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Abstract

We describe the underlying probabilistic interpretation of alpha and beta divergences. We first show that beta

divergences are inherently tied to Tweedie distributions,a particular type of exponential family, known as exponential

dispersion models. Starting from the variance function of aTweedie model, we outline how to get alpha and beta

divergences as special cases of Csiszár’sf and Bregman divergences. This result directly generalizesthe well-known

relationship between the Gaussian distribution and least squares estimation to Tweedie models and beta divergence

minimization.

Index Terms

Tweedie distributions, variance functions, alpha/beta divergences, deviance.

I. I NTRODUCTION

In fitting a model to data, the error between the model prediction and observed data can be quantified by a

divergence function. The sum-of-squares (Euclidean) costis an example of such a divergence. It is well know, that

minimizing the sum-of-squares error is equivalent to assuming a Gaussian distributed error term and leads to a

least squares algorithm. In the recent years, researchers have started using alternative divergences in applications

such as KL (Kullback-Leibler) [1] or Itakura-Saito (IS) [2]divergences. It turns out, that these divergences are

special cases of a more general family of divergences known as β-divergence [3]. A different but related family are

theα-divergences. Iterative divergence minimization algorithms exist for both families [3], however it is often not

clear which divergence should be used in an application and it is not clear what the equivalent noise distribution

is. In this context, our goal is to survey and investigate results about the relationship betweenα andβ-divergences

and their statistical interpretation as a noise model. We believe that it is valuable to have a framework where

different divergence functions can be handled without having to invent optimization algorithms from scratch, an

aspect of central importance in practical work. We finish thepaper by illustrating how the best divergence function

can be chosen by maximum likelihood. Moreover, having a deeper understanding of the statistical interpretation of

divergence functions could further facilitate model assessment, comparison and improvement.

The motivation of this technical report is i) to present the central role of thevariance functionsin unifying α

andβ-divergences and Tweedie distributions, ii) to provide a compact and simple derivation that unify many results
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scattered in the statistics and information theory literature aboutα andβ-divergences related to Tweedie models.

The main observations and contributions of this report are:

1) We show that the dual cumulant function of Tweedie distributions generatesα andβ-divergences.

2) We simplify and unify the connection betweenα andβ-divergences, related scale-invariance properties, the

fact that KL divergence is the unique divergence that is bothan α and aβ-divergence and conditions for

symmetricα-divergences.

3) Theβ-divergence is shown to be equivalent to statistical unit deviance, the scaled log-likelihood ratio of a

full model to a parametric model.

4) The density of dispersion models is reformulated usingβ-divergences.

Probability models and divergences are inherently relatedconcepts as shown by various studies; Banerjee etal. prove

the bijection between Bregman divergences and exponentialfamily distributions [4]. Cichocki etal. mention the

connection between Tweedie distributions andβ-divergences in their seminal book [3], but very briefly in a single

paragraph. Our paper carries their observation one step further by establishing the mathematical formalization

based on the the concept ofvariance functions [5]. A variance function defines the relationship between the

mean and variance of a distribution. For example, the special choice of no functional relationship between the

mean and variance (as in linear regression) implies Gaussianity. We show that a power relationship is sufficient to

deriveβ-divergences from Bregman divergences andα-divergences fromf -divergences. This result shows us that

using aβ-divergence in a model is actually equivalent to assuming a Tweedie density. Forα-divergences, such a

direct interpretation is less transparent; but we illustrate a very direct connection toβ-divergences and the implicit

invariance assumptions about data whenα-divergences are used.

II. BACKGROUND

In this paper, we only consider separable divergences

D(x, µ) =

n∑

i

d(xi, µi). (1)

To make the notation simpler we drop the sum from the equations and simply work with scalar divergencesd. In

particular,df (x, µ) denotesf -divergence betweenx andµ generated by the convex functionf . Similarly dφ(·, ·)

is the Bregman divergence generated by convex functionφ, whereasdα(·, ·) anddβ(·, ·), simply α/β, will denote

alpha (α) and beta (β) divergences as special cases. Provided that type of divergence (alpha or beta) is clear from

the context, we may replace alpha, beta symbols with the index parameterp such as indp(·, ·). Log-likelihood is

denoted byLx(µ). In this paper, we assume only univariate case and consider only scalar valued functions whereas

the work can easily be extended to multivariate case.

