Jul. 2011

Article ID: 1007 - 2985(2011)04 - 0015 - 11

On Brunn-Minkowski Inequality for the Quermassintegrals and Dual Quermassintegrals of L_p -Mixed Centroid Bodies *

MA Tong-yi^{1,2}, LIU Chun-yan²

(1. College of Mathematics and Statistics Science, Hexi University, Zhangye 734000, Gansu China; 2. College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China)

Abstract: The notions of new geometric body $\Gamma_{-p,i}K$ and L_p -mixed harmonic Blaschke add $k+p_L$ are defined. The Brunn-Minkowski inequalities for the quermassintegrals and dual quermassintegrals of L_p -mixed centroid body $\Gamma_{p,i}K$ and its polar body associated with L_p -mixed harmonic Blaschke add are established, and the monotonicity of operator $\Gamma_{p,i}$ and $\Gamma_{-p,i}$ is proved.

Key words: L_p -centroid body; L_p -mixed centroid body; L_p -mixed projection body; quermassintegrals; dual quermassintegrals; L_p -mixed harmonic Blaschke add

CLC number: O184

Document code: A

1 Introduction

Let K^n denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \mathbf{R}^n , K^n and K^n denote the set of convex bodies containing origin in their interiors and the set of origin-symmetric convex bodies in \mathbf{R}^n , respectively. Let S^{n-1} denote the unit sphere in \mathbf{R}^n , V(K) denote the n-dimensional volume of body K. If K is the standard unit ball B in \mathbf{R}^n , it is denoted as $\omega_n = V(B)$.

In 1997, ref. [1-2] first posed the notion of L_p -centroid body as follows: let K be the compact starshaped about the origin in \mathbb{R}^n , and let $p \geqslant 1$ be arbitrary real number, and then the L_p -centroid body $\Gamma_p K$ of K is the origin-symmetric convex body whose support function is given by

$$h_{\Gamma_p K}^p(u) = \frac{1}{c_{n,p} V(K)} \int_K |u \cdot x|^p \mathrm{d}x, \qquad (1)$$

where $u \in S^{n-1}$, and $c_{n,p} = \frac{\omega_{n,p}}{\omega_2 \omega_n \omega_{p-1}}$, $\omega_n = \pi^{\frac{n}{2}}/\Gamma(1+\frac{n}{2})$.

By using polar coordinate transformation and (1), we easily obtain

$$h_{\Gamma_{p^{K}}}^{p}(u) = \frac{1}{(n+p)c_{n,p}V(K)} \int_{S^{r-1}} |u \cdot v|^{p} \rho_{K}^{n+p}(v) dS(v).$$
 (2)

Foundation item: National Natural Science Foundation of China (10971128); Foundation of the Education Department of Gansu Province (2009B—09)

Biography: MA Tong-yi(1959 -), male, was born in Huining County, Gansu Province, professor of Hexi University; re-

^{*} Received date: 2011 - 04 - 30

In respect of the L_p -centroid body, ref. [1-3] recently made a series of studies, where many important results were proven. Recently, together with (2), ref. [4] defined a new geometric body as follows.

Let $K \subseteq \mathbf{R}^n$ be compact star-shaped about the origin $K \subseteq \mathbf{R}^n$, and let $p \geqslant 1$ and i be arbitrary real numbers, and then the L_p -mixed centroid body $\Gamma_{p,i}K$ of K is the origin-symmetric convex body whose support function is given by

$$h_{\Gamma_{p,i}K}^{p}(u) = \frac{1}{(n+p)c_{n,p}V(K)} \int_{S^{n-1}} |u \cdot v|^{p} \rho_{K}^{n+p-i}(v) dS(v), \qquad (3)$$

where $u \in S^{n-1}$.

Obviously, from definition (2) and (3), we have, if i=0, $\Gamma_{p,0}K=\Gamma_pK$.

In this paper, we will propose the notion of new geometric body $\Gamma_{-p,i}K$ and L_p -mixed harmonic Blaschke add $K+_pL$, and establish the Brunn-Minkowski inequalities for L_p -mixed centroid body $\Gamma_{p,i}K$ and its polar body, and prove the monotonicity of operator $\Gamma_{p,i}$ and $\Gamma_{-p,i}$.

2 **Preliminaries**

2. 1 Support Function, Radial Function and Polar of Convex

If $K \in K^n$, its support function $h_k := h(K, \bullet) : \mathbb{R}^n \longrightarrow (0, +\infty)$ is defined by (see ref. [5]) h(K, x) $= \max\{x \cdot y : y \in K\}, x \in \mathbb{R}^n$, where $x \cdot y$ denotes the standard inner product of x and y.

If K is a compact star-shaped (about the origin) in \mathbf{R}^n , its radial function $\rho_K := \rho(K, \bullet) : \mathbf{R}^n \setminus \{0\}$ $\rightarrow [0, +\infty)$ is defined by (see ref. [5]) $\rho(K, x) = \max\{\lambda \ge 0 : \lambda x \in K\}, x \in \mathbb{R}^n \setminus \{0\}$, when ρ_K is positive and continuous, and K is called a star body (about the origin). Let S_a^p denote the set of star bodies (about the origin) in \mathbf{R}^n . Two star bodied K and L are said to be dilates each other if $\rho_K(u)/\rho_L(u)$ is independent on $u \in S^{n-1}$.

From the definition of radial function, we know that for $\lambda > 0$, $\rho_K(u) \leq \lambda \rho_L(u)$ for any $u \in S^{n-1}$ if and only if $K \subseteq \lambda L$.

For $K \in \mathbb{K}_o^n$, the polar body K^* of K is defined by (see ref. [5])

$$K^* = \{ x \in \mathbf{R}^n : x \cdot y \leqslant 1, y \in K \}. \tag{4}$$

Obviously, we have $(K^*)^* = K$.

From the definition (4), we also know that, if $K \in \mathbb{K}_q^n$, the support and radial function of K^* and the polar body of K are defined respectively by

$$h_{K^*} = \frac{1}{\rho_K}, \rho_{K^*} = \frac{1}{h_K}.$$
 (5)

2. 2 Mean Value Integral, L_p -Mixed Mean Value Integral and L_p -Mixed Volume

For $K \in \mathbb{K}^n$, the mean value integral $W_i(K)$ $(i=0,1,\cdots,n-1)$ are defined by (see ref. [5-6])

$$W_{i}(K) = \frac{1}{n} \int_{S^{n-1}} h(K, u) dS_{i}(K, u),$$
(6)

where $S_i(K, \cdot)$ is a classical positive Borel measure on S^{n-1} .

