
unsatisfying because the ratings aren’t just quantized — there are also hard limits placed on the minimum
and maximum allowable ratings. (Why should we suppose that a movie given a rating of 5 could not
have a true underlying rating of 6 or 7 or 10?) The inadequacy of standard matrix completion techniques
in dealing with this effect is particularly pronounced when we consider recommender systems where each
rating consists of a single bit representing a positive or negative rating (consider for example rating music
on Pandora, the relevance of advertisements on Hulu, or posts on Reddit or MathOverflow). In such a
case, the assumptions made in the existing theory of matrix completion do not apply, standard algorithms
are ill-posed, and a new theory is required.

1.2 1-Bit compressed sensing and sparse logistic regression

As noted above, matrix completion is closely related to the field of compressed sensing, where a theory to
deal with single-bit quantization has recently been developed [5, 22, 37, 38, 21, 30]. In compressed sensing,
one can recover an s-sparse vector in R

d from O(s log(d/s)) random linear measurements—several different
random measurement structures are compatible with this theory. In 1-bit compressed sensing, only the
signs of these measurements are observed, but an s-sparse signal can still be approximately recovered from
the same number of measurements [22, 37, 38, 1]. However, the only measurement ensembles which are
currently known to give such guarantees are Gaussian or sub-Gaussian [1], and thus of a quite different
flavor than the kinds of samples obtained in the matrix completion setting. A similar theory is available
for the closely related problem of sparse binomial regression, which considers more classical statistical
models [2, 6, 38, 23, 33, 35, 40, 47] and allows non-Gaussian measurements. Our aim here is to develop
results for matrix completion of the same flavor as 1-bit compressed sensing and sparse logistic regression.

1.3 Challenges

In this paper, we extend the theory of matrix completion to the case of 1-bit observations. We consider a
general observation model but focus mainly on two particular possibilities: the models of logistic and probit
regression. We discuss these models in greater detail in Section 2.1, but first we note that several new
challenges arise when trying to leverage results in 1-bit compressed sensing and sparse logistic regression to
develop a theory for 1-bit matrix completion. First, matrix completion is in some sense a more challenging
problem than compressed sensing. Specifically, some additional difficulty arises because the set of low-rank
matrices is “coherent” with single entry measurements (see [19]). In particular, the sampling operator
does not act as a near-isometry on all matrices of interest, and thus the natural analogue to the restricted
isometry property from compressed sensing cannot hold in general—there will always be certain low-rank
matrices that we cannot hope to recover without essentially sampling every entry of the matrix. For
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example, consider a matrix that consists of a single nonzero entry (which we might never observe). The
typical way to deal with this possibility is to consider a reduced set of low-rank matrices by placing
restrictions on the entry-wise maximum of the matrix or its singular vectors—informally, we require that
the matrix is not too “spiky”.

We introduce an entirely new dimension of ill-posedness by restricting ourselves to 1-bit observations.
To illustrate this, we describe one version of 1-bit matrix completion in more detail (the general problem
definition is given in Section 2.1 below). Consider a d × d matrix M with rank r. Suppose we observe a
subset Ω of entries of a matrix Y . The entries of Y depend on M in the following way:

Yi,j =

{
+1 if Mi,j + Zi,j ≥ 0

−1 if Mi,j + Zi,j < 0
(1)

where Z is a matrix containing noise. This latent variable model is the direct analogue to the usual 1-
bit compressed sensing observation model. In this setting, we view the matrix M as more than just a
parameter of the distribution of Y ; M represents the real underlying quantity of interest that we would
like to estimate. Unfortunately, in what would seem to be the most benign setting—when Ω is the set of
all entries, Z = 0, and M has rank 1 and a bounded entry-wise maximum—the problem of recovering
M is ill-posed. To see this, let M = uv∗ for any vectors u,v ∈ R

d, and for simplicity assume that there
are no zero entries in u or v. Now let ũ and ṽ be any vectors with the same sign pattern as u and v

respectively. It is apparent that either M or M̃ = ũṽ∗ will yield the same observations Y , and thus M
and M̃ are indistinguishable. Note that while it is obvious that this 1-bit measurement process will destroy
any information we have regarding the scaling of M , this ill-posedness remains even if we knew something
about the scaling a priori (such as the Frobenius norm of M). For any given set of observations, there will
always be radically different possible matrices that are all consistent with observed measurements.

After considering this example, the problem might seem hopeless. However, an interesting surprise is
that when we add noise to the problem (that is, when Z 6= 0 is an appropriate stochastic matrix) the
picture completely changes—this noise has a “dithering” effect and the problem becomes well-posed. In
fact, we will show that in this setting we can sometimes recover M to the same degree of accuracy that
is possible when given access to completely unquantized measurements! In particular, under appropriate
conditions, O(rd) measurements are sufficient to accurately recover M .

1.4 Applications

The problem of 1-bit matrix completion arises in nearly every application that has been proposed for
“unquantized” matrix completion. To name a few:

• Recommender systems: As mentioned above, collaborative filtering systems often involve dis-
cretized recommendations [17]. In many cases, each observation will consist simply of a “thumbs up”
or “thumbs down” thus delivering only 1 bit of information (consider for example rating music on
Pandora, the relevance of advertisements on Hulu, or posts on Reddit or MathOverflow). Such cases
are a natural application for 1-bit matrix completion.

• Analysis of survey data: Another potential application for matrix completion is to analyze incom-
plete survey data. Such data is almost always heavily quantized since people are generally not able
to distinguish between more than 7 ± 2 categories [34]. 1-bit matrix completion provides a method
for analyzing incomplete (or potentially even complete) survey designs containing simple yes/no or
agree/disagree questions.

• Distance matrix recovery and multidimensional scaling: Yet another common motivation
for matrix completion is to localize nodes in a sensor network from the observation of just a few
inter-node distances [3, 44, 45]. This is essentially a special case of multidimensional scaling (MDS)
from incomplete data [4]. In general, work in the area assumes real-valued measurements. However,
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in the sensor network example (as well as many other MDS scenarios), the measurements may be
very coarse and might only indicate whether the nodes are within or outside of some communication
range. While there is some existing work on MDS using binary data [18] and MDS using incomplete
observations with other kinds of non-metric data [46], 1-bit matrix completion promises to provide a
principled and unifying approach to such problems.

• Quantum state tomography: Low-rank matrix recovery from incomplete observations also has
applications to quantum state tomography [20]. In this scenario, mixed quantum states are rep-
resented as Hermitian matrices with nuclear norm equal to 1. When the state is nearly pure, the
matrix can be well approximated by a low-rank matrix and, in particular, fits the model given in
Section 2.2 up to a rescaling. Furthermore, Pauli-operator-based measurements give probabilistic
binary outputs. However, these are based on the inner products with the Pauli-matrices, and thus
of a slightly different flavor than the measurements considered in this paper. Nevertheless, while we
do not address this scenario directly, our theory of 1-bit matrix completion could easily be adapted
to quantum state tomography.

1.5 Notation

We now provide a brief summary of some of the key notation used in this paper. We use [d] to denote the
set of integers {1, . . . , d}. We use capital boldface to denote a matrix (e.g., M) and standard text to denote
its entries (e.g., Mi,j). Similarly, we let 0 denote the matrix of all-zeros and 1 the matrix of all-ones. We

let ‖M‖ denote the operator norm of M , ‖M‖F =
√∑

i,j M
2
i,j denote the Frobenius norm of M , ‖M‖∗

denote the nuclear or Schatten-1 norm of M (the sum of the singular values), and ‖M‖∞ = maxi,j |Mi,j |
denote the entry-wise infinity-norm of M . We will use the Hellinger distance, which, for two scalars
p, q ∈ [0, 1], is given by

d2H(p, q) := (
√
p−√

q)2 + (
√

1− p−
√

1− q)2.

