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1 Introduction
Let K" denote the set of convex bodies (compact,convex subsets with non—empty interiors) in Eu-
clidean space R",K! and K/ denote the set of convex bodies containing origin in their interiors and the set
of origin-symmetric convex bodies in R”",respectively. Let S"~! denote the unit sphere in R",V(K) denote
the n-dimensional volume of body K. If K is the standard unit ball B in R”,it is denoted as w, =V (B).
In 1997,ref. [1 - 2] first posed the notion of L,~centroid body as follows:let K be the compact star-
shaped about the origin in R",and let p—= 1 be arbitrary real number,and then the L, ,~centroid body I',K

of K is the origin~symmetric conves body whose support function is given by

1 .
b _ - o« |7
W 0 = —ges] L s ()
where u€ S ',and ¢,,, = Wb = 7% /T(1+ L),
W2 Wy p—1 2

By using polar coordinate transformation and (1) ,we easily obtain

1
(n—+ ple,.,VIK)

[ T v lror dsco). (2)
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In respect of the L,-centroid body,ref. [1 —3] recently made a series of studies,where many impor-
tant results were proven. Recently, together with (2),ref. [4] defined a new geometric body as follows.

Let KC R" be compact star-shaped about the origin K& R",and let p—= 1 and i be arbitrary real
numbers,and then the L,-mixed centroid body I',,;K of K is the origin~symmetric convex body whose
support function is given by

1
(n+ pc,.,V(K)

Wk () = [ T o @dsco. (3)

where u€ S ',
Obviously,from definition (2) and (3),we have,if i=0,I",,, K=T,K.

In this paper,we will propose the notion of new geometric body I'-, ;K and L,-mixed harmonic Blas-

chke add K%,)L »and establish the Brunn-Minkowski inequalities for L ,-mixed centroid body I',;K and its

polar body,and prove the monotonicity of operator I',,; and I'—, .

2 Preliminaries
2.1 Support Function,Radial Function and Polar of Convex

If K&K",its support function i, * =h(K, * ) ;R*"——(0,+0) is defined by (see ref. [5]) h(K.x)
=max{x * y:yEK},xER",where x * y denotes the standard inner product of x and y.

If K is a compact star-shaped (about the origin) in R",its radial function px * =p(K, « ) :R"\{0}—
—[0,+020) is defined by (see ref. [5]) p(K,z)=max{1= 0:2x€ K},x€ R'\{0},when px is positive
and continuous,and K is called a star body (about the origin). Let S denote the set of star bodies (about
the origin) in R". Two star bodied K and L are said to be dilates each other if pK(u)/pL(u) is independent
onu€ S,

From the definition of radial function,we know that for A>>0, o (u) <<Ap. (w) for any u€ S ' if and
only if K Z AL .

For K&K ,the polar body K* of K is defined by (see ref. [5])

K" ={xeR:xy<1l,y € KjJ. (4)
Obviously,we have (K*)* =K.

From the definition (4),we also know that,if K&K, the support and radial function of K* and the

polar body of K are defined respectively by
1 1

h\,* = —, x =
K {OK PK hK (5)

2.2 Mean Value Integral,L,-Mixed Mean Value Integral and L,-Mixed Volume
For K€K",the mean value integral W;(K)(i=0,1,++,n—1) are defined by (see ref. [5-6])
W) = L[ K0S (K 6)
where S; (K, « ) is a classical positive Borel measure on S .
From definition (6),we easily see that
W, (K) = V(K). D)
For p—= 1,K,L&K! and ¢ 0,the Firey L,~combination K+, + LEK! is defined by (see ref. [7])
h(K e« L, o) = h(K, ) +eh(L, )",
where “ ¢ ” ine ¢ L denotes the Firey scalar multiplication. Firey L,~combination of convex bodies were
defined and studied by Firey (see ref. [7]).
Associated with the Firey L,~combination,ref. [7] defined L,~mixed quermassintegrals (also called

mixed p-Quermassintegrals) as follows.
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For K,L€&€K},e>>0 and real number p= 1,the L ,~mixed quermassintegrals W, ,(K,L)(i=0,1,-+,n
—1) are defined by
W (K -+, « L) —W,(K)

€

(8)

