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Abstract

A significant theoretical advantage of search-and-scorthods for learning
Bayesian Networks is that they can accept informative goaéiefs for each pos-
sible network, thus complementing the data. Currently hanghere are limited
practical ways of assigning priors to each possible netwdrkthis paper, we
present a method for assigning priors based on beliefs oprésence or absence
of certain paths in the true network. Such beliefs corredgorknowledge about
the possible causal and associative relations betweerr afpedriablesX and
Y. This type of knowledge naturally arises from prior expesintal and observa-
tional datasets, among others. We show that incorporatialy prior knowledge
may not only improve the learning of the direction of the @uslations in the
network, but also the learning of the network skeleton. Tiparticularly the
case when sample size is low and thus prior knowledge inessasmportance.
Our approach is based on converting possibly-incoherdigtfe@bout marginals
to joint distributions of priors by use of optimization thgo

1 Introduction

One theoretical advantage of the search-and-score appto&earning Bayesian Networks [1] ver-
sus the constraint-based approadh [2] is that the formeralft accepts priors for each network.
Since the number of possible networks is super-exponéatiaé number of variables, in a practical
setting one has to assign priors in an implicit way, avoigingmeration of all structures. For exam-
ple, one could devise an easily-computable function foptiar given a network. In addition, prior
network probabilities have to be assigned so that they taflacprior knowledge on the domain.

In this paper, we present a method that accepts users’ déliefbabilities) regarding the possible
paths between a set of pairs of variab{éS Y'). Paths between variables directly correspond to
causal or associativerelations, e.g.. X causesY’, X andY do not cause each other but have a
common ancestor, ok andY are statistically associated. For each possible netwbekirtethod
can efficiently compute its prior corresponding to thesautrigeliefs. It can thus be employed by a
search algorithm trying to maximize the score of a network.

Causal knowledge is naturally derived from prior experitabdata while associative knowledge
from observational data. For example, consider a daf@seeasuring the average amount of ex-
ercise per weelfZ, calcium in dietC, occurrence of osteoporosis by 60ypsand smokingS in

a cohort of women. A Bayesian Network could be induced by gpr@priate learning method.
However, if a priorexperimental studghowed that increasing the amount of exercise, reduces the
occurrence of the disease, then the knowledge fact #iatguses (i.e., causally affects] with
probability p should be incorporated during learning. Similarly, if agoreohort study (observa-
tional study) has shown that smoking correlates with red@ercising then knowledgéand £

are associated] with probabilipy should also be included. The belief strengttendp’ depend on
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several factors, such as the statistical power of the sthdyp-values, and the quality of the prior
studies. Notice that the facE[causes)] does notorrespond to the presence of the edge> O

in the network: the edge impliesdirect causal relation whilef causes)] does not depend on the
context of modeled variables.

In simulated proof-of-concept experiments we show thatre scoring method can indeed take
advantage of prior knowledge. When provided with causailtedge, it is able to better leathe
orientationsof the edges and the causal relations. For example, letusiaghat one learns from the
data the Markov-Equivalence class of the Bayesian Netw@adted the Partially Directed Acyclic
Graph (PDAG) or the essential graph) [2] with the maximurelitkood to beX — Y — Z. When
given prior knowledge that{ causesZ] with high probability, the networkk — Y — Z obtains a
higher a posteriori probability than all other networkshie PDAG. In addition, informative priors
can also facilitate learninthe skeletorof the network; intuitively, prior belief thak andY are
associated tends to induce the true edges that connectdhathables.

One important technical difficulty in the proposed methotth& of computing the joint distribution
of the input path beliefs, e.g., computiit{ X cause¥’, Y causes/) given P(X cause¥’) = 0.8
andP(Y causesZ) = 0.8. On one hand, there may be several choices for the joint gheesame
marginal beliefs. For example, in the above scenario we cfem P(X caused’,Y causes?) €
[0.6,1]. Thus,path beliefs are inherently depende@n the other hand, the beliefs maybeoherent
[3], i.e,. not extendable to a joint distribution that sfitis the probability axioms. We present a
method that computes a joint distribution of the path propssuch that: when the path beliefs are
coherent the joint is the closest to uninformative priorbew the input beliefs are incoherent the
paths’ joint is chosen coherent and induces path probiakititat are the closest to the input beliefs.
Once the joint is computed, it can be employed to compute tiioe @f a network, e.g., the prior of
X =Y — Zis proportional taP(X causes’, Y causes’).