This gives a standard notion of distance between two binary probability distributions. We also allow the
Hellinger distance to act on matrices via the average Hellinger distance over their entries: for matrices
P ,Q ∈ [0, 1]d1×d2 , we define

d2H(P ,Q) =
1

d1d2

∑

i,j

d2H(Pi,j , Qi,j).

Finally, for an event E ,1[E] is the indicator function for that event, i.e., 1[E] is 1 if E occurs and 0 otherwise.

1.6 Organization of the paper

We proceed in Section 2 by describing the 1-bit matrix completion problem in greater detail. In Section 3 we
state our main results. Specifically, we propose a pair of convex programs for the 1-bit matrix completion
problem and establish upper bounds on the accuracy with which these can recover the matrix M and
the distribution of the observations Y . We also establish lower bounds, showing that our upper bounds
are nearly optimal. The proofs of these results are given in Section 4. Section 5 concludes with a brief
discussion.

2 The 1-bit matrix completion problem

2.1 Observation model

We now introduce the more general observation model that we study in this paper. Given a matrix
M ∈ R

d1×d2 , a subset of indices Ω ⊂ [d1]× [d2], and a differentiable function f : R → [0, 1], we observe

Yi,j =

{
+1 with probability f(Mi,j),

−1 with probability 1− f(Mi,j)
for (i, j) ∈ Ω. (2)
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We will leave f general for now and discuss a few common choices just below. As has been important in
previous work on matrix completion, we assume that Ω is chosen at random with E |Ω| = m. Specifically,
we assume that Ω follows a binomial model in which each entry (i, j) ∈ [d1] × [d2] is included in Ω with
probability m

d1d2
, independently.

Before discussing some particular choices for f , we first note that while the observation model described
in (2) may appear on the surface to be somewhat different from the setup in (1), they are actually equivalent
if f behaves likes a cumulative distribution function. Specifically, for the model in (1), if Z has i.i.d. entries,
then by setting f(x) := P (Z1,1 ≥ −x), the model in (1) reduces to that in (2). Similarly, for any choice of
f(x) in (2), if we define Z as having i.i.d. entries drawn from a distribution whose cumulative distribution
function is given by FZ(x) = P (z ≤ x) = 1 − f(−x), then (2) reduces to (1). Of course, in any given
situation one of these observation models may seem more or less natural than the other—for example, (1)
may seem more appropriate when M is viewed as a latent variable which we might be interested in
estimating, while (2) may make more sense when M is viewed as just a parameter of a distribution.
Ultimately, however, the two models are equivalent.

We now consider two natural choices for f (or equivalently, for Z):

Example 1 (Logistic regression/Logistic noise). The logistic regression model, which is common in statis-
tics, is captured by (2) with f(x) = ex

1+ex and by (1) with Zi,j i.i.d. according to the standard logistic
distribution.

Example 2 (Probit regression/Gaussian noise). The probit regression model is captured by (2) by setting
f(x) = 1 − Φ(−x/σ) = Φ(x/σ) where Φ is the cumulative distribution function of a standard Gaussian
and by (1) with Zi,j i.i.d. according to a mean-zero Gaussian distribution with variance σ2.

2.2 Approximately low-rank matrices

The majority of the literature on matrix completion assumes that the first r singular values of M are
nonzero and the remainder are exactly zero. However, in many applications the singular values instead
exhibit only a gradual decay towards zero. Thus, in this paper we allow a relaxation of the assumption
that M has rank exactly r. Instead, we assume that ‖M‖∗ ≤ α

√
rd1d2, where α is a parameter left to be

determined, but which will often be of constant order. In other words, the singular values of M belong to
a scaled ℓ1 ball. In compressed sensing, belonging to an ℓp ball with p ∈ (0, 1] is a common relaxation of
exact sparsity; in matrix completion, the nuclear-norm ball (or Schatten-1 ball) plays an analogous role.

The particular choice of scaling, α
√
rd1d2, arises from the following considerations. Suppose that each

entry of M is bounded in magnitude by α and that rank(M ) ≤ r. Then

‖M‖∗ ≤
√
r ‖M‖F ≤

√
rd1d2 ‖M‖∞ ≤ α

√
rd1d2.

Thus, the assumption that ‖M‖∗ ≤ α
√
rd1d2 is a relaxation of the conditions that rank(M ) ≤ r and

‖M‖∞ ≤ α. The condition that ‖M‖∞ ≤ α essentially means that the probability of seeing a +1 or
−1 does not depend on the dimension. It is also a way of enforcing that M should not be too “spiky”;
as discussed above this is an important assumption in order to make the recovery of M well-posed (e.g.,
see [36]).

3 Main results

We now state our main results. We will have two goals—the first is to accurately recover M itself, and
the second is to accurately recover the distribution of Y given by f(M).1

1Strictly speaking, f(M) ∈ [0, 1]d1×d2 is simply a matrix of scalars, but these scalars implicitly define the distribution of
Y , so we will sometimes abuse notation slightly and refer to f(M) as the distribution of Y .
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3.1 Convex programming

In order to approximate eitherM or f(M), we will maximize the log-likelihood function of the optimization
variable X given our observations subject to a set of convex constraints. In our case, the log-likelihood
function is given by

FΩ,Y (X) :=
∑

(i,j)∈Ω

(
1[Yi,j=1] log(f(Xi,j)) + 1[Yi,j=−1] log(1− f(Xi,j))

)
.

To recover M , we will use the solution to the following program:

M̂ = argmax
X

FΩ,Y (X) subject to ‖X‖∗ ≤ α
√

rd1d2 and ‖X‖∞ ≤ α. (3)

To recover the distribution f(M), we need not enforce the infinity-norm constraint, and will use the
following simpler program:

M̂ = argmax
X

FΩ,Y (X) subject to ‖X‖∗ ≤ α
√

rd1d2 (4)

In many cases, FΩ,Y (X) is a concave function and thus the above programs are convex. This can be
easily checked in the case of the logistic model and can also be verified in the case of the probit model
(e.g., see [48]).

3.2 Recovery of the matrix

We now state our main result concerning the recovery of the matrix M . As discussed in Section 1.3 we
place a “non-spikiness” condition on M to make recovery possible; we enforce this with an infinity-norm
constraint. Further, some assumptions must be made on f for recovery of M to be feasible. We define
two quantities Lα and βα which control the “steepness” and “flatness” of f , respectively:

Lα := sup
|x|≤α

|f ′(x)|
f(x)(1− f(x))

and βα := sup
|x|≤α

f(x)(1− f(x))

(f ′(x))2
. (5)

In this paper we will restrict our attention to f such that Lα and βα are well-defined. In particular, we
assume that f and f ′ are non-zero in [−α,α]. This assumption is fairly mild—for example, it includes the
logistic and probit models (as we will see below in Remark 1). The quantity Lα appears only in our upper
bounds, but it is generally well behaved. The quantity βα appears both in our upper and lower bounds.
Intuitively, it controls the “flatness” of f in the interval [−α,α]—the flatter f is, the larger βα is. It is
clear that some dependence on βα is necessary. Indeed, if f is perfectly flat, then the magnitudes of the
entries of M cannot be recovered, as seen in the noiseless case discussed in Section 1.3. Of course, when α
is a fixed constant and f is a fixed function, both Lα and βα are bounded by fixed constants independent
of the dimension.