" iy (K.L) = lim
»

e> 0"
Obviously,for i=0, by (7) and (8),the L, mixed quermassiontegrals W, , (K, L) is just the L,
mixed volume V,(K,L) ,namely
W, (K,L) =V,(K,L). (9
Furthermore,ref. [7] has shown that,for p== 1,i=0,1,++,n—1 and each K € K!, there exists a
positive Borel measure S, (K, « ) on S ',such that the L,-mixed quermassintegral W, ;(K,L) has the
following integral representation;:
WKL) = L[ hpds, (Ko (10)
nJs!
for all K& K. It turns out that the measure S, (K, ¢« ) (i=0,1,-+,n—1) on S" ' is absolutely continu-

ous with respect to S; (K, * ),and has the Radon-Nikodym derivative

dSp.i(Ka ‘)
dS; (K, *)

where S, (K, * ) is a classical positive Borel measure on S" '. The case i=0,S,,(K, * ) is just the L,-

:hlp(Ka ’)9 (11)

surface area measure S, (K, * ) of K,together with (9) and (10),then the integral representation of L -

mixed volume V,(K,L) is obtained by V,(K,L) = %j Dt (0)dS, (K ,v).

From the definition of the L,-mixed quermassiontegrals, it follows immediately that, for each K
€ KJ,
W, (K.K) = W,(K), (12)
for all p= 1.
We shall require the Minkowski inequality for the L,-mixed quermassiontegrals W, ; as follows:For
K.LeK!,and p= 1,0 i<n,then (see ref. [7])
W, . (K,L)™ = W, (K)" "W, (L)*, (13)
with equality if only if K and L are dilations each other.
2. 3 Dual Quermassiontegrals and L,~-Dual Mixed Quermassiontegrals
For K€ S’ and any real number i,the dual quermassiontegrals W, (K) ,of K are defined by (see ref.
[(6-7D

WO = L[ aodsa, (1)
S

Obviously,
W, (K) = V(K). (15)
For K,L€ S;,and e>0,then for p= 1,the L,~harmonic radial combination K+ ,e +« L& S} is de-
fined by (see ref. [8])
oK+ e« L, )" =p(K, )" +eg(L, )"
Note that here “e + L” is different from “¢ « L” in L,~combination.

For K,L& S;,e>0,p= 1 and real number i7#n, the L,~dual mixed combination quermassionte-

grals,W »i(K,L) of K and L are defined by

(16)

n 7piW7/J.I(K9L) — lim W(K+_,+L)— WI(K)
- > 0+ €

If i=0,using (15), we easily see that definition (16) is just definition of L,~dual mixed volume,

namely
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W, (K.,L) =V_,(K,L). 17)
From this,the L,~dual mixed quermassiontegrals is the extension of L,~dual mixed volume.
Furthermore,{rom definition (16),the integral representation of the L,~dual mixed quermassionte-
grals is given by (see ref. [9]):if K.L& S;,p=> 1,and real number i~n,
WL (KL = L[ gt odsa. (18)
where the integration is with respect to spherical Lebesgue measure on S" ',
Together with (14) and (18) ,for KE S}, p= 1.and i7#n,we get
W, (K,K) = W, (K). (19)
Furthermore,ref. [9] proved the following analog of the Minkowski inequality for L,~dual mixed
quermassiontegrals:if K,L& S!,p= 1.for i<n or i>n+p,
W, (K,L)" = W,(K)"" W, (L) "3 (20)
for n<i<<a+p, W,,},,‘(K,L)”ﬂ < W, (K)"""W,(L)" ,with equality in every inequality if and only if K
and L dilate each other.
2.4 L,-Mixed Projection Bodies
In 2000, ref. [2] posed the notion of L,-mixed projection body as follows.
For each K& K" and p= 1,the L, mixed projection body II,K of K is an origin-symmetric convex

body whose support function is given by

w1

N € n—2.p

| uevl|?dS,(K,v). 2D

g1

For all u&€ S"™! ,where u * v denotes the standard inner product of u and v,S,(K, * ) is a positive Borel
measure on S" ',it is called the L ,~surface area measure of K. The unusual normalization of the definition
(21) is chosen so that for the unit ball B,we have IT,B=B. In particular,for p=1,the convex body II, K
is the classical projection body IIK of K under the normalization of the definition (11) (see ref. [2]). Re-
gard to the studies of the L,~projection body,we can refer to ref. [10 —14].