From definition (6), we easily see that

$$W_0(K) = V(K). (7)$$

For $p \ge 1, K, L \in K_o^n$ and $\varepsilon > 0$, the Firey L_p -combination $K + p\varepsilon \cdot L \in K_o^n$ is defined by (see ref. [7]) $h(K +_{p} \varepsilon \cdot L, \cdot)^{p} = h(K, \cdot)^{p} + \varepsilon h(L, \cdot)^{p},$

where "•" in ϵ • L denotes the Firey scalar multiplication. Firey L_{ρ} -combination of convex bodies were defined and studied by Firey (see ref. [7]).

Associated with the Firey L_p -combination, ref. [7] defined L_p -mixed quermassintegrals (also called mixed p-Quermassintegrals) as follows. © 1994-2012 China Academic Journal

ic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

For $K, L \in \mathbb{K}_{o}^{n}, \epsilon > 0$ and real number $p \geqslant 1$, the L_{p} -mixed quermassintegrals $W_{p,i}(K, L)$ ($i = 0, 1, \dots, n$ —1) are defined by

$$\frac{n-i}{p}W_{p,i}(K,L) = \lim_{\varepsilon \to 0^+} \frac{W_i(K+_p\varepsilon \cdot L) - W_i(K)}{\varepsilon}.$$
 (8)

Obviously, for i=0, by (7) and (8), the L_p -mixed quermassiontegrals $W_{p,0}(K,L)$ is just the L_p -mixed volume $V_p(K,L)$, namely

$$W_{p,0}(K,L) = V_p(K,L).$$
 (9)

Furthermore, ref. [7] has shown that, for $p \ge 1$, $i = 0, 1, \dots, n-1$ and each $K \in \mathbb{K}_o^n$, there exists a positive Borel measure $S_{p,i}(K, \bullet)$ on S^{n-1} , such that the L_p -mixed quermassintegral $W_{p,i}(K, L)$ has the following integral representation:

$$W_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} h_L^p(v) \, dS_{p,i}(K,v), \qquad (10)$$

for all $K \in K_o^n$. It turns out that the measure $S_{p,i}(K, \bullet)$ ($i=0,1,\cdots,n-1$) on S^{n-1} is absolutely continuous with respect to $S_i(K, \bullet)$, and has the Radon-Nikodym derivative

$$\frac{\mathrm{d}S_{p,i}(K, \bullet)}{\mathrm{d}S_i(K, \bullet)} = h^{1-p}(K, \bullet), \tag{11}$$

where $S_i(K, \bullet)$ is a classical positive Borel measure on S^{n-1} . The case i=0, $S_{p,0}(K, \bullet)$ is just the L_p surface area measure $S_p(K, \bullet)$ of K, together with (9) and (10), then the integral representation of L_p mixed volume $V_p(K, L)$ is obtained by $V_p(K, L) = \frac{1}{n} \int_{S^{n-1}} h_L^p(v) dS_p(K, v)$.

From the definition of the L_p -mixed quermassiontegrals, it follows immediately that, for each $K \in \mathbb{K}_0^n$,

$$W_{p,i}(K,K) = W_i(K), \tag{12}$$

for all $p \geqslant 1$.

We shall require the Minkowski inequality for the L_p -mixed quermassiontegrals $W_{p,i}$ as follows: For $K, L \in \mathbb{K}_o^n$, and $p \geqslant 1, 0 \leqslant i \leqslant n$, then (see ref. [7])

$$W_{p,i}(K,L)^{n-i} \geqslant W_i(K)^{n-i-p}W_i(L)^p, \tag{13}$$

with equality if only if K and L are dilations each other.

2. 3 Dual Quermassiontegrals and L_p -Dual Mixed Quermassiontegrals

For $K \in S_o^n$ and any real number i, the dual quermassiontegrals $\widetilde{W}_i(K)$, of K are defined by (see ref. $\lceil 6-7 \rceil$)

$$\widetilde{W}_{i}(K) = \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-i}(u) \, \mathrm{d}S(u). \tag{14}$$

Obviously,

$$\widetilde{W}_{0}(K) = V(K). \tag{15}$$

For $K, L \in S_o^n$, and $\varepsilon > 0$, then for $p \geqslant 1$, the L_p -harmonic radial combination $K + \varepsilon$ • $L \in S_o^n$ is defined by (see ref. [8])

$$\rho(K+_{-p}\boldsymbol{\varepsilon} \cdot L, \cdot)^{-p} = \rho(K, \cdot)^{-p} + \boldsymbol{\varepsilon}\rho(L, \cdot)^{-p}.$$

Note that here " $\varepsilon \cdot L$ " is different from " $\varepsilon \cdot L$ " in L_p -combination.

For $K, L \in S_o^n, \varepsilon > 0, p \geqslant 1$ and real number $i \neq n$, the L_p -dual mixed combination quermassiontegrals, $\widetilde{W}_{-p,i}(K,L)$ of K and L are defined by

$$\frac{n-i}{-p}\widetilde{W}_{-p,i}(K,L) = \lim_{\varepsilon \to 0^+} \frac{\widetilde{W}_i(K +_{-p}\varepsilon \cdot L) - \widetilde{W}_i(K)}{\varepsilon}.$$
 (16)

If i = 0, using (15), we easily see that definition (16) is just definition of L_p -dual mixed volume, namely

namely
© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$\widetilde{W}_{-p,0}(K,L) = V_{-p}(K,L).$$
 17)

From this, the L_p -dual mixed quermassiontegrals is the extension of L_p -dual mixed volume.

Furthermore, from definition (16), the integral representation of the L_p -dual mixed quermassiontegrals is given by (see ref. [9]); if $K, L \in S_0^n, p \ge 1$, and real number $i \ne n$,

$$\widetilde{W}_{-p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho_K^{n+p-i}(u) \rho_L^{-p}(u) dS(u), \qquad (18)$$

where the integration is with respect to spherical Lebesgue measure on S^{n-1} .

Together with (14) and (18), for $K \in S_0^n$, $p \ge 1$, and $i \ne n$, we get

$$\widetilde{W}_{-p,i}(K,K) = \widetilde{W}_i(K). \tag{19}$$

Furthermore, ref. [9] proved the following analog of the Minkowski inequality for L_p -dual mixed quermassiontegrals: if $K, L \in S_o^n, p \ge 1$, for i < n or i > n + p,

$$\widetilde{W}_{-p,i}(K,L)^{n-i} \geqslant \widetilde{W}_i(K)^{n+p-i}\widetilde{W}_i(L)^{-p};$$
(20)

for n < i < n + p, $\widetilde{W}_{-p,i}(K,L)^{n-i} \leqslant \widetilde{W}_i(K)^{n+p-i}\widetilde{W}_i(L)^{-p}$, with equality in every inequality if and only if K and L dilate each other.