Theorem 1. Assume that ‖M‖∗ ≤ α
√
d1d2r and ‖M‖∞ ≤ α. Suppose that Ω is chosen at random

following the binomial model of Section 2.1 with E |Ω| = m. Suppose that Y is generated as in (2). Let

Lα and βα be as in (5). Consider the solution M̂ to (3). Then with probability at least 1− C1/(d1 + d2),

1

d1d2
‖M̂ −M‖2F ≤ Cα

√
r(d1 + d2)

m

√
1 +

(d1 + d2) log(d1d2)

m

with Cα := C2αLαβα. If m ≥ (d1 + d2) log(d1d2) then this simplifies to

1

d1d2
‖M̂ −M‖2F ≤

√
2Cα

√
r(d1 + d2)

m
. (6)

Above, C1 and C2 are absolute constants.
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Remark 1 (Recovery in the logistic and probit models). The logistic model satisfies the hypotheses of

Theorem 1 with βα = (1+eα)2

eα ≈ eα and Lα = 1. The probit model has

βα ≤ c1σ
2e

α2

2σ2 and Lα ≤ c2

α
σ + 1

σ

where we can take c1 = π and c2 = 8. In particular, in the probit model the bound in (6) reduces to

1

d1d2
‖M̂ −M‖2F ≤ C

(α
σ
+ 1
)
exp

(
α2

2σ2

)
σα

√
r(d1 + d2)

m
. (7)

Hence, when σ < α, increasing the size of the noise leads to significantly improved error bounds—this is
not an artifact of the proof. We will see in Section 3.4 that the exponential dependence on α in the logistic
model (and on α/σ in the probit model) is intrinsic to the problem. Intuitively we should expect this
since for such models, as ‖M‖∞ grows large, we essentially revert to the noiseless setting where estimation
of M is impossible. Furthermore, in Section 3.4 we will also see that when α (or α/σ) is bounded by a
constant, the error bound (6) is optimal up to a constant factor. Fortunately, in many applications, one
would expect α to be small, and in particular to have little, if any, dependence on the dimension. This
ensures that each measurement will always have a non-vanishing probability of returning 1 as well as a
non-vanishing probability of returning −1.

Finally, note that if M is exactly rank r and satisfies ‖M‖∞ ≤ α, then as discussed in Section 2.2, M
will automatically satisfy the assumptions of Theorem 1. Furthermore, note that the theorem also holds
if Ω = [d1]× [d2], i.e., if we sample each entry exactly once or observe a complete realization of Y . Even
in this context, the ability to recover M is somewhat surprising.

3.3 Recovery of the distribution

In many situations, we might not be interested in the underlying matrix M , but rather in determining
the distribution of the unknown entries of Y . For example, in recommender systems, a natural question
would be to determine the likelihood that a user would enjoy a particular unrated item.

Surprisingly, this distribution may be accurately recovered without any restriction on the infinity-norm
of M . This may be unexpected to those familiar with the matrix completion literature in which “non-
spikiness” constraints seem to be unavoidable. In fact, we will show in Section 3.4 that the bound in
Theorem 2 is near-optimal; further, we will show that even under the added constraint that ‖M‖∞ ≤ α,
it would be impossible to estimate f(M) significantly more accurately.

Theorem 2. Assume that ‖M‖∗ ≤ α
√
d1d2r. Suppose that Ω is chosen at random following the binomial

model of Section 2.1 with E |Ω| = m. Suppose that Y is generated as in (2), and let L = limα→∞ Lα. Let

M̂ be the solution to (4). Then, with probability at least 1− C1/(d1 + d2),

d2H(f(M̂), f(M )) ≤ C2αL

√
r(d1 + d2)

m

√
1 +

(d1 + d2) log(d1d2)

m
. (8)

Furthermore, as long as m ≥ (d1 + d2) log(d1d2), we have

d2H(f(M̂ ), f(M)) ≤
√
2C2αL

√
r(d1 + d2)

m
. (9)

Above, C1 and C2 are absolute constants.

While L = 1 for the logistic model, the astute reader will have noticed that for the probit model L
is unbounded—that is, Lα tends to ∞ as α → ∞. L would also be unbounded for the case where f(x)
takes values of 1 or 0 outside of some range (as would be the case in (1) if the distribution of the noise had
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compact support). Fortunately, however, we can recover a result for these cases by enforcing an infinity-
norm constraint, as described in Theorem 6 below. Moreover, for a large class of functions, f , L is indeed
bounded. For example, in the latent variable version of (1) if the entries Zi,j are at least as fat-tailed as
an exponential random variable, then L is bounded. To be more precise, suppose that f is continuously
differentiable and for simplicity assume that the distribution of Zi,j is symmetric and |f ′(x)| /(1 − f(x))
is monotonic for x sufficiently large. If P (|Zi,j| ≥ t) ≥ C exp(−ct) for all t ≥ 0, then one can show that L
is finite. This property is also essentially equivalent to the requirement that a distribution have bounded
hazard rate. As noted above, this property holds for the logistic distribution, but also for many other
common distributions, including the Laplacian, student’s t, Cauchy, and others.

3.4 Room for improvement?

We now discuss the extent to which Theorems 1 and 2 are optimal. We give three theorems, all proved
using information theoretic methods, which show that these results are nearly tight, even when some of
our assumptions are relaxed. Theorem 3 gives a lower bound to nearly match the upper bound on the
error in recovering M derived in Theorem 1. Theorem 4 compares our upper bounds to those available
without discretization and shows that very little is lost when discretizing to a single bit. Finally, Theorem
5 gives a lower bound matching, up to a constant factor, the upper bound on the error in recovering the
distribution f(M) given in Theorem 2. Theorem 5 also shows that Theorem 2 does not suffer by dropping
the canonical “spikiness” constraint.

Our lower bounds require a few assumptions, so before we delve into the bounds themselves, we briefly
argue that these assumptions are rather innocuous. First, without loss of generality (since we can always
adjust f to account for rescaling M), we assume that α ≥ 1. Next, we require that the parameters be
sufficiently large so that

α2rmax{d1, d2} ≥ C0 (10)

for an absolute constant C0. Note that we could replace this with a simpler, but still mild, condition that
d1 > C0. Finally, we also require that r ≥ c where c is either 1 or 4 and that r ≤ O(min{d1, d2}/α2),
where O(·) hides parameters (which may differ in each Theorem) that we make explicit below. This last
assumption simply means that we are in the situation where r is significantly smaller than d1 and d2, i.e.,
the matrix is of approximately low rank.

In the following, let

K =
{
M : ‖M‖∗ ≤ α

√
rd1d2, ‖M‖∞ ≤ α

}
(11)

denote the set of matrices whose recovery is guaranteed by Theorem 1.

3.4.1 Recovery from 1-bit measurements

Theorem 3. Fix α, r, d1, and d2 to be such that r ≥ 4 and (10) holds. Let βα be defined as in (5), and
suppose that f ′(x) is decreasing for x > 0. Let Ω be any subset of [d1]× [d2] with cardinality m, and let Y
be as in (2). Consider any algorithm which, for any M ∈ K, takes as input Yi,j for (i, j) ∈ Ω and returns

M̂ . Then, there exists M ∈ K such that with probability at least 3/4,

1

d1d2
‖M − M̂‖2F ≥ min

{
C1, C2α

√
β 3

4
α

√
rmax{d1, d2}

m

}
(12)

as long as the right-hand side of (12) exceeds rα2/min(d1, d2). Above, C1 and C2 are absolute constants.2

2Here and in the theorems below, the choice of 3/4 in the probability bound is arbitrary, and can be adjusted at the cost
of changing C0 in (10) and C1 and C2. Similarly, β 3

4
α can be replaced by β(1−ǫ)α for any ǫ > 0.
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The requirement that the right-hand side of (12) be larger than rα2/min(d1, d2) is satisfied as long as
r ≤ O(min{d1, d2}/α2). In particular, it is satisfied whenever

r ≤ C3
min(1, β0) ·min(d1, d2)

α2

for a fixed constant C3. Note also that in the latent variable model in (1), f ′(x) is simply the probability
density of Zi,j . Thus, the requirement that f ′(x) be decreasing is simply asking the probability density to
have decreasing tails. One can easily check that this is satisfied for the logistic and probit models.