Furthermore,ref. [13] shows the notion of L,-mixed projection body as follows:for each K&K/, re-
al number p==1 and i=0,1,-+-,n—1,the L,-mixed projection body II,,K of K is an the origin-symmetric
convex body whose support function is given by

I, () = #J L luew7dS, (K Lw), (22)
Vi s

O
for all u,veS"™",S, (K, «)(i=0,1,++,n—1) is a positive Borel measure on S"~'. By using (21) and
the case =0 in (22),we have I, K = II,K.
2.5 Convex Body I' ,K and New Geometric Body I' , ;K

The notion of geometric body I'_ ,K is shown by in ref. [15]. If K& K; and p= 1,geometric body
I' K is an origin~symmetric body whose radial function is defined by

., - 1
ol (0 =GRy

J L ue o]"dS,(K.o), (23)

Snfl

for all & S"™'. Note for p== 1,the geometric body I'_ ,K is an origin-symmetric body (see ref. [15]).
Together with the notion (23),we also show the notion of new geometric body I'-, ;K as follows:if

K€K, and p= 1,body I'-,,K(i=0,1,--,n—1) is an origin-symmetric body whose radial function is

given by

_ 1
» —
prl, w0 = Ry

where S, (K, * )(i=0,1,++,n—1) are Borel measure on S"~'. By using (23) and the case i=0 in (24),
we haveI" , K = I' K.

J L ‘ u-v |pdSp.[(K"U)’ (24)
o
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3 Brunn-Minkowski Inequality for L,-Mixed Centroid Bodies and Their Polers
In this section, we prove the Brunn-Minkowski inequality for the quermassintegrals and dual quer-
massintegrals of L,-mixed centroid bodies and their polers associated with L,-mixed harmonic Blaschke

add.
Let K,L€& S;and p= 1. For each real number i7#n,n+ p,we will define the new notion of L ,-mixed

harmonic Blaschke add KJ},)L of K and L. We define €0,

g = %JS TV " p(K )™ 4 VL) ™ (L) ™ ] dS (u) » (25)

and then the radial function of star body K%PL is defined by
Elp(K+,L, )" =VK) " p(K, )"+ V(L) p(L, )", (26)
Obviously,for i=0,the K+ ,L is just the L,~harmonic Blaschke add K+ ,L of K and L (see ref.

[17 ] ,for i=0 and p=1,the KJE/)L is just harmonic add K+L of K and L.
Theorem 1 If K,L &S ,for p=>1,;=0,1,--,n—1 and each real number i p,n+p.
W, (T, (K +,L)&5 = W, (I, ,K) +W, (T, L), 27
with equality for p=1 if and only if I',,,K and I', ;L. are homothetic in (27) ;for p>>1 if and only if I', ;K
and I, ;L. dilate each other in (27).

Proof From (25),(26) and polar coordinates representation of volume, we obtain that £=V (K
JFPL). Hence,from (26),we have
(O(K +/)L’ .>rl+[)—{ _ p(K9 .)n+pﬂ p(Lv .>n+p7i

: (28)
Using definition (3) and (28),we have
Rt ke () = 1 J e it (0)dS(0) = ht k() AR (el (29)
i p s" 1 pL P pei

(n+ ple,.,VK+,L)
Together with (29),(10) and (13).for each QEK!,we have

W,, (Q.I,. (K+,L) =W, ,(Q.I,.K)+W,,(Q.I',.L) =
W, Q55 (W, (I, K5 +W, (T, L)),
with equality for p=1 if and only if I, ;K and I',;L. are homothetic; for p>>1 if and only if I', ;K and

I',..L dilate each other.
Taking Q=T,.; (K—F,,L) sand in view of W, (K,K)=W,(K),we obtain the inequality (27). The

proof is complete.
Taking i=0 in theorem 1, we have the following corollary.
Corollary 1 If K,L&S!,for p—= 1 and j=0,1,-,n—1,

W, (I, (K +,L)# = W,(I,K)#5 +W, (I, L), (30)
with equality for p=1 if and only if I',K and I',L. are homothetic;for p>>1 if and only il I',K and I',L are
dilates each other.

From the case j=0 of inequality (30),it follows the corollary.

Corollary 2 If K,LES! and p= 1,V(I',(K+,L))" = V(I',K)* +V([,L)" ,with equality for p=
1if and only if I'/K and I',L are homothetic,for p>>1 if and only if I',K and I',L dilate each other.

Corollary 2 is just a result of ref. [16].

We give pole formal of inequality (27) as follows.