A. Exponential Dispersion Models and Tweedie Distributions

Exponential Dispersion Models(EDM) are a linear exponential family defined as [6]

p(x|θ, ϕ) = h(x, ϕ) exp
{
ϕ−1 (θx − ψ(θ))

}
, (2)
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where θ is the canonical (natural) parameter, ϕ is the dispersion parameterand ψ is the cumulant generating

function ensuring normalization. Here,h(x, ϕ) is thebase measureand is independent of the canonical parameter.

The mean parameter (also calledexpectation parameter) is denoted byµ and is tied to the canonical parameterθ

with the differential equations

µ = µ(θ) =
dψ(θ)

dθ
, θ = θ(µ) =

dφ(µ)

dµ
, (3)

whereφ(µ) is the conjugate dual ofψ(θ) just as the canonical parameterθ is conjugate dual of expectation parameter

µ. The relationship betweenθ andµ is more direct and given as [6]

dθ

dµ
= v(µ)−1. (4)

Here v(µ) is the variance function[6]–[8], and is related to the variance of the distribution by the dispersion

parameter

V ar(x) = ϕv(µ). (5)

As a special case of EDMs,Tweedie distributionsTwp(µ, ϕ) specify the variance function as

v(µ) = µp (6)

that fully characterizes the dispersion model. The variance function is related to thep’th power of the mean, therefore

it is called apower variance function(PVF) [6], [8]. Here, the special choices ofp = 0, 1, 2, 3 lead to well known

distributions as Gaussian, Poisson, gamma and inverse Gaussian. For1 < p < 2, they can be represented as the

Poisson sum of gamma distributions so-calledcompound Poisson distribution. Indeed, a distribution exist for all

real values ofp except for0 < p < 1 [6]. History of Tweedie distributions goes back to Tweedie’s unnoticed work

in 1947 [9]. Nelder and Wedderburn, in 1972, published a seminal paper ongeneralized linear models(GLMs)

[10], however, without any reference to Tweedie’s work where the error distribution formulation was essentially

identical to Tweedie’s formulation. In 1982, Morris used the termnatural exponential models(NEF) [11], and 1987

Jorgensen [6] coined the name Tweedie distribution.

B. Bregman Divergences and Csiszár f -Divergences

As detailed in the introduction, in many applications it is more convenient to think of minimization of the

divergence between data and model prediction. Yet, probability models and divergences are inherently related

concepts [4]. Two general families of divergences areBregman divergencesand Csisźar f -Divergences. Bregman

divergences are introduced by Bregman in 1967. By definition, for any real valued differentiable convex function

φ the Bregman divergence is given by [4]

dφ(x, µ) = φ(x) − φ(µ) − (x− µ)φ′(µ). (7)

It is equal to tail of first-order Taylor expansion ofφ(x) at µ. Major class of the cost functions can be generated

by the Bregman divergence with appropriate functionsφ as [4]
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dφ(x, µ) =







1
2 (x− µ)2 EU φ(x) = 1

2x
2

x log x
µ − x+ µ KL φ(x) = x log x

x
µ − log x

µ − 1 IS φ(x) = − logx

These functions may look arbitrary at a first sight but in the next section we will show that they follow directly

from the power variance function assumption.

The f-divergencesare introduced independently by Csiszár [12], Morimoto and Ali & Silvey during 1960s. They

generalize Kullback-Liebler’s KL divergences dated back to 1954. By definition, for any real valued convex function

f providing thatf(1) = 0, thef -divergence is given by [12]

df (x, µ) = µf(
x

µ
). (8)

The Bregman andf -divergences are non-negative quantities asdf (x, µ) ≥ 0. It is zero iff x = µ, i.e. df (x, x) = 0.

Note that the divergences are not distances since they provide neither symmetry nor triangular inequality in general.

III. T WEEDIE DISTRIBUTIONS ANDALPHA/BETA DIVERGENCES

In this section, we will derive the link between the Tweedie distributions andα/β-divergences. We will show that

the power variance function assumption is enough to derive both divergences; i.e., if we minimize theβ-divergence

we are assuming a noise density with a power variance function and if we minimize theα-divergence, we assume

a certain invariance.