Note that if α is bounded by a constant and f is fixed (in which case βα and βα′ are bounded by a
constant), then the lower bound of Theorem 3 matches the upper bound given in (6) up to a constant.
When α is not treated as a constant, the bounds differ by a factor of

√
βα. In the logistic model βα ≈ eα

and so this amounts to the difference between eα/2 and eα. The probit model has a similar change in the
constant of the exponent.

3.4.2 Recovery from unquantized measurements

Next we show that, surprisingly, very little is lost by discretizing to a single bit. In Theorem 4, we consider
an “unquantized” version of the latent variable model in (1) with Gaussian noise. That is, let Z be a
matrix of i.i.d. Gaussian random variables, and suppose the noisy entries Mi,j +Zi,j are observed directly,
without discretization. In this setting, we give a lower bound that still nearly matches the upper bound
given in Theorem 1, up to the βα term.

Theorem 4. Fix α, r, d1, and d2 to be such that r ≥ 1 and (10) holds. Let Ω be any subset of [d1] × [d2]
with cardinality m, and let Z be a d1 × d2 matrix with i.i.d. Gaussian entries with variance σ2. Consider
any algorithm which, for any M ∈ K, takes as input Yi,j = Mi,j + Zi,j for (i, j) ∈ Ω and returns M̂ .
Then, there exists M ∈ K such that with probability at least 3/4,

1

d1d2
‖M − M̂‖2F ≥ min

{
C1, C2ασ

√
rmax{d1, d2}

m

}
(13)

as long as the right-hand side of (13) exceeds rα2/min(d1, d2). Above, C1 and C2 are absolute constants.

The requirement that the right-hand side of (13) be larger than rα2/min(d1, d2) is satisfied whenever

r ≤ C3
min(1, σ2)min(d1, d2)

α2

for a fixed constant C3.
Following Remark 1, the lower bound given in (13) matches the upper bound proven in Theorem 1 for

the solution to (4) up to a constant, as long as α/σ is bounded by a constant. In other words:

When the signal-to-noise ratio is constant, almost nothing is lost by quantizing to a single bit.

Perhaps it is not particularly surprising that 1-bit quantization induces little loss of information in the
regime where the noise is comparable to the underlying quantity we wish to estimate—however, what
is somewhat of a surprise is that the simple convex program in (4) can successfully recover all of the
information contained in these 1-bit measurements.

Before proceeding, we also briefly note that our Theorem 4 is somewhat similar to Theorem 3 in [36].
The authors in [36] consider slightly different sets K: these sets are more restrictive in the sense that it
is required that α ≥ √

32 log n and less restrictive because the nuclear-norm constraint may be replaced
by a general Schatten-p norm constraint. It was important for us to allow α = O(1) in order to compare
with our upper bounds due to the exponential dependence of βα on α in Theorem 1 for the probit model.
This led to some new challenges in the proof. Finally, it is also noteworthy that our statements hold for
arbitrary sets Ω, while the argument in [36] is only valid for a random choice of Ω.
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3.4.3 Recovery of the distribution from 1-bit measurements

To conclude we address the optimality of Theorem 2. We show that under mild conditions on f , any
algorithm that recovers the distribution f(M) must yield an estimate whose Hellinger distance deviates
from the true distribution by an amount proportional to α

√
rd1d2/m, matching the upper bound of (9)

up to a constant. Notice that the lower bound holds even if the algorithm is promised that ‖M‖∞ ≤ α,
which the upper bound did not require.

Theorem 5. Fix α, r, d1, and d2 to be such that r ≥ 4 and (10) holds. Let L1 be defined as in (5), and
suppose that f ′(x) ≥ c and c′ ≤ f(x) ≤ 1 − c′ for x ∈ [−1, 1], for some constants c, c′ > 0. Let Ω be
any subset of [d1] × [d2] with cardinality m, and let Y be as in (2). Consider any algorithm which, for

any M ∈ K, takes as input Yi,j for (i, j) ∈ Ω and returns M̂ . Then, there exists M ∈ K such that with
probability at least 3/4,

d2H(f(M ), f(M̂)) ≥ min

{
C1, C2

α

L1

√
rmax{d1, d2}

m

}
(14)

as long as the right-hand side of (14) exceeds rα2/min(d1, d2). Above, C1 and C2 are constants that depend
on c, c′.

The requirement that the right-hand side of (14) be larger than rα2/min(d1, d2) is satisfied whenever

r ≤ C3 min

(
1,

1

L2
1

)
min(d1, d2)

α2

for a constant C3 that depends only on c, c′. Note also that the condition that f and f ′ be well-behaved
in the interval [−1, 1] is satisfied for the logistic model with c = 1/4 and c′ = 1

1+e ≤ 0.269. Similarly, we
may take c = 0.242 and c′ = 0.159 in the probit model.

4 Proofs of the main results

In this section we provide the proofs of the main theorems presented in Section 3. To begin, we first define
some additional notation that we will need for the proofs. For two probability distributions P and Q on a
finite set A, D(P‖Q) will denote the Kullback-Leibler (KL) divergence,

D(P‖Q) =
∑

x∈A

P(x) log

(P(x)

Q(x)

)
,

where P(x) denotes the probability of the outcome x under the distribution P. We will abuse this notation
slightly by overloading it in two ways. First, for scalar inputs p, q ∈ [0, 1], we will set

D(p‖q) = p log

(
p

q

)
+ (1− p) log

(
1− p

1− q

)
.

Second, for two matrices P ,Q ∈ [0, 1]d1×d2 , we define

D(P ‖Q) =
1

d1d2

∑

i,j

D(Pi,j‖Qi,j).

We first prove Theorem 2. Theorem 1 will then follow from an approximation argument. Finally, our lower
bounds will be proved in Section 4.3 using information theoretic arguments.
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4.1 Proof of Theorem 2

We will actually prove a slightly more general statement, which will be helpful in the proof of Theorem 1.
We will assume that ‖M‖∞ ≤ γ, and we will modify the program (4) to enforce ‖X‖∞ ≤ γ. That is, we
will consider the program

M̂ = argmax
X

FΩ,Y (X) subject to ‖X‖∗ ≤ α
√

rd1d2 and ‖X‖∞ ≤ γ. (15)

We will then send γ → ∞ to recover the statement of Theorem 2. Formally, we prove the following theorem.

Theorem 6. Assume that ‖M‖∗ ≤ α
√
rd1d2 and ‖M‖∞ ≤ γ. Suppose that Ω is chosen at random

following the binomial model of Section 2.1 and satisfying E |Ω| = m. Suppose that Y is generated as in (2),

and let Lγ be as in (5). Let M̂ be the solution to (15). Then, with probability at least 1− C1/(d1 + d2),

d2H(f(M̂), f(M )) ≤ C2Lγα

√
r(d1 + d2)

m

√
1 +

(d1 + d2) log(d1d2)

m
. (16)

Above, C1 and C2 are absolute constants.

The key to proving Theorem 6 will be to establish the following concentration inequality.

Lemma 1. Let G ⊂ R
d1×d2 be

G =
{
X ∈ R

d1×d2 : ‖X‖∗ ≤ α
√

rd1d2

}

for some r ≤ min{d1, d2} and α ≥ 0. Then

P

(
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)| ≥ C0αLγ

√
r
√

m(d1 + d2) + d1d2 log(d1d2)

)
≤ C1

d1 + d2
, (17)

where C0 and C1 are absolute constants and the probability and the expectation are both over the choice of
Ω and the draw of Y .