There are currently several other methods that make usdaflprowledge when learning a net-
work, e.g., using knowledge regarding the parameters oh#teork [4], a causal total order of
the variables[[1] (i.e. totally ruling out all networks thtatnot admit the given total order), or the
presence or absence of directed edges in the network [Sibbpsgth beliefs assigned to them
[6[7]. Directed edges corresponddivect causal relationsi.e,. relations not mediated by any other
variable in the model. Being “direct” depends on the contegt, the modeled variables. Such
knowledge does not naturally arise from other sources ssigiast datasets or even expert opinion.
Other work represents prior knowledge in the form of a priay®&sian Network: prior probabili-
ties are assigned based on the distance from this netivarlAfiin, it is highly unlikely that such
complete prior knowledge is available in a domain to comstitis prior network. In general, it can
be argued that the type of knowledge the existing methodincanporate during learning is not in
a form that can be easily acquired. As a result, uniform - &og tininformative - priors are com-
monly used when learning Bayesian Networks from d@tee problem of incorporating informative
priors while learning is listed in the list of open problemsa recent causality editorigdB]

Prior work that specifically considers the problem of pathsteints or beliefs id [10, 11]. The
method in[[10] assumes offiest learnsa Markov-Equivalence class of Maximal Ancestral Graphs
(a generalization of Bayesian Networks that admits hidderables)([2] from data anthen prior
knowledge in the form of path constraints is imposed on tteplgr In contrast, in this work the
network is learntvith the help of the prior knowledg&econd, in these works the path priors consist
of hard constraints that do not admit degrees of belief._Ih§flmethod is presented for incorporating
beliefs on paths, but relies on computationally expensiegldv Chain - Monte Carlo (MCMC)
simulations. However, neither the latter, nor any otherhoétdealing with prior knowledgéel[6] 7]
deals with the issues of dependent, and possibly, incohkediefs.

2 Background

We assume the reader’s familiarity with Bayesian Netwdfk[[L3] corresponding learning algo-
rithms and just briefly review the basic concepts. Vdie a set oi random variable¥;, ..., V,,.

In the rest of the paper, we assume discrete variables batétieod applies to any type of variables.
A Bayesian Network(BN) overV is a pair5 = (Gy, Py), whereGy, is aDirected Acyclic Graph
(DAG) representing conditional independencies betweenalks), and Py, is the joint distribution
of V. The graph and distribution must be connected by the equ&tio= [[ P(V;|Pag(V;)), where



Pag(V;) are the parents df; in G. The above equation is equivalent to what is called the Marko
Condition. When the network is fixed in a context we drop thieies), G from the equations.

Theskeletonof a Bayesian Network is the undirected graph which can be constructed by ignoring
the orientations ofj. A triple of vertices(X,Y, Z) is called acollider in G, if X — Y «+ Zis

in G. A collider (X,Y, Z) is unshieldedif X and Z are not adjacent ig. Two BNs are called
Markov equivalent if: (a) they have the same skeleton, and (b) they have the sahoé unshielded
colliders. APartially Directed Acyclic Graph (PDAG) (also known as essential graph) is a graph
representing a set of Markov equivalent BNs. It has the s&eleton as all BN representatives and
an edge is directed if and only if it is invariant in all BN regentatives, and is undirected otherwise.
We call adirected path from X to Y (denoted asX = Y") in a graph a sequence of unique edges
and nodes in the grapf — V; — ... — V; — Y. Wedenote asX < Y the case where there
is a distinct nodeZ € V that is a common ancestor &f andY (i.e., X < Z = Y) but neitherX

is an ancestor of” nor the reverse. Al-connecting path(given the empty set) betweet andY
exists if eitherX = Y, X < Y, or X & Y. The absence of &connecting path betweek and

Y is denoted asX < Y. In the rest of the paper, we assume the Faithfulness CondRi that
(together with the Markov Condition) implies thidtere is ad-connecting path betweek andY,

if and only if the two nodes are statistically associatedo@®dent) This assumption is important
only when considering associative priors.

Assume we are given a complete multinomial datd3etver variables). The probability of a
network (or modell overV is P(G|D) = % x P(D|G) - P(G). Taking the logarithm
of each side we obtaiog P(G|D) o log P(D|G)+log P(G). The firsttermis the log likelihood of
the data given the graph, while the second the log of the pfithre graph. The graph that maximizes
log P(G|D) also maximizes the right-hand side. Bayesian scoring nasthoch as BDe, BDel,][8]
and K2 [1] try to approximate the log-likelihood based orfet&nt assumptions. Thus, in general
all such scoring methods can be decomposed as:

Se(GID) = Se(D|G) + Se(G) 1)

When priors are uniform the teric(G) can be ignored during maximization. In our setting how-
ever, this term may become important.