Theorem 2 1If K,L & S;.for p== 1 and each real number i p.n+ p and real number j5= n,for j<T
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7’l+f)’
W, (7 (K 4,L)) 75 = W, (I K) 5 4+ W, (DEL)
for j= nt+p,
W (I (K A+,L)) 5 < W (T K) 5 + W (08 L) .
In each inequality,with equality if and only if I, ;K and I', ;L. dilate each other.
Proof Together with (15),(29) and (5),we obtain that

W, g K L) = L dsaor 5 =

n—j

(ij kGO At )T S ()
nlJs pei i
Using the Minkowski integral inequality,we have that for i< n+p,

W, (D, (K 4+, L)) % = <%f R S ) +<%J S =

W, (LK) 5 + W, (L)
for j = n+p,
W, (I (K +, L)) 7 < %L” e dS ) T (%L” e dS ) T =
W, (DK 5 -+ W, (L) .

By using the condition of equality of Minkowski integral inequality., we obtain that the equality is
true if and only if I', ;K and I',,L dilate each other. The proof is complete.

For =0 in theorem 2,we have the following corollary.

Corollary 3 If K,L &S} .for p== 1 and each real number j#n,for i<<n+p,

W, (I} (kL) 5 = W (I K) 75 + W, (If L) 75 (31)
for j= n+p, W, (I} (k F,L)) 7% < W,(I' K) @5 + W,(I's L) # . In each inequality, with equality if
and only if I',K and I',L dilate each other.

From the case j=0 of inequality (31),it {ollows the corollary.

Corollary 4 If K,L€ S} and p= 1, V(I'} (kF,L)) " = V(I} K) % + V(I L) ™" ;with equality if
and only if I',K and I' )L dilate each other.

Corollary 4 is just a result of ref. [16].

4 Monotonicity Inequality of L ,-Mixed Centroid Body I', ;K and New Geomet-
ric Body

Let p= 1 and i=0,1,-=-,n—1,and let Z_,; denote the subset of K" containing the origin-symmetric
convex bodies affected by operator I'—,,;, »namely.Z_,,={I"-, ., K. K& K!}. Let Z*, ; denote the subset of
K" containing the origin-symmetric convex bodies affected by operator I'*, ; ,namely,Z*, ,={I"* , K . K&
K!}. In this section, we establish some monotonicity inequalities for operator I', ; (p= 1,/ € R) and opera-
tor ', (p=1,i=0,1,+,n—1),

Lemmal If K.L€ K/.,p= 1,and i=0,1,--,n—1,

w,.(K.r*,,L) W, (L.I'", ,K)
V(KD V(L)

Proof According to (10),(5) and (24),we have

* 1 ’ 1 —,
W (KDl = L e 0dS (Koo = L[ it 0ds, (Ko =

(32)
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nV%L)J'SMLH | we v |#dS,. (L.w)dS,. (K.v) =
;X/((Iz))LH pr’ k(W dS, (Lou) =

;X/(gi))L,,,l iz k) dS, (L.u) =
‘%Wp.;(l,,[‘jp_i[()'

So we obtain (32). The proof is complete.
Theorem 3 U K.Le K'.I' ,, KT ,,L.p=>1andi=0,1,---,n—1,then
=

W, (K,Q _ W,.(L,Q

V(K) VL (33)

for each Qe 7%, ..
Proof Since QE Z*,,,there exists a positive M€ K!',such that Q=TI , ;M. Hence, from lemma 1,

we obtain
W/).i(KvQ) — W/)_,'(K,Ff/,,,'M) — Wp.i(Mapip.iK) (34)
V(K) V(K) V(M) ’
W,.(L,Q W, (M,I*, L) (35)
V(L) V(M) ’

since ', , K&I'—,,L ,we have I'* , KD I'*, ,L ,namely,hpjp_lK ()= hpleL (w) is true for each u€ S" !,

From this result and (10),we have W, ,(M,I'*, . K) = W, . (M,I'%, ,L). By using (34) and (35) on
above inequality.the inequality (33) is true. The proof is complete.

For :=0,from (9),we know that theorem 3 is the generalization of the corresponding result in ref.
[16].

Lemma 2 If K& S/,L€ K!',p=1 and i=0,1,-,n—1,

o (it e, VK)
Wopi (Ko il) = V(L)

Proof From (18),(10),(24),and the Fubini theorem,we have

57 1 ntp—i —p 1 n i p
w_, . (K.,[,,L) = 7L] ok e’ Lo dS(u) = WL' ok (u)L” Clue v |PdS, (L,0)dS(v) =

W,.(L.I,.K). (36)

(n+ pec,.,V(K)
nV (L)

So we obtain (36). The proof is complete.