2. 4 L_p -Mixed Projection Bodies

In 2000, ref. [2] posed the notion of L_p -mixed projection body as follows.

For each $K \in K^n$ and $p \geqslant 1$, the L_p -mixed projection body $\Pi_p K$ of K is an origin-symmetric convex body whose support function is given by

$$h_{\Pi_{p}K}^{p}(u) = \frac{1}{n\omega_{n}c_{n-2,p}} \int_{S^{n-1}} |u \cdot v|^{p} dS_{p}(K,v).$$
 (21)

For all $u \in S^{n-1}$, where $u \cdot v$ denotes the standard inner product of u and $v, S_p(K, \cdot)$ is a positive Borel measure on S^{n-1} , it is called the L_p -surface area measure of K. The unusual normalization of the definition (21) is chosen so that for the unit ball B, we have $\Pi_p B = B$. In particular, for p = 1, the convex body $\Pi_1 K$ is the classical projection body ΠK of K under the normalization of the definition (11) (see ref. [2]). Regard to the studies of the L_p -projection body, we can refer to ref. [10 - 14].

Furthermore, ref. [13] shows the notion of L_p -mixed projection body as follows: for each $K \in K_o^n$, real number $p \geqslant 1$ and $i = 0, 1, \dots, n-1$, the L_p -mixed projection body $\Pi_{p,i}K$ of K is an the origin-symmetric convex body whose support function is given by

$$h_{\Pi_{p,i}K}^{p}(u) = \frac{1}{n\omega_{n}c_{n-2,p}} \int_{S^{n-1}} |u \cdot v|^{p} dS_{p,i}(K,v), \qquad (22)$$

for all $u,v \in S^{n-1}$, $S_{p,i}(K, \cdot)$ $(i=0,1,\dots,n-1)$ is a positive Borel measure on S^{n-1} . By using (21) and the case i=0 in (22), we have $\Pi_{p,0}K = \Pi_pK$.

2. 5 Convex Body $\Gamma_{-p}K$ and New Geometric Body $\Gamma_{-p,i}K$

The notion of geometric body $\Gamma_{-p}K$ is shown by in ref. [15]. If $K \in K_0^n$ and $p \ge 1$, geometric body $\Gamma_{-p}K$ is an origin-symmetric body whose radial function is defined by

$$\rho_{\Gamma_{-p}K}^{-p}(u) = \frac{1}{V(K)} \int_{S^{p-1}} |u \cdot v|^p dS_p(K, v), \qquad (23)$$

for all $u \in S^{n-1}$. Note for $p \ge 1$, the geometric body $\Gamma_{-p}K$ is an origin-symmetric body (see ref. [15]).

Together with the notion (23), we also show the notion of new geometric body $\Gamma_{-p,i}K$ as follows: if $K \in \mathbb{K}_{\circ}^{n}$ and $p \geqslant 1$, body $\Gamma_{-p,i}K$ ($i = 0, 1, \dots, n-1$) is an origin-symmetric body whose radial function is given by

$$\rho_{\Gamma_{-p,i}K}^{-p}(u) = \frac{1}{V(K)} \int_{S^{p-1}} |u \cdot v|^p dS_{p,i}(K,v), \qquad (24)$$

where $S_{p,i}(K, \cdot)$ ($i=0,1,\dots,n-1$) are Borel measure on S^{n-1} . By using (23) and the case i=0 in (24), we have $\Gamma_{-p,0}K = \Gamma_{-p}K$.

3 Brunn-Minkowski Inequality for L_p -Mixed Centroid Bodies and Their Polers

In this section, we prove the Brunn-Minkowski inequality for the quermassintegrals and dual quermassintegrals of L_p -mixed centroid bodies and their polers associated with L_p -mixed harmonic Blaschke add.

Let $K, L \in S_o^n$ and $p \geqslant 1$. For each real number $i \neq n, n+p$, we will define the new notion of L_p -mixed harmonic Blaschke add K_p^+ of K and K_p^+ . We define $\xi > 0$,

$$\xi^{\frac{p-i}{n+p-i}} = \frac{1}{n} \int_{S^{n-1}} \left[V(K)^{-1} \rho(K, u)^{n+p-i} + V(L)^{-1} \rho(L, u)^{n+p-i} \right]^{\frac{n}{n+p-i}} dS(u), \qquad (25)$$

and then the radial function of star body $K+_{p}L$ is defined by

$$\xi^{-1}\rho(K+_{p}L,\bullet)^{n+p-i} = V(K)^{-1}\rho(K,\bullet)^{n+p-i} + V(L)^{-1}\rho(L,\bullet)^{n+p-i}.$$
 (26)

Obviously, for i=0, the $K+_pL$ is just the L_p -harmonic Blaschke add $K\mp_pL$ of K and L (see ref. [17]), for i=0 and p=1, the $K+_pL$ is just harmonic add K+L of K and L.

Theorem 1 If $K, L \in S_o^n$, for $p \ge 1, j = 0, 1, \dots, n-1$ and each real number $i \ne p, n+p$,

$$W_{i}(\Gamma_{p,i}(K + L))^{\frac{p}{n-j}} \geqslant W_{i}(\Gamma_{p,i}K)^{\frac{p}{n-j}} + W_{i}(\Gamma_{p,i}L)^{\frac{p}{n-j}},$$
(27)

with equality for p=1 if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ are homothetic in (27); for p>1 if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ dilate each other in (27).

Proof From (25),(26) and polar coordinates representation of volume, we obtain that $\xi = V(K + L)$. Hence, from (26), we have

$$\frac{\rho(K+_{p}L,\bullet)^{n+p-i}}{V(K+_{p}L)} = \frac{\rho(K,\bullet)^{n+p-i}}{V(K)} + \frac{\rho(L,\bullet)^{n+p-i}}{V(L)}.$$
(28)

Using definition (3) and (28), we have

$$h_{\Gamma_{p,i}(K+pL)}^{p}(u) = \frac{1}{(n+p)c_{n,p}V(K+pL)} \int_{S^{n-1}} |u \cdot v|^{p} \rho_{(K+pL)}^{n+p-i}(v) dS(v) = h_{\Gamma_{p,i}K}^{p}(u) + h_{\Gamma_{p,i}L}^{p}(u).$$
(29)

Together with (29),(10) and (13), for each $Q \in K_o^n$, we have

$$W_{p,j}(Q,\Gamma_{p,i}(K+_{p}L)) = W_{p,j}(Q,\Gamma_{p,i}K) + W_{p,j}(Q,\Gamma_{p,i}L) \geqslant W_{j}(Q)^{\frac{n-j-p}{n-j}}(W_{j}(\Gamma_{p,i}K)^{\frac{p}{n-j}} + W_{j}(\Gamma_{p,i}L)^{\frac{p}{n-j}}),$$

with equality for p=1 if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ are homothetic; for p>1 if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ dilate each other.