3 Representing Prior Path Beliefs

For any paitX,Y € V we may have a prior belief on the possible paths connectityth variables

in the network. It is important that we devise cases for suathpthat arenutually exclusivand
allow the representation of common types of causal and &b knowledge This is possible
as follows: we define the variables; taking values in the sdt=, <, <, <} with the semantics
Vi=V;,V, < V;, V; & V;, andV; & V; respectively. When the specific variablés V; we refer

to are not important we will use a single index. The inputK (knowledge) to our method is a set
of prior distributions for some variables ;. An example is shown in Tablella(Top) expressing the
belief that most likely there is a directed path frofto Y and fromY to Z.

The possible paths between variables dictate their pessiinisalandassociativerelations. When
the Bayesian Network is interpreted causally, thén=- Y is equivalent to X causest]. In
addition, as discussed in the previous sectifin= Y or X < Y or X < Y is equivalentto K is
associated witlY’]. Thus, a distribution?,, |, = (7=, 7T—, T, Te) cOrresponds to the following
beliefs about the causal and associative relations:

P(X causey’) = 7= P(X doesnotcausF) = 1 + e + Tes
P(X associated with") =7, + 7~ + 7. P(X not associated with") = 7,

In practice, it is useful to allow the user to specify priolibfs directly on the eventsY (not) causes
Y] and [X is (not) associated witl] from which the distributionP, ., can be derived, than the
opposite. This is not difficult: for example giva(X caused”) = n— the mass of probability
1 — m— has to be distributed in a reasonable way to the other thleesa_, 7., 7... However,
we avoid this belief representation to simplify the preasoh of the method.



Table 1: (a) (Top Part) Prior beliets regarding the paths between three pairs of variables. The
beliefs arencoherent P(X = Y) = 0.8 andP(Y = Z) = 0.9 imply thatP(X = Z) € [0.7,1].

(a) (Bottom Part) Inducedoherentbeliefsk’ stemming fronK by solving the quadratic program

in Eq.[10. (b) A part of the joint probability distribution computed by solving E4._10 with input

K. The number of DAGs with 5 nodes for each configuratidisis also shown. The total number

of DAGs with 5 vertices iV = 29281. The total number of configurations4$ = 64. Notice that

C> andCj5 have both zero counts and zero probability, because thayarkd.

(a) (b)

K = = PN & rxy | v,z | *x,z pc Nc

rxv(r1) | 0.8 | 0.132] 0.028] 0.04 |[ C: = = = 05068 | 2800
rv.z(r2) | 0.9 | 0.066| 0.014| 0.02 || C3 = = = 0 0
rxz(r3) | 0.6 | 0.264| 0.056| 0.08 || Cs = = = 0 0

Txv(r1) | 0.705| 0.175 | 0.051 | 0.069 | | C | # = = 0.0244 | 1045
Tv.z(r2) | 0.802 | 0.114 | 0.042 | 0.042 | | --- TR
Tx.z(rs) | 0.611| 0.245| 0.061 | 0.083 || Ces | & % | 1.57-10° | 309

4 Computing Priors and Scores

In this section, we derive a scox(G|D, K) for a network graphG given dataD andn prior
distributions on paths beliefs iK. An important requirement for the computation of the scare i
knowledge of a joint distributiodd = P(rq,...,r,) = P(r) such that its marginals correspond to
the distributions irk. J assigns a probability value to each of tfiepossible joint instantiations of
values to variables = (rq, ...r,). We denote withC' (configuration) such a given joint instantiation
and define

pc =P(r=C|J)
In this section, we assumg is already computed; the next section describes the dethilsis
computation. The joinf stemming fronK in Table[Z&(Top) is shown in Tadlellb. Itis importantto
notice thatfor each graphG the configuratiorC' is uniquely determined~or example, in the joint
of Table[Ib, if in a graplt it holds X = Y, Y = Z, X = Z thenr = ;. Thus, it makes sense
to denote withC' the joint instantiation of variablasin graphG.