We will prove this lemma below, but first we show how it implies Theorem 6. To begin, notice that for
any choice of X ,

E [FΩ,Y (X)− FΩ,Y (M )] =
m

d1d2

∑

i,j

(
f(Mi,j) log

(
f(Xi,j)

f(Mi,j)

)
+ (1− f(Mi,j)) log

(
1− f(Xi,j)

1− f(Mi,j)

))

= −mD(f(M)‖f(X)),

where the expectation is over both Ω and Y . Next, note that by assumption M ∈ G. Moreover, from the
definition of M̂ we also have that M̂ ∈ G and FΩ,Y (M̂ ) ≥ FΩ,Y (M ). Thus, we can write

0 ≤ FΩ,Y (M̂ )− FΩ,Y (M )

= FΩ,Y (M̂ ) + EFΩ,Y (M̂)− EFΩ,Y (M̂ ) + EFΩ,Y (M)− EFΩ,Y (M )− FΩ,Y (M )

≤ E

[
FΩ,Y (M̂ )− FΩ,Y (M)

]
+ |FΩ,Y (M̂)− EFΩ,Y (M̂ )|+ |FΩ,Y (M )− EFΩ,Y (M)|

≤ −mD(f(M)‖f(M̂ )) + 2 sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)| .

Applying Lemma 1, we obtain that with probability at least 1− C1/(d1 + d2), we have

0 ≤ −mD(f(M)‖f(M̂ )) + 2C0αLγ

√
r
√
m(d1 + d2) + d1d2 log(d1d2)

11



In this case, by rearranging and applying the fact that
√
d1d2 ≤ d1 + d2, we obtain

D(f(M)‖f(M̂ )) ≤ 2C0αLγ

√
r(d1 + d2)

m

√
1 +

(d1 + d2) log(d1d2)

m
(18)

Finally, we note that the KL divergence can easily be bounded below by the Hellinger distance:

d2H(p, q) ≤ D(p‖q).

This is a simple consequence of Jensen’s inequality combined with the fact that 1 − x ≤ − log x. Thus,
from (18) we obtain

d2H(f(M ), f(M̂)) ≤ 2C0αLγ

√
r(d1 + d2)

m

√
1 +

(d1 + d2) log(d1d2)

m
,

which establishes Theorem 6. Theorem 2 then follows by taking the limit as γ → ∞.

Proof of Lemma 1. We begin by noting that for any h > 0, by using Markov’s inequality we have that

P

(
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)| ≥ C0αLγ

√
r
√

m(d1 + d2) + d1d2 log(d1d2)

)

= P

(
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)|h ≥
(
C0αLγ

√
r
√

m(d1 + d2) + d1d2 log(d1d2)
)h)

≤ E
[
supX∈G |FΩ,Y (X)− EFΩ,Y (X)|h

]
(
C0αLγ

√
r
√

m(d1 + d2) + d1d2 log(d1d2)
)h . (19)

The bound in (17) will follow by combining this with an upper bound on E
[
supX∈G |FΩ,Y (X)− EFΩ,Y (X)|h

]

and setting h = log(d1 + d2). Towards this end, note that we can write the definition of FΩ,Y as

FΩ,Y (X) =
∑

i,j

(
1[(i,j)∈Ω]

(
1[Yi,j=1] log(f(Xi,j)) + 1[Yi,j=−1] log(1− f(Xi,j))

))
.

By a symmetrization argument (Lemma 6.3 in [31]),

E

[
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)|h
]

≤ 2h E


 sup
X∈G

∣∣∣∣∣∣
∑

i,j

εi,j1[(i,j)∈Ω]

(
1[Yi,j=1] log(f(Xi,j)) + 1[Yi,j=−1] log(1− f(Xi,j))

)
∣∣∣∣∣∣

h

 ,

where the εi,j are i.i.d. Rademacher random variables and the expectation in the upper bound is with
respect to both Ω and Y as well as with respect to the εi,j. To bound the latter term, we apply a

contraction principle (Theorem 4.12 in [31]). By the definition of Lγ and the assumption that ‖M̂‖∞ ≤ γ,
both log(f(x))/Lγ and log(1 − f(x))/Lγ are contractions. Thus, up to a factor of 2, the expected value
of the supremum can only decrease when log(f(Xi,j)) is replaced by Xi,j and similarly log(1− f(Xi,j)) by
−Xi,j. Thus we obtain

E

[
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)|h
]
≤ 2h(2Lγ)

h
E


 sup
X∈G

∣∣∣∣∣∣
∑

i,j

εi,j1[(i,j)∈Ω]

(
1[Yi,j=1]Xi,j − 1[Yi,j=−1]Xi,j

)
∣∣∣∣∣∣

h



= (4Lγ)
h
E

[
sup
X∈G

|〈∆Ω ◦E ◦ Y ,X〉|h
]
, (20)
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where E denotes the matrix with entries given by εi,j, ∆Ω denotes the indicator matrix for Ω (so that
[∆Ω]i,j = 1 if (i, j) ∈ Ω and 0 otherwise), and ◦ denotes the Hadamard product. Using the facts that the
distribution of E ◦ Y is the same as the distribution of E and that |〈A,B〉| ≤ ‖A‖‖B‖∗, we have that

E

[
sup
X∈G

|〈∆Ω ◦E ◦ Y ,X〉|h
]
= E

[
sup
X∈G

|〈E ◦∆Ω,X〉|h
]

≤ E

[
sup
X∈G

‖E ◦∆Ω‖h ‖X‖h∗
]

=
(
α
√

d1d2r
)h

E

[
‖E ◦∆Ω‖h

]
, (21)

To bound E
[
‖E ◦∆Ω‖h

]
, observe that E ◦ ∆Ω is a matrix with i.i.d. zero mean entries and thus by

Theorem 1.1 of [43],

E

[
‖E ◦∆Ω‖h

]
≤ C


E


 max
1≤i≤d1




d2∑

j=1

∆i,j




h
2


+ E


 max
1≤j≤d2

(
d1∑

i=1

∆i,j

)h
2







for some constant C. This in turn implies that

(
E

[
‖E ◦∆Ω‖h

]) 1
h ≤ C

1
h





E


 max
1≤i≤d1




d2∑

j=1

∆i,j




h
2







1
h

+


E


 max
1≤j≤d2

(
d1∑

i=1

∆i,j

)h
2







1
h


 . (22)

We first focus on the row sum
∑d2

j=1∆i,j for a particular choice of i. Using Bernstein’s inequality, for all
t > 0 we have

P



∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp

( −t2/2

m/d1 + t/3

)
.

In particular, if we set t ≥ 6m/d1, then for each i we have

P



∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣
> t


 ≤ 2 exp(−t) = 2P (Wi > t) , (23)

where W1, . . . ,Wd1 are i.i.d. exponential random variables.
Below we use the fact that for any positive random variable q we can write E q =

∫∞
0 P (q ≥ t), allowing

us to bound


E


 max
1≤i≤d1




d2∑

j=1

∆i,j




h
2







1
h

≤
√

m

d1
+


E


 max
1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣

h
2







1
h

≤
√

m

d1
+


E


 max
1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣

h






1
2h

=

√
m

d1
+



∫ ∞

0
P


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣

h

≥ t


 dt




1
2h
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≤
√

m

d1
+



(
6m

d1

)h

+

∫ ∞

(6m/d1)h
P


 max

1≤i≤d1

∣∣∣∣∣∣

d2∑

j=1

(
∆i,j −

m

d1d2

)∣∣∣∣∣∣

h

≥ t


 dt




1
2h

≤
√

m

d1
+

((
6m

d1

)h

+ 2

∫ ∞

(6m/d1)h
P

(
max

1≤i≤d1
W h

i ≥ t

)
dt

) 1
2h

≤
√

m

d1
+

((
6m

d1

)h

+ 2E

[
( max
1≤i≤d1

Wi)
h

]) 1
2h

.