Taking $Q = \Gamma_{p,i}(K + pL)$, and in view of $W_{p,i}(K,K) = W_i(K)$, we obtain the inequality (27). The proof is complete.

Taking i=0 in theorem 1, we have the following corollary.

Corollary 1 If $K, L \in S_o^n$, for $p \ge 1$ and $j = 0, 1, \dots, n-1$,

$$W_{i}(\Gamma_{b}(K + L))^{\frac{p}{n-j}} \geqslant W_{i}(\Gamma_{b}K)^{\frac{p}{n-j}} + W_{i}(\Gamma_{b}L)^{\frac{p}{n-j}}, \tag{30}$$

with equality for p=1 if and only if $\Gamma_p K$ and $\Gamma_p L$ are homothetic; for p>1 if and only if $\Gamma_p K$ and $\Gamma_p L$ are dilates each other.

From the case j=0 of inequality (30), it follows the corollary.

Corollary 2 If $K, L \in S_o^n$ and $p \ge 1, V(\Gamma_p(K + pL))^{\frac{p}{n}} \ge V(\Gamma_p K)^{\frac{p}{n}} + V(\Gamma_p L)^{\frac{p}{n}}$, with equality for p = 1 if and only if $\Gamma_p K$ and $\Gamma_p L$ are homothetic, for p > 1 if and only if $\Gamma_p K$ and $\Gamma_p L$ dilate each other.

Corollary 2 is just a result of ref. [16].

We give pole formal of inequality (27) as follows.

n+p,

$$\widetilde{W}_{j}(\Gamma_{p,i}^{*}(K+_{p}L))^{-\frac{p}{n-j}} \geqslant \widetilde{W}_{j}(\Gamma_{p,i}^{*}K)^{-\frac{p}{n-j}} + \widetilde{W}_{j}(\Gamma_{p,i}^{*}L)^{-\frac{p}{n-j}};$$

for $j \geqslant n+p$,

$$\widetilde{W}_{j}(\Gamma_{p,i}^{\star}(K+_{p}L))^{-\frac{p}{n-j}} \leqslant \widetilde{W}_{j}(\Gamma_{p,i}^{\star}K)^{-\frac{p}{n-j}} + \widetilde{W}_{j}(\Gamma_{p,i}^{\star}L)^{-\frac{p}{n-j}}.$$

In each inequality, with equality if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ dilate each other.

Proof Together with (15), (29) and (5), we obtain that

$$\widetilde{W}_{j} \left(\Gamma_{p,i}^{*}(K + {}_{p}L) \right)^{-\frac{p}{n-j}} = \left(\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}(K + {}_{p}L)}^{-(n-j)} \, \mathrm{d}S(u) \right)^{-\frac{p}{n-j}} = \left(\frac{1}{n} \int_{S^{n-1}} (h_{\Gamma_{p,i}K}^{p}(u) + h_{\Gamma_{p,i}L}^{p}(u))^{-\frac{n-j}{p}} \, \mathrm{d}S(u) \right)^{-\frac{p}{n-j}}.$$

Using the Minkowski integral inequality, we have that for i < n + p,

$$\begin{split} \widetilde{W_{j}}(\Gamma_{p,i}{}^{*}(K+_{p}L))^{-\frac{p}{n-j}} \geqslant (\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}K}^{-(n-j)} \, \mathrm{d}S(u))^{-\frac{p}{n-j}} + (\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}L}^{-(n-j)} \, \mathrm{d}S(u))^{-\frac{p}{n-j}} = \\ \widetilde{W_{j}}(\Gamma_{p,i}^{*}K)^{-\frac{p}{n-j}} + \widetilde{W_{j}}(\Gamma_{p,i}^{*}L)^{-\frac{p}{n-j}}; \end{split}$$

for $j \geqslant n + p$,

$$\begin{split} \widetilde{W_{j}}(\Gamma_{p,i}^{*}(K+_{p}L))^{-\frac{p}{n-j}} &\leqslant (\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}K}^{-(n-j)} \, \mathrm{d}S(u))^{-\frac{p}{n-j}} + (\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}L}^{-(n-j)} \, \mathrm{d}S(u))^{-\frac{p}{n-j}} = \\ \widetilde{W_{j}}(\Gamma_{p,i}^{*}K)^{-\frac{p}{n-j}} + \widetilde{W_{j}}(\Gamma_{p,j}^{*}L)^{-\frac{p}{n-j}}. \end{split}$$

By using the condition of equality of Minkowski integral inequality, we obtain that the equality is true if and only if $\Gamma_{p,i}K$ and $\Gamma_{p,i}L$ dilate each other. The proof is complete.

For i=0 in theorem 2, we have the following corollary.

Corollary 3 If $K, L \in S_o^n$, for $p \ge 1$ and each real number $j \ne n$, for i < n + p,

$$\widetilde{W}_{i}(\Gamma_{b}^{*}(k \mp_{b}L))^{-\frac{p}{n-j}} \geqslant \widetilde{W}_{i}(\Gamma_{b}^{*}K)^{-\frac{p}{n-j}} + \widetilde{W}_{i}(\Gamma_{b}^{*}L)^{-\frac{p}{n-j}}; \tag{31}$$

for $j \geqslant n + p$, $\widetilde{W}_{j}(\Gamma_{\rho}^{*}(k \mp_{\rho} L))^{-\frac{\rho}{n-j}} \leqslant \widetilde{W}_{j}(\Gamma_{\rho}^{*}K)^{-\frac{\rho}{n-j}} + \widetilde{W}_{j}(\Gamma_{\rho}^{*}L)^{-\frac{\rho}{n-j}}$. In each inequality, with equality if and only if $\Gamma_{\rho}K$ and $\Gamma_{\rho}L$ dilate each other.

From the case j=0 of inequality (31), it follows the corollary.

Corollary 4 If $K, L \in S_o^n$ and $p \geqslant 1$, $V(\Gamma_p^* (k \mp_p L))^{-\frac{p}{n}} \geqslant V(\Gamma_p^* K)^{-\frac{p}{n}} + V(\Gamma_p^* L)^{-\frac{p}{n}}$; with equality if and only if $\Gamma_p K$ and $\Gamma_p L$ dilate each other.

Corollary 4 is just a result of ref. [16].