For i=0 and p=2,the equality (36) is proved in ref. [17]. For i=0 and p== 1,the equality (36) is
proved in ref. [16].

The following theorem is the dual form of theorem 2.

Theorem 4 If K.L€S,.I',,K<&TI,.L,p= 1,and i=0,1,--,n—1,

W.,.(K.Q _ W_,.(L,Q
V(K) VL)

(n+ pec,.,V(K)
V(L)

W, (L.I,.K).

j . (0)dS,. (Lyw) =
s" o

(37

<

for each Qe Z_, ..
Proof From the condition I', ;K &TI', ;L. and the definition (10).{or each MEK; ,we have
w,. (M., ,K)<W,,(M.I',,.L). (38)
Since Q€ Z_,, ,there exists a positive MEK! ,such that Q=I"_, M. Hence.{rom lemma 2,we have

W, (K.Q _ W, (K.l ,,M) _ (n+pe, ,W,,(M,I, . K)
V(K) V(K) V(M)

’

and

W, (L.Q _ W, (., M __ +pe, W, (MI,.L)
V(L) V(L) V(M) '
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By using (38),we obtain (37). The proof is complete.

For i=0,{rom (17) we know that theorem 3 is the generalization of the corresponding result in ref.
[18].

Lemma 3 I K,L& S!,p=>1.i%n,i#n+p,

W, (K.Q =W, (L,Q, (39)
if and only if K=L for any Q& S..

Proof For K=L,we easily know (39) is true. Conversely,for i<(n (or i>n+p),taking Q=K in
(39) ,and using (19) and inequality (20),we have W,(K)"" = W, (L, K)"" = W,(L)"" W (K) ",
namely, W, (L)"" "' = W,(K)""*"'. That yields W,(L)= W,(K) (or W,(L)<X W,(K)).with equality if
and only if K and L dilate.

Again let Q=L in (39),and we get W,(K)" *~'= W,(L)""*~* ,namely, W, (K)= W,(L) (or W,(K)
< W,(L)) ,with equality if and only if L and K dilate.

Therefore,Wf(K) :W;(L) ,and K and L must dilate. Thus K=L.

Similar to the above proof,for n<i<<n-+ p,we may prove lemma 3.

To sum up,the proof of lemma 3 is completed.

Lemma 4 If K& K!,L&S!,i=0,1,,n—1,and p=> 1,

W,.(K.I',.L) = V‘g’bW,,,,,-(L,H,ﬁ,»K>. (40)
Proof From (10) and (18),and the definitions (3),(21) and (5),we have

1

W (KDl = L] h s 0dS, (Koo = !

n(n+ pre, V(L)

. P wtp—i — Wn o
L‘” ]Js” 1 [us ol pi " (0 dS(0)dS, . (K u) nV (L)

. - p—i » _ Wy .
Js"*l oL (v)hn/m,( dS(v) VD

L”,l i (Wpi# x (VdS(v) =

Wy X7 *
V(L)Wf’”(L’H”"‘K)'

So we get (40). The proof is complete.
Lemma 5 If K,L& S!and p=—= 1,for any real number i%n and i#n+p.
W.,.(K.[;.L) _ W, (L.[K)

VK V(L) “b
Proof From (12),(5) and (3),we have
W (LaD3 KO = L[ ot Gods o — n(Hp)le(K)
[ e e L v rasGds e = TR
| ok prt s = YW, (K.

So we obtain (41). The proof is complete.
Theorem 5 If K,.LEK!,p—= 1 and i=0,1,*+,n—1,and for any QE S, we have VV,,,,,v(K,Q><
W_,.(L,Q) ,then

Wi(F/’~iK)7£ -~ W;(F/),,’L)755
VK = v

W, (5 K& WL
V(K ~— Vv

(42)

(43)
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with equality if and only if K=L.
Proof Since for p= 1 and :=0,1,-,n—1,and for any QE S}, we have Wf,),, (K,Q><W,,,.,~ (L,
Q). For any M€K ,taking Q=1II, .M ,we have
W, (K. ;M) < W, (L.II;,M). (44)
From lemma 3,the equality is true if and only if K=1L.