Above, we have used the triangle inequality in the first line, followed by Jensen’s inequality in the second
line. In the fifth line, (23), along with independence, allows us to introduce maxi Wi. By standard
computations for exponential random variables,

E

[
max

1≤i≤d1
W h

i

]
≤ E

[∣∣∣∣ max
1≤i≤d1

Wi − log d1

∣∣∣∣
h
]
+ logh(d1)

≤ 2h! + logh(d1).

Thus, we have


E


 max
1≤i≤d1




d2∑

j=1

∆i,j




h
2







1
h

≤
√

m

d1
+

((
6m

d1

)h

+ 2
(
logh(d1) + 2(h!)

)) 1
2h

≤ (1 +
√
6)

√
m

d1
+ 2

1
2h

(√
log d1 + 2

1
2h

√
h
)

≤ (1 +
√
6)

√
m

d1
+ (2 +

√
2)
√

log(d1 + d2),

using the choice h = log(d1 + d2) ≥ 1 in the final line.
A similar argument bounds the column sums, and thus from (22) we conclude that

(
E

[
‖E ◦∆Ω‖h

]) 1
h ≤ C

1
h

(
(1 +

√
6)

(√
m

d1
+

√
m

d2

)
+ (2 +

√
2)
√

log(d1 + d2)

)

≤ C
1
h


(1 +

√
6)



√

2m(d1 + d2)

d1d2


+ (2 +

√
2)
√

log(d1 + d2)




≤ C
1
h 2(1 +

√
6)

√
m(d1 + d2) + d1d2 log(d1 + d2)

d1d2
,

where the second and third inequalities both follow from Jensen’s inequality. Combining this with (20)
and (21), we obtain

(
E

[
sup
X∈G

|FΩ,Y (X)− EFΩ,Y (X)|h
]) 1

h

≤ C
1
h 8(1 +

√
6)αLγ

√
r
√
m(d1 + d2) + d1d2 log(d1 + d2).

Plugging this into 19 we obtain that the probability in 19 is upper bounded by

C

(
8(1 +

√
6)

C0

)log(d1+d2)

≤ C

d1 + d2
,

provided that C0 ≥ 8(1 +
√
6)/e, which establishes the lemma.

14



4.2 Proof of Theorem 1

The proof of Theorem 1 follows immediately from Theorem 6 (with γ = α) combined with the following
lemma.

Lemma 2. Let f be a differentiable function and let ‖M‖∞ , ‖M̂‖∞ ≤ α. Then

d2H(f(M ), f(M̂)) ≥ inf
|ξ|≤α

(f ′(ξ))2

8f(ξ)(1 − f(ξ))

‖M − M̂‖2F
d1d2

.

Proof. For any pair of entries x = Mi,j and y = M̂i,j, write

(√
f(x)−

√
f(y)

)2
+
(√

1− f(x)−
√

1− f(y)
)2

≥ 1

2

((√
f(x)−

√
f(y)

)
−
(√

f(x)−
√

f(y)
))2

.

Using Taylor’s theorem to expand the quantity inside the square, for some ξ between x and y,

(√
f(x)−

√
f(y)

)2
+
(√

1− f(x)−
√

1− f(y)
)2

≥ 1

2

(
f ′(ξ)(y − x)

2
√

f(ξ)
+

f ′(ξ)(y − x)

2
√

1− f(ξ)

)2

≥ 1

8
(f ′(ξ))2(y − x)2

(
1

f(ξ)
+

1

1− f(ξ)

)

=
(f ′(ξ))2

8f(ξ)(1− f(ξ))
(y − x)2.

The lemma follows by summing across all entries and dividing by d1d2.

4.3 Lower bounds

The proofs of our lower bounds each follow a similar outline, using classical information theoretic techniques
that have also proven useful in the context of compressed sensing [8, 39]. At a high level, our argument
involves first showing the existence of a set X of matrices, so that for each X(i) 6= X(j) ∈ X , ‖X(i)−X(j)‖F
is large. We will imagine obtaining measurements of a randomly chosen matrix in X and then running
an arbitrary recovery procedure. If the recovered matrix is sufficiently close to the original matrix, then
we could determine which element of X was chosen. However, Fano’s inequality will imply that the
probability of correctly identifying the chosen matrix is small, which will induce a lower bound on how
close the recovered matrix can be to the original matrix.

In the proofs of Theorems 3, 4, and 5, we will assume without loss of generality that d2 ≥ d1. Before
providing these proofs, however, we first consider the construction of the set X .

4.3.1 Packing set construction

Lemma 3. Let K be defined as in (11), let γ ≤ 1 be such that r
γ2 is an integer, and suppose that r

γ2 ≤ d1.
There is a set X ⊂ K with

|X | ≥ exp

(
rd2
16γ2

)

with the following properties:

1. For all X ∈ X , each entry has |Xi,j | = αγ.

2. For all X(i),X(j) ∈ X , i 6= j,

‖X(i) −X(j)‖2F >
α2γ2d1d2

2
.
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Proof. We use a probabilistic argument. The set X will by constructed by drawing

|X | =
⌈
exp

(
rd2
16γ2

)⌉
(24)

matrices X independently from the following distribution. Set B = r
γ2 . The matrix will consist of blocks

of dimensions B × d2, stacked on top of each other. The entries of the first block (that is, Xi,j for
(i, j) ∈ [B] × [d2]) will be i.i.d. symmetric random variables with values ±αγ. Then X will be filled out
by copying this block as many times as will fit. That is,

Xi,j := Xi′,j where i′ = i (modB) + 1.

Now we argue that with nonzero probability, this set will have all the desired properties. For X ∈ X ,

‖X‖∞ = αγ ≤ α.

Further, because rankX ≤ B,

‖X‖∗ ≤
√
B ‖X‖F =

√
r

γ2

√
d1d2αγ = α

√
rd1d2.

Thus X ⊂ K, and all that remains is to show that X satisfies requirement 2.
For X,W drawn from the above distribution,

‖X −W ‖2F =
∑

i,j

(Xi,j −Wi,j)
2

≥
⌊
d1
B

⌋ ∑

i∈[B]

∑

j∈[d2]

(Xi,j −Wi,j)
2

= 4α2γ2
⌊
d1
B

⌋ ∑

i∈[B]

∑

j∈[d2]

δi,j

=: 4α2γ2
⌊
d1
B

⌋
Z(X,W ).

where the δi,j are independent 0/1 Bernoulli random variables with mean 1/2. By Hoeffding’s inequality
and a union bound,

P

(
min

X 6=W∈X
Z(X,W ) ≤ d2B

4

)
≤
(|X |

2

)
exp(−Bd2/8).

One can check that for X of the size given in (24), the right-hand side of the above tail bound is less than
1, and thus the event that Z(X,W ) > d2B/4 for all X 6= W ∈ X has non-zero probability. In this event,

‖X −W ‖2F > α2γ2
⌊
d1
B

⌋
d2B ≥ α2γ2d1d2

2
,

where the second inequality uses the assumption that d1 ≥ B and the fact that ⌊x⌋ ≥ x/2 for all x ≥ 1.
Hence, requirement (2) holds with nonzero probability and thus the desired set exists.

4.3.2 Proof of Theorem 3

Before we prove Theorem 3, we will need the following lemma about the KL divergence.