4 Monotonicity Inequality of L_p -Mixed Centroid Body $\Gamma_{p,i}K$ and New Geometric Body

Let $p \geqslant 1$ and $i=0,1,\cdots,n-1$, and let $Z_{-p,i}$ denote the subset of K^n containing the origin-symmetric convex bodies affected by operator $\Gamma_{-p,i}$, namely, $Z_{-p,i} = \{\Gamma_{-p,i}K, K \in K_s^n\}$. Let $Z_{-p,i}^*$ denote the subset of K^n containing the origin-symmetric convex bodies affected by operator $\Gamma_{-p,i}^*$, namely, $Z_{-p,i}^* = \{\Gamma_{-p,i}^*K, K \in K_s^n\}$. In this section, we establish some monotonicity inequalities for operator $\Gamma_{p,i}$ ($p \geqslant 1, i \in \mathbb{R}$) and operator $\Gamma_{-p,i}$ ($p \geqslant 1, i = 0, 1, \cdots, n-1$).

Lemma 1 If $K, L \in K_s^n, p \geqslant 1$, and $i = 0, 1, \dots, n-1$,

$$\frac{W_{p,i}(K, \Gamma_{-p,i}^*L)}{V(K)} = \frac{W_{p,i}(L, \Gamma_{-p,i}^*K)}{V(L)}.$$
(32)

Proof According to (10),(5) and (24), we have

$$W_{\mathfrak{p},i}(K,\Gamma_{-\mathfrak{p},i}^*L) = \frac{1}{n} \int_{S'^{-1}} h_{\Gamma_{-\mathfrak{p},i}L}^{\mathfrak{p}}(v) \, \mathrm{d}S_{\mathfrak{p},i}(K,v) = \frac{1}{n} \int_{S'^{-1}} \rho_{\Gamma_{-\mathfrak{p},i}L}^{-\mathfrak{p}}(v) \, \mathrm{d}S_{\mathfrak{p},i}(K,v) =$$
© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$\begin{split} &\frac{1}{nV(L)} \! \int_{S^{n-1}} \! \int_{S^{n-1}} \mid u \cdot v \mid^{p} \mathrm{d}S_{p,i}(L,u) \, \mathrm{d}S_{p,i}(K,v) = \\ &\frac{V(K)}{nV(L)} \! \int_{S^{n-1}} \! \rho_{\Gamma_{p,i}K}^{-p}(u) \, \mathrm{d}S_{p,i}(L,u) = \\ &\frac{V(K)}{nV(L)} \! \int_{S^{n-1}} \! h_{\Gamma_{p,i}K}^{p}(u) \, \mathrm{d}S_{p,i}(L,u) = \\ &\frac{V(K)}{V(L)} \! W_{p,i}(L,\Gamma_{-p,i}^{\star}K). \end{split}$$

So we obtain (32). The proof is complete.

Theorem 3 If $K, L \in K_s^n, \Gamma_{-p,i}K \subseteq \Gamma_{-p,i}L, p \geqslant 1$ and $i=0,1,\cdots,n-1$, then

$$\frac{W_{p,i}(K,Q)}{V(K)} \geqslant \frac{W_{p,i}(L,Q)}{V(L)}$$
(33)

for each $Q \in Z_{-p,i}^*$.

Proof Since $Q \in Z_{-p,i}^*$, there exists a positive $M \in K_s^n$, such that $Q = \Gamma_{-p,i}^*M$. Hence, from lemma 1, we obtain

$$\frac{W_{p,i}(K,Q)}{V(K)} = \frac{W_{p,i}(K,\Gamma_{-p,i}^*M)}{V(K)} = \frac{W_{p,i}(M,\Gamma_{-p,i}^*K)}{V(M)},$$
(34)

$$\frac{W_{p,i}(L,Q)}{V(L)} = \frac{W_{p,i}(M,\Gamma_{-p,i}^*L)}{V(M)},$$
(35)

since $\Gamma_{-p,i}K \subseteq \Gamma_{-p,i}L$, we have $\Gamma_{-p,i}^*K \supseteq \Gamma_{-p,i}^*L$, namely, $h_{\Gamma_{-p,i}^*K}(u) \geqslant h_{\Gamma_{-p,i}^*L}(u)$ is true for each $u \in S^{n-1}$.

From this result and (10), we have $W_{p,i}(M,\Gamma_{-p,i}^*K) \geqslant W_{p,i}(M,\Gamma_{-p,i}^*L)$. By using (34) and (35) on above inequality, the inequality (33) is true. The proof is complete.

For i=0, from (9), we know that theorem 3 is the generalization of the corresponding result in ref. [16].

If $K \in S_o^n$, $L \in K_s^n$, $p \ge 1$ and $i = 0, 1, \dots, n-1$,

$$\widetilde{W}_{-p,i}(K, \Gamma_{-p,i}L) = \frac{(n+p)c_{n,p}V(K)}{V(L)}W_{p,i}(L, \Gamma_{p,i}K).$$
(36)

Proof From (18),(10),(24), and the Fubini theorem, we have

$$\begin{split} \widetilde{W}_{-p,i}(K, \Gamma_{-p,i}L) &= \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p-i}(u) \rho_{\Gamma_{-p,i}L}^{-p}(u) \, \mathrm{d}S(u) = \frac{1}{nV(K)} \int_{S^{n-1}} \rho_{K}^{n+p-i}(u) \int_{S^{n-1}} \mid u \cdot v \mid^{p} \mathrm{d}S_{p,i}(L, v) \, \mathrm{d}S(v) = \\ & \frac{(n+p) c_{n,p} V(K)}{nV(L)} \int_{S^{n-1}} h_{\Gamma_{p,i}K}^{p}(v) \, \mathrm{d}S_{p,i}(L, v) = \frac{(n+p) c_{n,p} V(K)}{V(L)} W_{p,i}(L, \Gamma_{p,i}K). \end{split}$$

So we obtain (36). The proof is complete.

For i=0 and p=2, the equality (36) is proved in ref. [17]. For i=0 and $p \ge 1$, the equality (36) is proved in ref. [16].

The following theorem is the dual form of theorem 2.

If $K, L \in S_o^n, \Gamma_{p,i} K \subseteq \Gamma_{p,i} L, p \geqslant 1$, and $i = 0, 1, \dots, n-1$,

$$\frac{\widetilde{W}_{-p,i}(K,Q)}{V(K)} \leqslant \frac{\widetilde{W}_{-p,i}(L,Q)}{V(L)},\tag{37}$$

for each $Q \in Z_{-p,i}$.