A. Derivation of Conjugate (Dual) of Cumulant Function

Starting from the power variance assumption, we first obtainthe canonical parameterθ by solving the differential

equationdθdµ = µ−p [8]
∫

dθ =

∫

µ−pdµ ⇒ θ = θ(µ) =
µ1−p

1− p
+m (9)

with m is the integration constant. Then we find dual cumulant function φ(·) by integrating (3) and usingθ(µ) in

(9)

φ(µ) =

∫

θ(µ)dµ =

∫
(

µ1−p

1− p
+m

)

dµ (10)

=
µ2−p

(1− p)(2 − p)
+mµ+ d. (11)

The f -divergence requiresφ(1) = 0, and for normalization we setφ′(1) = 0. Using these two constraints, the

constants of integration are determined as

m = −1/(1− p) d = 1/(2− p) (12)
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so that the dual cumulant function becomes forp 6= 1, 2

φ(µ) =
µ2−p

(1− p)(2− p)
−

µ

1− p
+

1

2− p
(13)

as the limit cases forp = 1, 2 are found by l’Hôpital’s rule

φ(µ) =







1
2µ

2 − µ+ 1
2 p = 0

µ logµ− µ+ 1 p = 1

− logµ+ µ− 1 p = 2

The same functionφ is used directly by [3], [13] to deriveβ-divergences without justification. Some others [14]

obtain it under the namestandardized convex formof the functions by the Bregman divergence asφ(µ) = dφ(µ, 1).

The functionφ is indeed an entropy function [3] and can generate a divergence. Similar to [15], the Shannon’s

entropy is

H [θ] = −

∫

p(x|θ, ϕ) log p(x|θ, ϕ) dµ(x) (14)

= −ϕ−1
(

θµ− ψ(θ)
)

− E [log h(x, ϕ)] (15)

H [µ] = −ϕ−1φ(µ) − E [log h(x, ϕ)] (16)

noting thatφ(·) is thebest entropy estimatewhere we maximizeθµ− ψ(θ) to getH [µ] [16].

In the next section, by using the convex functionφ, we obtainβ-divergence from the Bregman divergence and

α-divergence from thef -divergence.

B. Beta Divergence

Theβ-divergence is proposed by [17], [18] and is related to thedensity power divergence[19] whereas Cichocki

et al. [2], [3] show its relation to Bregman divergence. Indeed, byuse of the dual cumulant functionφ, Bregman

divergence is specialized to theβ-divergence

dβ(x, µ) =
x2−p

(1 − p)(2− p)
−
xµ1−p

1− p
+
µ2−p

2− p
(17)

with special cases

dβ(x, µ) =







1
2x

2 − xµ+ 1
2µ

2 p = 0 (EU)

x log x
µ − x+ µ p = 1 (KL)

− log x
µ + x

µ − 1 p = 2 (IS).

(18)

Note that we can ignore the initial conditions by settingm = d = 0 in (13), as for two convex functionsφ1, φ2 such

that φ1(x) = φ2(x) + ax+ b for some realsa, b, dφ1
(x, µ) = dφ2

(x, µ) [20]; the same divergence is generated if
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the functionφ is tilted or translated. The class of distributions inducedby the cumulant functionψ are independent

of the constantsm andd [6]. After inverting (9) for solving the parameterµ

µ = µ(θ) = {(1− p)(θ −m)}
1/(1−p)

, (19)

we obtain the cumulant function for the Tweedie distributions as

ψ(θ) =
{(1− p)(θ −m)}

(2−p)/(1−p)

2− p
+ d. (20)

Indeed, we can re-parametrize the canonical parameter fromθ to θ1 = θ−m that changesψ(θ1) = ψ(θ+m) and

useψ(θ) andθ rather thanψ(θ1) andθ1 [8].

Remark 1. The cumulant function parametrized byµ is obtained as

ψ(θ(µ)) = (2− p)−1(µ2−p − 1), (21)

after plugging inm = −1/(1− p) andd = −1/(2− p) (solveψ(0) = 0 for d). Likewise, the canonical parameter

is θ(µ) = (µ1−p − 1)/(1− p) with the limit logµ at p = 1.

C. Alpha Divergence

Theα-divergence is a special case of thef -divergence [21] obtained by usingφ in (13) as

dα(x, µ) =
x2−pµp−1

(1− p)(2 − p)
−

x

1− p
+

µ

2− p
, (22)

with the special cases

dα(x, µ) =







1
2
(x−µ)2

µ for p = 0

x log x
µ − x+ µ for p = 1

µ log µ
x + x− µ for p = 2

2
(
x1/2 − µ1/2

)2
for p = 3/2.