Let G be a Bayesian Network graph aftla dataset over the same variables. We now compute the
probability P(G|D, J):
P(D|G,J)- P(G|J) P(D|G)-P(G|J)
P(G|D,J) = =
(.7 P(DI) P(DIJ)
The second equation stems from the fact that given the gratite dataD are independent of
(J does not provide any additional information about the datzedhe graph is known). The factor
P(D|J) is a normalizing constant that does not need be computed wlenaximize the above
equation over different graphs. The fac®(D|G) is the likelihood of the data given the graph; in
Sectiorf2 we mention several approximations (e.g., BDesgdban different set of assumptions for
each computation. We now focus on the ptfG|.J):

P(G|J) =Y _ P(G,C|J) = P(G,Cgl|J)
C

The last equation holds becauBéG, C|J) equals zero for all' # C¢, since each graph entails
exactly one configuration. Subsequently:

P(G|J) = P(G,C¢|J) = P(G|J,Cq) - P(Cg|J) = P(G|Cq) - P(Cg|J) = P(G|Cq) - pce

The factorP(G|C¢) is our prior on a grapliz given that a specific configuration holds. Given no
other preference or knowledge assign the same (uniform) prior to all graphs with the saowe
figuration Thus, lettingN¢ be the number of graphs over nodésharing the same configuration
C'thenP(G|C¢) =1/N¢, and so :

P(G|J) = ]pVCCG and  Sc(G|J) = logpc,, — log N, @)
G




Similarly to Eq.[1 the overall score of a graph is:
Sc(G|D, J) = Se(D|G) + Sc(G|J) 3)
The scoreS¢(G|D, J) has two desirable properties:

1. Markov-Equivalent graphs that satisfy the same path-beliés obtain the same score.
The last term in the equation above is the same for graphinghiiire same configura-
tion. The first term is the same for Markov-equivalent graptevided one employs an
appropriate scoring function, such as the BDe and BDeu s{8fe

2. For uninformative prior beliefs, all graphs are equiprobable, i.e., P(G|J) = 1/N,
where N is the number of graphs over nod¥s With uninformative beliefs we expect
to encounter a given configuration with probability equathe proportion of the graphs

N¢

satisfying the configuration, i.epc = 5. In that caseP(G|J) = % -N¢ = + and

we end up with uniform priors as we would expect.

While Eqg. [2 follows the above two properties, we point outtie fact that the factot/N¢,
may seem to provide counter-intuitive results at a first ggarLet's assume that for configurations
C1, Cs, the following holds;p; = 0.6 andp, = 0.2. In other words, the prior beliefs state that it is
3 times more probable a priori that the true graph has cordigurC; thanCs. Now, let us assume
that N; = 60 and N, = 10 and letG;, G5 be two graphs consistent with configuratiafig, Cs
respectively. We then obtain:

P(GllJ) P1 'N2 0.6 x 10 1

P(Ga|lJ)  pa-Ni  02x60 2

Thus, any graph consistent witly has twice the prior than any graphdi. This may seem counter-
intuitive since the user has specified tliatis 3 times more likely to be encountered th@n This

is true considering the total probability masstaf andCs. However, since this mass is distributed
over more graphs consistent with thanC-, each individual graph in the first configuration is less
probably than any graph in the second configuration.

The implications of the above observation is that, evenglélse being equal, higher priors will
tend to be assigned to graphs in “small” configurations, censistent with only a few graphs . If
this behavior is not desirable then one can droplth€. factor and use:

P(G|J) =pc. and Sc(G|J) =logpce 4)
However, if this score is used in place of [E¢]. 2 then Projjéeg@e is not satisfied any more.

Computing the number of graphs No. The numberV of DAGs over node$’ has been solved
in closed-form[[14]. However, there is no closed-form to blest of our knowledge for the number
N¢ of DAGs that satisfy certain path-constraints. When the Ineinof nodes is small (up to 5-
6) one can enumerate all DAGs and compute esighfor each configuratiod' by counting. The
number of possible DAGs however, grows super-exponeyt@the number of nodes and complete
enumeration is not an option. In this case, we estimate tbesets by sampling a numbér of
random DAGs with uniform probability. Specifically, we ingphented the recent method in [15]
that unlike prior work[[18], avoids the use of expensive MarChain, Monte-Carlo methods to
ensure uniform sampling from the space of DAG&. can be estimated a%N, whereS¢ is the
number of sampled DAGs that conform to configurationWhen the number of configurations is
large orN¢ /N is small one may never sample any graph consistent@itho avoid zero estimates,

we apply the Laplace correctiotNo = S,Si’;llN, wherec is the number of configurations anén

arbitrary parameter (we use the value 1).