Proof From the condition $\Gamma_{p,i}K \subseteq \Gamma_{p,i}L$ and the definition (10), for each $M \in K_o^n$, we have

$$W_{p,i}(M,\Gamma_{p,i}K) \leqslant W_{p,i}(M,\Gamma_{p,i}L). \tag{38}$$

Since $Q \in Z_{-p,i}$, there exists a positive $M \in K_i^n$, such that $Q = \Gamma_{-p,i}M$. Hence, from lemma 2, we have

$$\frac{\widetilde{W}_{-p,i}(K,Q)}{V(K)} = \frac{\widetilde{W}_{-p,i}(K,\Gamma_{-p,i}M)}{V(K)} = \frac{(n+p)c_{n,p}W_{p,i}(M,\Gamma_{p,i}K)}{V(M)},$$

and

$$\frac{\widetilde{W}_{-p,i}(L,Q)}{V(L)} = \frac{\widetilde{W}_{-p,i}(L,\Gamma_{-p,i}M)}{V(L)} = \frac{(n+p)c_{n,p}W_{p,i}(M,\Gamma_{p,i}L)}{V(M)}.$$
© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

By using (38), we obtain (37). The proof is complete.

For i=0, from (17) we know that theorem 3 is the generalization of the corresponding result in ref. $\lceil 18 \rceil$.

Lemma 3 If $K, L \in S_o^n, p \geqslant 1, i \neq n, i \neq n + p$,

$$\widetilde{W}_{-p,i}(K,Q) = \widetilde{W}_{-p,i}(L,Q), \qquad (39)$$

if and only if K=L for any $Q \in S_o^n$.

Proof For K=L, we easily know (39) is true. Conversely, for i < n (or i > n+p), taking Q=K in (39), and using (19) and inequality (20), we have $\widetilde{W}_i(K)^{n-i} = \widetilde{W}_{-p,i}(L,K)^{n-i} \geqslant \widetilde{W}_i(L)^{n+p-i}\widetilde{W}_i(K)^{-p}$, namely, $\widetilde{W}_i(L)^{n+p-i} \geqslant \widetilde{W}_i(K)^{n+p-i}$. That yields $\widetilde{W}_i(L) \geqslant \widetilde{W}_i(K)$ (or $\widetilde{W}_i(L) \leqslant \widetilde{W}_i(K)$), with equality if and only if K and L dilate.

Again let Q=L in (39), and we get $\widetilde{W}_i(K)^{n+p-i} \geqslant \widetilde{W}_i(L)^{n+p-i}$, namely, $\widetilde{W}_i(K) \geqslant \widetilde{W}_i(L)$ (or $\widetilde{W}_i(K)$) $\leqslant \widetilde{W}_i(L)$), with equality if and only if L and K dilate.

Therefore, $\widetilde{W}_i(K) = \widetilde{W}_i(L)$, and K and L must dilate. Thus K = L.

Similar to the above proof, for n < i < n + p, we may prove lemma 3.

To sum up, the proof of lemma 3 is completed.

Lemma 4 If $K \in K_o^n$, $L \in S_o^n$, $i = 0, 1, \dots, n-1$, and $p \ge 1$,

$$W_{p,i}(K, \Gamma_{p,i}L) = \frac{\omega_n}{V(L)} \widetilde{W}_{-p,i}(L, \Pi_{p,i}^*K). \tag{40}$$

From (10) and (18), and the definitions (3), (21) and (5), we have

$$\begin{split} W_{p,i}\left(K,\Gamma_{p,i}L\right) &= \frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p,i}L}^{p}(u) \, \mathrm{d}S_{p,i}(K,u) = \frac{1}{n(n+p)c_{n,p}V(L)} \bullet \\ &\int_{S^{n-1}} \int_{S^{n-1}} \mid u \bullet v \mid^{p} \rho_{L}^{n+p-i}(v) \, \mathrm{d}S(v) \, \mathrm{d}S_{p,i}(K,u) = \frac{\omega_{n}}{nV(L)} \bullet \\ &\int_{S^{n-1}} \rho_{L}^{n+p-i}(v) h_{\Pi_{p,i}K}^{p} \, \mathrm{d}S(v) = \frac{\omega_{n}}{nV(L)} \bullet \\ &\int_{S^{n-1}} \rho_{L}^{n+p-i}(v) \rho_{\Pi_{p,i}K}^{-p}(v) \, \mathrm{d}S(v) = \\ &\frac{\omega_{n}}{V(L)} \widetilde{W}_{-p,i}(L,\Pi_{p,i}^{*}K). \end{split}$$

So we get (40). The proof is complete.

Lemma 5 If $K, L \in S_o^n$ and $p \ge 1$, for any real number $i \ne n$ and $i \ne n + p$,

$$\frac{\widetilde{W}_{-p,i}(K,\Gamma_{p,i}^*L)}{V(K)} = \frac{\widetilde{W}_{-p,i}(L,\Gamma_{p,i}^*K)}{V(L)}.$$
(41)

From (12),(5) and (3), we have

$$\begin{split} \widetilde{W}_{-p,i} \left(L, \Gamma_{p,i}^{*}K \right) &= \frac{1}{n} \int_{S^{n-1}} \rho_{L}^{n+p-i}(u) \rho_{\Gamma_{p,i}}^{-k}K(u) \, \mathrm{d}S(u) = \frac{1}{n(n+p)c_{n,p}V(K)} \\ &\int_{S^{n-1}} \int_{S^{n-1}} \rho_{L}^{n+p-i}(u) \; \rho_{K}^{n+p-i}(v) \; | \; u \cdot v \; |^{p} \, \mathrm{d}S(v) \, \mathrm{d}S(u) = \frac{V(L)}{nV(K)} \cdot \\ &\int_{S^{n-1}} \rho_{K}^{n+p-i}(v) \rho_{\Gamma_{p,i}L}^{-k}(v) \, \mathrm{d}S(v) = \frac{V(L)}{V(K)} \widetilde{W}_{-p,i}(K, \Gamma_{p,i}^{*}L). \end{split}$$

So we obtain (41). The proof is complete.

Theorem 5 If $K, L \in \mathbb{K}_o^n, p \ge 1$ and $i = 0, 1, \dots, n-1$, and for any $Q \in S_o^n$, we have $\widetilde{W}_{-p,i}(K,Q) \le 1$ $\widetilde{W}_{-p,i}(L,Q)$, then

$$\frac{W_{i}(\Gamma_{p,i}K)^{-\frac{p}{n-i}}}{V(K)} \geqslant \frac{W_{i}(\Gamma_{p,i}L)^{-\frac{p}{n-i}}}{V(L)},\tag{42}$$

$$\frac{\widetilde{W}_{i}(\Gamma_{p,i}^{*}K)^{\frac{p}{n-i}}}{V(K)} \geqslant \frac{\widetilde{W}_{i}(\Gamma_{p,i}^{*}L)^{\frac{p}{n-i}}}{V(L)},$$
al Electronic Publishing House. All rights reserved. http://www.cnki.net

with equality if and only if K=L.