Note the symmetry forp = 1 andp = 2. Here,p = 3/2 is for theHellinger distance, which is a metric satisfying

symmetry and the triangular inequality. It is a general rule, in fact, thatα-divergences indexed byp1, p2 enjoy dual

relation as illustrated by Figure 1

dp1(x, µ) = dp2(µ, x) ⇔ p1 + p2 = 3. (23)

The proof is based on the symmetricf -divergencedf (x, µ) = df∗(µ, x), wheref∗ is Csisźar dualf∗(µ) = µf(1/µ)

[20], [22]. Note thatd3/2(x, µ) = d3/2(µ, x), which proves the symmetry for the Hellinger distance.

Remark 2. Interestingly settingp = 2 − q in PVF as v(µ) = µ2−q results to more commonly used form of

α/β-divergences in the literature [2], [3], [22]:

dα(x, µ) = (q(q − 1))−1 {xqµ1−q − qx+ (q − 1)µ
}
, (24)

dβ(x, µ) = (q(q − 1))
−1 {

xq − (1− q)µq − qxµq−1
}
. (25)
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0.1

0.15

0.2

0.25

0.3

0.35

dp1
(x, µ)dp2

(µ, x)

p1 = 4.176p2 = −1.176 3/2

d
α

Figure 1. Illustration of the symmetric alpha divergence. Wheneverdp1 (x, µ) = dp2 (µ, x) (here both are 0.3) the corresponding index values

sum to 3, i.e.p1 + p2 = 3 that consequently at the point of intersection between two curves isp1 = p2 = 3/2.

D. Connection between Alpha and Beta Divergences

The β-divergence can be written as

dβ(x, µ) = µ1−px
2−pµp−1 − x(2 − p) + µ(1 − p)

(1− p)(2− p)
, (26)

where the fraction can be identified asα-divergence. Thus the relation between two divergences is

dβ(x, µ) = µ1−pdα(x, µ), (27)

whereas [22], [23] give other connections. Note that equality holds for either ifp = 1 or µ = 1

µ1−p = 1 ⇒ p = 1 or µ = 1. (28)

The solution forp = 1, we obtain the KL divergence, the only divergence common toα/β-divergences [3]. For

µ = 1 the divergences are trivially reduced to dual cumulant

dβ(x, 1) = dα(x, 1) = φ(x). (29)

Here,µ = 1 is related to standard uniform distribution [22] with the entropy of zero that can be regarded as origin.

Also note the relation [24]

dα(x, µ) = µφ(
x

µ
) = µdβ(

x

µ
, 1). (30)

The findings are summarized by Table I that presents the linksbetweenα–type [14] andβ–type divergences.
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Table I

DIVERGENCES, DISTRIBUTIONS AND ENTROPIES INDEXED BYp. THE SECOND COLUMN IS RATIO OFβ-AND α-DIVERGENCES. NOTE ALSO

SYMMETRY CONDITION IS p1 + p2 = 3 FOR TWOα-DIVERGENCES.

p µ1−p Distribution Beta Alpha Entropy

0 µ Gaussian EU Pearson (1
2
X

2) L2

1 1 Poisson KL KL Shannon
3

2
µ−

1

2 Comp. Poisson − Hellinger dist. −

2 µ−1 Gamma IS Reversed KL Burg

3 µ−2 Inv. Gaussian − Rev. Pearson −

E. Scale Transformation

Tweeide modelsTwp(µ, ϕ) are the only dispersion models that provide scale transformation property [5] as

∀c ∈ R

c Twp(µ, ϕ) = Twp(cµ, c
2−pϕ), (31)

whose variance functionv(µ) = µp is scale-invariant sincev(cµ) = cpv(µ). This has corresponding result in

divergence side thatα/β-divergences are scale invariant [2], [22]

dβ(cx, cµ) = c2−pdβ(x, µ), (32)

dα(cx, cµ) = cdα(x, µ). (33)

IV. STATISTICAL V IEW OF BETA DIVERGENCE

A. Density Formulation for Dispersion Models

Density of EDMs can be re-formulated based onβ-divergence by using the dual form ofβ-divergence [4]

dβ(x, µ)− φ(x) = −xθ + ψ(θ) (34)

that by plugging it in the EDM density, we obtain

p(x;µ, ϕ) = h(x, ϕ) exp{ϕ−1(φ(x) − dβ(x, µ))} (35)