Lemma 4. Suppose that x, y ∈ (0, 1). Then

D(x‖y) ≤ (x− y)2

y(1− y)
.
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Proof. Without loss of generality, we may assume that x < y. Indeed, D(1 − x‖1 − y) = D(x‖y), and
either x < y or 1− x < 1− y. Let z = y − x. A simple computation shows that

∂

∂z
D(x‖x+ z) =

z

(x+ z)(1 − x− z)
.

Thus, by Taylor’s theorem, there is some ξ ∈ [0, z] so that

D(x‖y) = D(x‖x) + z

(
ξ

(x+ ξ)(1− x− ξ)

)
.

Since the right hand side is increasing in ξ, we may replace ξ with z and conclude

D(x‖y) ≤ (y − x)2

y(1− y)
,

as desired.

Now, for the proof of Theorem 3, we choose ǫ so that

ǫ2 = min

{
1

1024
, C2α

√
β3α/4

√
rd2
m

}
, (25)

where C2 is an absolute constant to be specified later. We will next use Lemma 3 to construct a set X ,
choosing γ so that r

γ2 is an integer and

4
√
2ǫ

α
≤ γ ≤ 8ǫ

α
.

We can make such a choice because ǫ ≤ 1/32 and r ≥ 4. We verify that such a choice for γ satisfies the
requirements of Lemma 3. Indeed, since ǫ ≤ 1/32 and α ≥ 1 we have γ ≤ 1/4 < 1. Further, we assume in
the theorem that the right-hand side of (25) is larger than Crα2/d1 which implies that r/γ2 ≤ d1 for an
appropriate choice of C.

Let X ′
α/2,γ be the set whose existence is guaranteed by Lemma 3 with this choice of γ, and with α/2

instead of α. We will construct X by setting

X :=
{
X ′ + α

(
1− γ

2

)
1 : X ′ ∈ X ′

α/2,γ

}

Note that X has the same size as X ′
α/2,γ , i.e., |X | satisfies (24). X also has the same bound on pairwise

distances

‖X(i) −X(j)‖2F ≥ α2γ2d1d2
8

≥ 4d1d2ǫ
2, (26)

and every entry of X ∈ X has
|Xi,j | ∈ {α,α′},

where α′ = (1− γ)α. Further, since for X ′ ∈ X ′
α/2,γ ,

∥∥X ′ + α(1 − γ/2)1
∥∥
∗
≤
∥∥X ′

∥∥
∗
+ α(1− γ/2)

√
d1d2 ≤ α

√
rd1d2

for r ≥ 4 as in the theorem statement.
Now suppose for the sake of a contradiction that there exists an algorithm such that for any X ∈ K,

when given access to the measurements Y Ω, returns an X̂ such that

1

d1d2
‖X − X̂‖2F < ǫ2 (27)

17



with probability at least 1/4. We will imagine running this algorithm on a matrix X chosen uniformly at
random from X . Let

X∗ = argmin
X

(i)∈X

‖X(i) − X̂‖2F .

It is easy to check that if (27) holds, then X∗ = X . Indeed, for any X ′ ∈ X with X ′ 6= X , from (27)
and (26) we have that

‖X ′ − X̂‖F = ‖X ′ −X +X − X̂‖F ≥ ‖X ′ −X‖F − ‖X − X̂‖F > 2
√

d1d2ǫ−
√

d1d2ǫ =
√
d1d2ǫ.

At the same time, since X ∈ X is a candidate for X∗, we have that

‖X∗ − X̂‖F ≤ ‖X − X̂‖F ≤
√

d1d2ǫ.

Thus, if (27) holds, then ‖X∗ − X̂‖F < ‖X ′ − X̂‖F for any X ′ ∈ X with X ′ 6= X, and hence we must
have X∗ = X . By assumption, (27) holds with probability at least 1/4, and thus

P (X 6= X∗) ≤ 3

4
. (28)

We will show that this probability must in fact be large, generating our contradiction.
By a variant of Fano’s inequality

P (X 6= X∗) ≥ 1−
max

X
(k) 6=X

(ℓ) D(Y Ω|X(k) ‖ Y Ω|X(ℓ)) + 1

log |X | . (29)

Because each entry of Y is independent,3

D := D(Y Ω|X(k) ‖ Y Ω|X(ℓ)) =
∑

(i,j)∈Ω

D(Yi,j|X(k)
i,j ‖ Yi,j|X(ℓ)

i,j ).

Each term in the sum is either 0, D(α‖α′), or D(α′‖α). By Lemma 4, all of these are bounded above by

D(Yi,j|X(k)
i,j ‖ Yi,j|X(ℓ)

i,j ) ≤
(f(α)− f(α′))2

f(α′)(1− f(α′))
,

and so, from the intermediate value theorem, for some ξ ∈ [α′, α],

D ≤ m
(f(α)− f(α′))2

f(α′)(1 − f(α′))
≤ m

(f ′(ξ))2(α− α′)2

f(α′)(1− f(α′))
.

Using the assumption that f ′(x) is decreasing for x > 0 and the definition of α′ = (1− γ)α, we have

D ≤ m(γα)2

βα′

≤ 64mǫ2

βα′

.

Then from (29) and (28),

1

4
≤ 1− P (X 6= X∗) ≤ D + 1

log |X | ≤ 16γ2




64mǫ2

βα′
+ 1

rd2


 ≤ 1024ǫ2




64mǫ2

βα′
+ 1

α2rd2


 . (30)

We now show that for appropriate values of C0 and C2, this leads to a contradiction. First suppose that
64mǫ2 ≤ βα′ . In this case we have

1

4
≤ 1024ǫ2

2

α2rd2
,

3Note that here, to be consistent with the literature we are referencing regarding Fano’s inequality, D is defined slightly
differently than elsewhere in the paper where we would weight D by 1/d1d2.
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which together with (25) implies that α2rd2 ≤ 8. If we set C0 > 8 in (10), then this would lead to a
contradiction. Thus, suppose now that 64mǫ2 > βα′ . Then (30) simplifies to

1

4
<

1024 · 128 ·mǫ4

βα′α2rd2
.

Thus

ǫ2 >
α
√
βα′

512
√
2

√
rd2
m

.

Note β is increasing as a function of α and α′ ≥ 3α/4 (since γ ≤ 1/4). Thus, βα′ ≥ β3α/4. Setting

C2 ≤ 1/512
√
2 in (25) now leads to a contradiction, and hence (27) must fail to hold with probability at

least 3/4, which proves the theorem.

4.3.3 Proof of Theorem 4

Choose ǫ so that

ǫ2 = min

{
1

16
, C2ασ

√
rd2
m

}
(31)

for an absolute constant C2 to be determined later. As in the proof of Theorem 3, we will consider running
such an algorithm on a random element in a set X ⊂ K. For our set X , we will use the set whose existence
is guaranteed by Lemma 3. We will set γ so that r

γ2 is an integer and

2
√
2ǫ

α
≤ γ ≤ 4ǫ

α
.

This is possible since ǫ ≤ 1/4 and r, α ≥ 1. One can check that γ satisfies the assumptions of Lemma 3.
Now suppose that X ∈ X is chosen uniformly at random, and let Y = (X +Z)|Ω as in the statement

of the theorem. Let X̂ be any estimate of X obtained from Y Ω. We begin by bounding the mutual
information I(X; X̂) in the following lemma (which is analogous to [12, Equation 9.16]).

Lemma 5.

I(X ; X̂) ≤ m

2
log
(
σ2 +

(
α2γ2

))
.