Proof Since for $p \ge 1$ and $i = 0, 1, \dots, n-1$, and for any $Q \in S_o^n$, we have $\widetilde{W}_{-p,i}(K,Q) \le \widetilde{W}_{-p,i}(L,Q)$ Q). For any $M \in K_o^n$, taking $Q = \prod_{p,i}^* M$, we have

$$\widetilde{W}_{-p,i}(K, \Pi_{p,i}^*M) \leqslant \widetilde{W}_{-p,i}(L, \Pi_{p,i}^*M). \tag{44}$$

From lemma 3, the equality is true if and only if K=L.

From lemma 3, we have

$$\widetilde{W}_{-p,i}(K,\Pi_{p,i}^{\star}M) = \frac{V(K)}{\omega_n}W_{p,i}(M,\Gamma_{p,i}K),$$

and

$$\widetilde{W}_{-p,i}(L, \prod_{p,i}^* M) = \frac{V(L)}{\omega_n} W_{p,i}(M, \Gamma_{p,i} L).$$

Thus, together with (44), we get $V(K)W_{p,i}(M,\Gamma_{p,i}K) \leq V(L)W_{p,i}(M,\Gamma_{p,i}L)$. Let $M = \Gamma_{p,i}L$, since $p \geq 1$ and $i=0,1,\dots,n-1$, by using (12), we obtain

$$V(L)W_{i}(\Gamma_{p,i}L) \geqslant V(K)W_{p,i}(\Gamma_{p,i}L,\Gamma_{p,i}K) \geqslant V(K)W_{i}(\Gamma_{p,i}L)^{\frac{n-i-p}{n-i}}W_{i}(\Gamma_{p,i}K)^{\frac{p}{n-i}}.$$

Thus, we easily get (42). And from (44) and (13), we know that the equality holds if and only if K=L.

Since $p \geqslant 1, i=0,1,\dots,n-1$, and for any $Q \in S_o^n$, we have $\widetilde{W}_{-p,i}(K,Q) \leqslant \widetilde{W}_{-p,i}(L,Q)$, for any $M \in S_o^n$

 K_o^n . Taking $Q = \Gamma_{p,i}^* M$, we have

$$\widetilde{W}_{-p,i}(K, \Gamma_{p,i}^*M) \leqslant \widetilde{W}_{-p,i}(L, \Gamma_{p,i}^*M), \tag{45}$$

from lemma 3, the equality is ture if and only if K=L.

From lemma 5, we have

$$\widetilde{W}_{-p,i}(K,\Gamma_{p,i}^{*}M) = \frac{\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^{*}K)V(K)}{V(M)}, \widetilde{W}_{-p,i}(L,\Gamma_{p,i}^{*}M) = \frac{\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^{*}L)V(L)}{V(M)}.$$

Thus, together with (45), we get

$$\frac{V(K)\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^{*}K)}{V(M)} \leqslant \frac{V(L)\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^{*}L)}{V(M)},$$

 $\text{namely,} V(L)\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^*L) \geqslant V(K)\widetilde{W}_{-p,i}(M,\Gamma_{p,i}^*K), \text{taking } M = \Gamma_{p,i}^*L, \text{ we have } V(L)\widetilde{W}_i(\Gamma_{p,i}^*L) \geqslant 0$ $V(K)\widetilde{W}_{-p,i}(\Gamma_{p,i}^*L,\Gamma_{p,i}^*K).$

Since i < n, by using inequality (20), we have

$$V(L)\widetilde{W}_{i}(\Gamma_{p,i}^{*}L) \geqslant V(K)\widetilde{W}_{-p,i}(\Gamma_{p,i}^{*}L,\Gamma_{p,i}^{*}K) \geqslant V(K)\widetilde{W}_{i}(\Gamma_{p,i}^{*}L)^{\frac{n+p-i}{n-i}}\widetilde{W}_{i}(\Gamma_{p,i}^{*}K)^{-\frac{p}{n-i}}.$$

From this, we immediately obtain (43); and from (45) and (19), we know that the equality holds if and only if K=L. The proof is complete.

For i=0, from (7) and (15), we know that theorem 5 is the generalization of the corresponding result in ref. [12].

If $K, L \in K_o^n, 0 \le i < n, p \ge 1, n-i \ne p$, for any $Q \in K_o^n, W_{p,i}(K,Q) = W_{p,i}(L,Q)$ if and Lemma 6^[14] only if K=L.

Theorem 6 If $K, L \in \mathbb{K}_o^n, p \geqslant 1, i = 0, 1, \dots, n-1, n-i \neq p$, and for any $Q \in \mathbb{K}_o^n$, we have $W_{p,i}(K, Q) \leqslant$ $W_{p,i}(L,Q)$. Then

$$\frac{\widetilde{W}_{i}(\Gamma_{-p,i}K)^{\frac{p}{n-i}}}{V(K)} \geqslant \frac{\widetilde{W}_{i}(\Gamma_{-p,i}L)^{\frac{p}{n-i}}}{V(L)},\tag{46}$$

and

$$\frac{W_i(\Gamma_{-p,i}^*K)^{-\frac{p}{n-i}}}{V(K)} \geqslant \frac{W_i(\Gamma_{-p,i}^*L)^{-\frac{p}{n-i}}}{V(L)},\tag{47}$$

with equality if and only if K=L.

Proof From $p \ge 1, i=0,1,\dots,n-1$, and for any $Q \in K_o^n, W_{p,i}(K,Q) \le W_{p,i}(L,Q)$. So for any $M \in K_o^n$ K_o^n , taking $Q = \Gamma_{p,j}M$, we have 0.1994-2012 China Academ

hina Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$W_{p,i}(K,\Gamma_{p,i}M) \leqslant W_{p,i}(L,\Gamma_{p,i}M). \tag{48}$$

From lemma 6, the equality holds if and only if K=L.

From lemma 2, we have

$$W_{p,i}(K,\Gamma_{p,i}M) = \frac{V(K)}{(n+p)c_{n,p}V(M)}\widetilde{W}_{-p,i}(M,\Gamma_{-p,i}K),$$

and

$$W_{p,i}(L,\Gamma_{p,i}M) = \frac{V(L)}{(n+p)c_{p,p}V(M)}\widetilde{W}_{-p,i}(M,\Gamma_{-p,i}L).$$

together with (48), we obtain $V(L)\widetilde{W}_{-p,i}(M,\Gamma_{-p,i}L) \geqslant V(K)\widetilde{W}_{-p,i}(M,\Gamma_{-p,i}K)$.

Taking $M = \Gamma_{-p,i}L$, we have $V(L)\widetilde{W}_i(\Gamma_{-p,i}L) \geqslant V(K)\widetilde{W}_{-p,i}(\Gamma_{-p,i}L,\Gamma_{-p,i}K)$.