= g(x, ϕ) exp{−ϕ−1dβ(x, µ)}. (36)

Here the base measuresh(·, ·) andg(·, ·) are related as

g(x, ϕ) = h(x, ϕ) exp{ϕ−1φ(x)}. (37)

Example 1. The Gaussian distribution with dispersionϕ = σ2 can be expressed as a EDM [5]

p(x;µ, σ2) = (2πσ2)−
1

2 exp
−x2

2σ2
︸ ︷︷ ︸

h(x,ϕ)

exp

{

1

σ2

(

x µ
︸︷︷︸

θ(µ)

−
µ2

2
︸︷︷︸

ψ(θ(µ))

}
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the usual form is already expressed as aβ-divergence

p(x;µ, σ2) = (2πσ2)−
1

2

︸ ︷︷ ︸

g(x,ϕ)

exp

{

−
1

σ2
dβ(x, µ)

}

Example 2. For the gamma distribution with shape parametera and inverse scale parameterb , the density is

p(x; a, b) =
xa−1

Γ(a)
exp{−bx+ a log b} (38)

The mean and variance of a gamma distribution are given asµ = a/b andV ar(x) = a/b2. Hence, the dispersion

becomesϕ = 1/a and we havea = 1/ϕ and b = 1/(µϕ). Then the density in terms of mean and dispersion

parameters are given as

p(x;µ, a) =
xa−1

Γ(a)
aa

︸ ︷︷ ︸

h(x,ϕ)

exp{a(−
1

µ
︸︷︷︸

θ(µ)

x− logµ)
︸ ︷︷ ︸

ψ(θ(µ))

} (39)

or equivalently after adding and subtractinglog x+ 1 from the exponent we obtain

p(x;µ, a) =
x−1aa exp(−a)

Γ(a)
︸ ︷︷ ︸

g(x,ϕ)

exp{−adβ(x, µ)} (40)

Example 3. For the Poisson distribution with dispersionϕ = 1, the density is given as [5]

p(x;µ) =
1

x!
︸︷︷︸

h(x)

exp{x logµ
︸︷︷︸

θ(µ)

− µ
︸︷︷︸

ψ(θ(µ))

} (41)

that after adding and subtractingx log x−x in the exponent we obtain equivalent beta representation ofthe density

p(x;µ) =
xx expx

x!
︸ ︷︷ ︸

g(x)

exp{−dβ(x, µ)} (42)

This form of density formulation differs from so-calledstandard form of dispersion models[5] only the factor

1/2 in the exponent, that is expressed as

p(x;µ, ϕ) = g(x, ϕ) exp{−
1

2
ϕ−1dν(x, µ)}, (43)

wheredν is unit deviance(’unit’ implies that deviance is scaled by dispersion). Thedevianceis a statistical term to

qualify the fit of the statistics to the model [10] and is equalto 2 times of thelog-likelihood ratioof the full model

to parametrized model. Log-likelihood of the full model is the maximum achievable likelihood and independent of

the parameterµ. Henceβ-divergence is linked to the unit deviance and the log-likelihood ratio for given dispersion

ϕ as

dβ(x, µ) =
1

2
dν(x, µ) = ϕ

{

Lx(x) − Lx(µ)
}

. (44)
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B. Parameter Optimization

The last equation (44) has an immediate result for optimization of expectation parameterµ for given p andϕ

∂dβ(x, µ)

∂µ
= −ϕ

∂Lx(µ)

∂µ
= −

(x− µ)

µp
(45)

that the opposite sign implies minimizingβ-divergence is equal to the maximizing log-likelihood. Whereas the

optimization wrtµ is trivial, the likelihood equation derived by simply plugging θ(µ) andψ(θµ)) in log-density of

EDM

Lx(µ, ϕ, p) = ϕ

{
xµ1−p

1− p
−
µ2−p

2− p

}

+ log h(x, ϕ, p) (46)

presents difficulty for optimization ofp andϕ due to that the base measureh(x, ϕ, p) has no closed forms except

for certain values ofp as for p = 0, 1, 2, 3. For others, such asp ∈ (1, 2) for compound Poisson the functionh

is expressed as series [5]. There are a number of approximating techniques one thatsaddlepoint approximation,

that is interpreted as being half way between original density and Gaussian approximation as vanishing dispersion

ϕ→ 0 [5]. Others are Fourier inversion of cumulant generating function and direct series expansion where we refer

to [25] for the details.
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