From lemma 3,we have

W, (K. = Y Bw v, k),
Wy
and
W, LM = YD o,
Wy

Thus,together with (44) ,we get V(IKOW , . (M,I", KO V(LOW, ,(M.T",,L). Let M=T, ,L ,since p= 1
and i=0,1,++,n—1,by using (12),we obtain

n—i—p

VUOIW(D,.L) = V(KOW, ([',.L.T",.K) = V(KO)W ([, L)% W, (", , K)i.
Thus,we easily get (42). And from (44) and (13),we know that the equality holds if and only if K=L.
Since p= 1,i=0,1,+*,n—1,and for any QE S, , we have 4 P_,(K,Q)éw 2 (L,Q) ,for any M€
K;. Taking Q=TI";.,M ,we have

W, (K. DM < Wo, (LMD (45)
from lemma 3,the equality is ture if and only if K=L.
From lemma 5,we have

W, (M, [, K)V(K)
V(M)

W, (M, IOV (L)

’Wf/).z(Lvl—’/;,iM) - V(M)

Wf/,.,‘(K ’F/flM) =

Thus, together with (45),we get

V(KOW , (M, K) _VU)IW_, ,(M.T}.L)
V(M) V(M) ’

namely, V(LOW_, ,(M.I'}, L) = V(K)W_,, (M.T';,,K) . taking M=T7,L . we have V(L) W, (I';,,L) =
V(KOW_, (I}.L. T K).
Since i<n,by using inequality (20),we have
VIDOW(TEL) = VKW, (Th.L i K) = VKW, (D) L) 5 W (D KD i,
From this,we immediately obtain (43) ;and from (45) and (19),we know that the equality holds if and

<

only if K=L. The proof is complete.

For i=0,from (7) and (15),we know that theorem 5 is the generalization of the corresponding re-
sult in ref. [12].

Lemma 6 If K,L€ K',0<<i<n,p= 1,n—i7#p,for any QE K" W, (K,.Q =W, ,(L,Q) if and
only if K=1L.

Theorem 6 If K.L& K},p=>1,i=0,1,--.n—1,n—i#p,and for any QEK],we have W, ,(K,Q <
W,..(L,Q). Then

WA, K> _ W, L)
V(K) = V(L) ’

(46)

and

W (0%, K) % W%, L)

V(K) - V(L) ’ 4D

with equality if and only if K=L.
Proof From p=1,:=0,1,--,n—1,and for any Qe K, , W, (K, Q< W,,(L,Q). So for any M&
K:,taking Q=TI", M ,we have
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W, (K,[",,M) < W, ,(L,I',,M). (48)
From lemma 6,the equality holds if and only if K=L.
From lemma 2, we have

_ V(K) T
Wp,,’(K?F/;./M) I (n+j))({‘”.pV(M)Wﬁp'i(M’FipliK)’

and

V(L)
(n—+ ple,.,VIM)

together with (48),we obtain V(L)Wfp,,-(l\/l,l",,,,,-l,)E V(K)W,P,, (M.r-, K.
Taking M=I"_, L ,we have V(L)W (", . L)= V(K)W_, (I"_,.L.I",.K).
Since i< n,by using (20),we have

W,.(L.[,.M) = W, (M, ,.L).

ntp—i

VUOIWAD ,.L) = V(KW , (I ,.L.T",.K) =V WA , L)+ W. ([ ,K) .
So we easily obtain (46). And from (48) and (19),we know that the equality holds if and only if K=L.
Besides,since p= 1,i=0,1,+-,n—1,and for any QE K} .we have W,, (K, Q< W,,(L,Q). From
lemma 6,the equality holds if and only if K=L.
For any M€K ,we take Q=I"*, ;M. Then we have
W, (K, [, M) < W, (L. I'”*, ,M), (49

with equality if and only if K=L.
From lemma 5,we have

V(KOW, (M,I"*, . K)
V(M) ’

W/).i (K aFj/;.iM) -

and

V(OW, (M,I*, L)
V(M)

W, . (L, M) =

According to (49),we easily have
VIDOW, (M,I*, ;L) = VKOW, (M., .K).

Taking M=TI", L in above inequality,and using (13).,we immediately obtain

VDWW (T*,.L) = V(KOW, (I, .L.T"*,.K) = V(KOW,(I'*, L) 5+ W, (", K ).
Thus,we immediately obtain (47). And from (49) and (13),we know that the equality holds if and only
if K=L. The proof is complete.

If i=0,from (7),we know that theorem 6 is the generalization of the corresponding result in ref.
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