Since i < n, by using (20), we have

$$V(L)\widetilde{W}_{i}(\Gamma_{-p,i}L) \geqslant V(K)\widetilde{W}_{-p,i}(\Gamma_{-p,i}L,\Gamma_{-p,i}K) \geqslant V(K)\widetilde{W}_{i}(\Gamma_{-p,i}L)^{\frac{n+p-i}{n-i}}\widetilde{W}_{i}(\Gamma_{-p,i}K)^{-\frac{p}{n-i}}.$$

So we easily obtain (46). And from (48) and (19), we know that the equality holds if and only if K=L.

Besides, since $p \ge 1$, $i=0,1,\dots,n-1$, and for any $Q \in K_o^n$, we have $W_{p,i}(K,Q) \le W_{p,i}(L,Q)$. From lemma 6, the equality holds if and only if K=L.

For any $M \in K_o^n$, we take $Q = \Gamma_{-p,i}^* M$. Then we have

$$W_{p,i}(K, \Gamma_{-p,i}^*M) \leqslant W_{p,i}(L, \Gamma_{-p,i}^*M), \tag{49}$$

with equality if and only if K=L.

From lemma 5, we have

$$W_{p,i}(K,\Gamma_{-p,i}^*M) = \frac{V(K)W_{p,i}(M,\Gamma_{-p,i}^*K)}{V(M)},$$

and

$$W_{p,i}(L, \Gamma_{-p,i}^*M) = \frac{V(L)W_{p,i}(M, \Gamma_{-p,i}^*L)}{V(M)}.$$

According to (49), we easily have

$$V(L)W_{p,i}(M,\Gamma_{-p,i}^{*}L) \geqslant V(K)W_{p,i}(M,\Gamma_{-p,i}^{*}K).$$

Taking $M = \Gamma_{-p,i}^* L$ in above inequality, and using (13), we immediately obtain

$$V(L)W_{i}(\Gamma_{-p,i}^{*}L)\geqslant V(K)W_{p,i}(\Gamma_{-p,i}^{*}L,\Gamma_{-p,i}^{*}K)\geqslant V(K)W_{i}(\Gamma_{-p,i}^{*}L)^{\frac{n-i-p}{n-i}}W_{i}(\Gamma_{-p,i}^{*}K)^{\frac{p}{n-i}}.$$

Thus, we immediately obtain (47). And from (49) and (13), we know that the equality holds if and only if K=L. The proof is complete.

If i=0, from (7), we know that theorem 6 is the generalization of the corresponding result in ref. $\lceil 16 \rceil$.

参考文献:

- [1] LUTWAK E, ZHANG Gao-yong. Blaschke-Santaló linequalities [J]. J. Differential Geom., 1997, 47:1-16.
- [2] LUTWAK E, YANG DEANE, ZHANG Gao-yong. L_p -Affine Isoperimetric Inequalities [J]. J. Differential Geom., 2000,56:111 132.
- [3] LUTWAK E, YANG DEANE, ZHANG Gao-yong. The Cramer-Rao Inequality for Star Bodies [J]. Duke. Math. J., 2002, 112; 59 81.
- [4] WANG Wei-dong, LENG Gang-song, LU Feng-hong. On Brunn-Minkowski Inequality for the Quermassintegrals and Dual Que-Rmassintegrals of L_p-Projection Body [J]. Chiness Annals of Mathematics, 2008, 29A(2):209 220.
- [5] GARDNER R J. Geometric Tomography [M]. Gambridge: Gambridge Univ. Press, 1995.
- [6] SCHNEIDER R. Convex Bodies; The Brunn-Minkowski Theory [M]. Cambridge; Cambridge Univ. Press, 1993.
- [7] LUTWAK E. The Brunn-Minkowski-Firey Theory I: Mixed Volumes and the Minkowski Problem [J]. J. Differential Geom., 1993, 38; 131 150.
- [8] LUTWAK E. The Brunn-Minkowski-Firey Theory II, Affine and Geominimal Surface Areas [J]. Adv. Math., 1996, © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

118:424 - 294.

- [9] WANG Wei-dong, LENG Gang-song. L_ρ-Dual Mixed Guermassintegraks [J]. Indian J. Pure. Appl. Math., 2005, 36
 (4):177 188.
- [10] LUDWIG M. Minkowski Valuations [J]. Trans. Amer. Math. Soc., 2005, 357; 4 191 4 213.
- [11] RYABOGIN D, ZVAVITCH A. The Fourier Transform and Firey Projections of Convex Bodies [J]. Indiana. Univ. Math. Journal, 2004, 53:667 682.
- [12] WANG Wei-dong, LU Feng-hong, LENG Gang-song. A Type of Monotonicity on the L_p -Centroid Body and L_p -Projection Body [J]. Math. Inequal. Appl., 2005,8(4):735 742.
- [13] WANG Wei-dong, LENG Gang-song. The Petty Projection Inequality for L_ρ-Mixed Projection Bodies [J]. Acta Math. Sinica, 2007, 23B(8):1 485 1 494.
- [14] WANG Wei-dong, LENG Gang-song. Inequalities Relating to L_ρ-Version of the Petty's Conjectured Projection Inequality [J]. Appl. Math. Mech., 2007, 28(2):269 276.
- [15] LUTWAK E, YANG DEANE, ZHANG Gao-yong. L_p -John Ellipsoids [J]. Proc. London Math. Soc., 2005, 90:497 520.
- [16] YUAN Jun, ZHAO Ling-zhi, LENG Gang-song. Inequalities for L_p -Centroid Body [J]. Taiwan. J. Math. Accept., 2007, 11(5):1 315 1 325.
- [17] LUTWAK E, YANG DEANE, ZHANG Gao-yong, A New Ellipsoid Associated with Convex Bodies [J], Duke, Math, J., 2000, 104:375 390.
- [18] GRINBERG E, ZHANG Gao-yong, Convolutions, Transforms, and Convex Bodies [J]. Proc. London Math. Soc., 1999,78;77-115.

L_p -混合质心体均质积分和对偶均质积分 Brunn-Minkowski 不等式

马统一1,2,刘春燕2

(1. 河西学院数学与统计学院,甘肃 张掖 734000;2. 西北师范大学数学与信息科学学院,甘肃 兰州 730070)

摘 要:定义了新几何体 $\Gamma_{-p,i}K$ 和 L_p —混合调和 Blaschke 加 $K+_pL$ 的概念,建立了 L_p —混合质心体 $\Gamma_{p,i}K$ 的均质积分和对偶均质积分的 Brunn-Minkowski 不等式,并研究了算子 $\Gamma_{p,i}$ 和 $\Gamma_{-p,i}$ 的单调性.

关键词: L_p 一质心体; L_p 一混合质心体; L_p 一混合投影体;均质积分;对偶均质积分; L_p 一混合调和 Blaschke 加中图分类号:O184 文献标识码:A

(责任编辑 向阳洁)