Proof. We begin by noting that

I(XΩ;Y ) = h(XΩ +ZΩ)− h(XΩ +ZΩ|XΩ) = h(XΩ +ZΩ)− h(ZΩ),

where h denotes the differential entropy. Let ξ denote a matrix of i.i.d. ±1 entries. Then

h(XΩ ◦ ξ +ZΩ) = h((XΩ +ZΩ) ◦ ξ) ≥ h((XΩ +ZΩ) ◦ ξ | ξ) = h(XΩ +ZΩ),

and so, letting X̃ = X ◦ ξ,
I(XΩ;Y ) ≤ h(X̃Ω +ZΩ)− h(ZΩ).

Treating X̃Ω +ZΩ as a random vector of length m, we compute the covariance matrix as

Σ := E

[
vec(X̃Ω +ZΩ) vec(X̃Ω +ZΩ)

T
]
=
(
σ2 + (αγ)2

)
Im.

By Theorem 8.6.5 in [12],

h(X̃Ω + Z̃Ω) ≤
1

2
log ((2πe)m det(Σ)) =

1

2
log
(
(2πe)m(σ2 + (αγ)2)m

)
.
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We have that h(ZΩ) =
1
2

(
(2πe)mσ2m

)
, and so

I(XΩ;Y ) ≤ m

2
log

(
1 +

(αγ
σ

)2)
.

Then the data processing inequality implies

I(X; X̂) ≤ m

2
log

(
1 +

(αγ
σ

)2)
,

which establishes the lemma.

We now proceed by using essentially the same argument as in the proof of Theorem 3. Specifically,
we suppose for the sake of a contradiction that there exists an algorithm such that for any X ∈ K, when
given access to the measurements Y Ω, returns an X̂ such that

1

d1d2
‖X − X̂‖2F < ǫ2 (32)

with probability at least 1/4. As before, if we set

X∗ = argmin
X

(i)∈X

‖X(i) − X̂‖2F

then we can show that if (32) holds, then X∗ = X. Thus, if (32) holds with probability at least 1/4 then

P (X 6= X∗) ≤ 3

4
. (33)

However, by Fano’s inequality, the probability that X 6= X̂ is at least

P

(
X 6= X̂

)
≥ H(X|X̂)− 1

log(|X |) =
H(X)− I(X; X̂)− 1

log(|X |) ≥ 1− I(X ; X̂) + 1

log |X |

Plugging in |X | from Lemma 3 and I(X ; X̂) from Lemma 5, and using the inequality log(1 + z) ≤ z, we
obtain

P

(
X 6= X̂

)
≥ 1− 16γ2

rd2

(
m

2

(αγ
σ

)2
+ 1

)
.

Combining this with (33) and using the fact that γ ≤ 4ǫ/α, we obtain

1

4
≤ 256ǫ2

α2rd2

(
8m

(
ǫ2

σ2

)
+ 1

)
.

We now argue, as before, that this leads to a contradiction. Specifically, if 8mǫ2/σ2 ≤ 1, then together
with (31) this implies that α2rd2 ≤ 128. If we set C0 > 128 in (10), then this would lead to a contradiction.
Thus, suppose now that 8mǫ2/σ2 > 1, in which case we have

ǫ2 >
ασ

128

√
rd2
m

.

Thus, setting C2 ≤ 1/128 in (31) leads to a contradiction, and hence (32) must fail to hold with probability
at least 3/4, which proves the theorem.
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4.3.4 Proof of Theorem 5

The proof of Theorem 5 also mirrors the proof of Theorem 3. The main difference is the observation that
the set constructed in Lemma 3 also works with the Hellinger distance. We begin as before by choosing ǫ
so that

ǫ2 = min

{
c

16
, C2

α

L1

√
rd2
m

}
, (34)

where C2 is an absolute constant to be determined. Set γ to be an integer so that

2
√
2
ǫ

αc
≤ γ ≤ 4ǫ

αc
.

This is possible since by assumption α ≥ 1 and ǫ ≤ c
4 . One can check that γ satisfies the assumptions of

Lemma 3.
As in the proof of Theorem 3, we will consider running such an algorithm on a random element in a

set X ⊂ K. For our set X , we will use the set whose existence is guaranteed by Lemma 3. Note that since
the Hellinger distance is bounded below by the Frobenius norm, we have that for all X(i) 6= X(j) ∈ X ,

d2H(f(X(i))− f(X(j))) ≥ ‖f(X(i))− f(X(j))‖2F ≥ c2‖X(i) −X(j)‖2F >
c2

2
α2γ2d1d2 ≥ 4d1d2ǫ

2.

Now suppose for the sake of a contradiction that there exists an algorithm such that for any X ∈ K, when
given access to the measurements Y Ω, returns an X̂ such that

d2H(f(X), f(X̂)) < ǫ2 (35)

with probability at least 1/4. If we set

X∗ = argmin
X

(i)∈X

d2H(f(X(i))− f(X̂))

then we can show that if (35) holds, then X∗ = X. Thus, if (35) holds with probability at least 1/4 then

P (X 6= X∗) ≤ 3

4
. (36)

However, we may again apply Fano’s inequality as in (29). Using Lemma 4 we have

D(Yi,j|X(k)
i,j ‖ Yi,j|X(ℓ)

i,j ) ≤
(f(αγ) − f(−αγ))2

f(αγ)(1− f(αγ))
≤ 4(f ′(ξ))2α2γ2

f(αγ)(1− f(αγ))
≤

4f2(ξ)L2
αγα

2γ2

f(αγ)(1 − f(αγ))
,

for some |ξ| ≤ αγ, where Lαγ is as in (5). By the assumption that c′ < |f(x)| < 1− c′ for |x| < 1, and that

αγ ≤ α

(
4ǫ

αc

)
≤ 4ǫ

c
≤ 1,

we obtain

D(Yi,j|X(k)
i,j ‖ Yi,j|X(ℓ)

i,j ) ≤
4c′L2

1α
2γ2

1− c′
≤ C ′L2

1ǫ
2,

where C ′ = 64c′/(c2(1− c′)). Thus, from (29), we have

1

4
≤ C ′mL2

1ǫ
2 + 1

log |X | ≤ 256

c2
ǫ2
(
C ′mL2

1ǫ
2 + 1

α2rd2

)
.

We now argue once again that this leads to a contradiction. Specifically, if C ′mL2
1ǫ

2 ≤ 1, then together
with (34) this implies that α2rd2 ≤ 128/c. If we set C0 > 128/c in (10), then this would lead to a
contradiction. Thus, suppose now that C ′mL2

1ǫ
2 > 1, in which case we have

ǫ2 >
c

32
√
2C ′

α

L1

√
rd2
m

.

Thus setting C2 ≤ c/32
√
2C ′ in (34) leads to a contradiction, and hence (35) must fail to hold with

probability at least 3/4, which proves the theorem.
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5 Discussion

Many of the applications of matrix completion consider discrete data, sometimes consisting of binary
measurements. This paper addresses such situations. However, matrix completion from noiseless binary
measurements is extremely ill-posed, even if one collects a binary measurement from all of the matrix en-
tries. Fortunately, when there are some stochastic variations (noise) in the problem, matrix reconstruction
becomes well-posed. We demonstrate that the unknown matrix can be accurately and efficiently recovered
from binary measurements. When the infinity norm of the unknown matrix is bounded by a constant, we
show that our error bounds are tight to within a constant and even match what is possible for undiscretized
data. We also show that the binary probability distribution can be reconstructed over the entire matrix
without any assumption on the infinity-norm, and we give a matching lower bound (up to a constant).

Our theory considers approximately low-rank matrices—in particular, we assume that the singular val-
ues belong to a scaled Schatten-1 ball. It would be interesting to see whether more accurate reconstruction
could be achieved under the assumption that the unknown matrix has precisely r nonzero singular values.
It would also be interesting to study whether our ideas can be extended to deal with measurements that
are quantized to more than 2 (but still a small number) of different values.
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