5 Computing the Joint Distribution J given Prior Path Beliefs K

Eqg. [2 shows how to compute the prior probability of a graphegithe joint distributionJ of
path beliefsr. In this section, we show how to compufegiven the marginal beliefs on paths
involving pairs of variables stored iK. We denote withr,, ; the probability thai, takes value
jEeE =, 8,8

Tk = P(re =7)



(a) (b)

Figure 1: We assume the prior beliésin Table[T&(Top) and the correspondifgn Table[Ib. (a)
The configuratiol”; = {X = Y,Y = Z, X = Z} holds in the graph. Fgr, = 0.5068 (see Table
[IB) we obtain the scorBc(G|K) = log(0.5068) — log(2800) = —8.6171. (b) The configuration
Cyp ={X & Y,Y = Z X = Z} holds in the graph. Fap,g = 0.0244 we obtain the score
Sc(GIK) = log(0.0244) — log(1045) = —10.6662. As expected, the first graph has a higher prior
than the second one sinde=- Y is given a higher probability thak <« Y in Table[Z&(Top).

The valuesr are provided irK. Theunknown quantitiearep for each configuratiod' in J. Let
Cr; =A{C, s.t.ry = j}, i.e., the set of configurations where variabjeobtains valug. For eachk
and; we obtain the following constraints:

Tk,j = Z pbc (5)

CeCy,;

In other words, the marginals of the joint should equal opuirpath beliefs. An important obser-
vation that is characteristic of this problem, is tpath beliefs are not independent in genefabr
example if one believes with certainy = Y = Z, then they have to believ® = Z to be coher-
ent. Thus, it is important to consider the following constts, stemming from the path semantics
of the variables:

pc = 0, whenC'is invalid (6)
By invalid we mean a configuration that cannot be satisfiechkygraph of any Bayesian Network
overV, e.g., it contains directed cycles. The algorithm to deitealid configurations is discussed
later. To complete the problem specification we impose that:

Y pc=1 and pc >0 )

c
If constraints in Eqs[]9.]16.]7 can be satisfied then a jointitigion adhering to the probability
axioms can be found such that the prior marginal path behefd. In this case, by definition
K is coherent otherwise it isincoherent Notice that all constraints together form a set of linear
equations that is easy to solve or determine it has no (ngative) solution. However, the number
of unknownsp equalsd™, wheren are the input path beliefs and so the computational overhead
increases exponential with

Dealing with Coherent Beliefs The systems of equations contais constraints from Ed.15n
constraints from Eq.]16 and 1 constraint from [Ef. 7 dhdinknowns. For most typical problems,
4n 4+ m + 1 < 4™ and so the system may have infinite solutions. We argue tteasloould choose
a solution jpdJ as close to the uninformative one as possible. Any otheriloigsion may introduce
bias towards certain configurations, even if the prior kremlgle does not suggest preference over
those configurations. In other words, if the uninformatpé js a coherent extension of the prior
knowledge, there is no reason to prefer any other solutien ibv The problem can be formulated
as follows:
= N,
minZ(pk - —k)2 subject to constraints in EJS.[5[®, 7 (8)
P N

The quantity%, whereNy, is the number of graphs consistent with configuratiGrand N the total
number of DAGs ovel corresponds to the uninformative priors where each grapfugprobable.
The optimization problem of Ed]] 8 is a quadratic program ¢atic objective function with linear
constraints) and can be solved accurately and relativétjerftly (to the number of unknowns).

Dealing with Incoherent Beliefs In this case, there is no jpd that can equal the marginaltinpu
beliefs. Instead of requesting coherent beliefs or igrptite incoherency, we seek for joints with
marginals as close as possible to the user’s input belidgfs.cbnstraints in Eq.]5 are now modified
to include slack variables ;, i.e., the amount by which the original constraints areatied:

Tk,j + Sk,j = Z pc 9)
CeCy,;
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Figure 2: Proof-of-concept, experimental results. (a)rhaay the orientations and the skeleton is
facilitated by causal prior knowledge. (b) Learning thepdras facilitated by correct associative
prior knowledge and hindered by incorrect priors. (c) Léagrthe ALARM network with 5 pieces
of informative associative beliefs and without.
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This system of equations is always solvable; out of all $ohs preference should be given to solu-
tions that violate the original constraints the least, legdo the following optimization problem:

4n 4m
Igisrlz stta-y (pk— W’“)Q subject to constraints in EJS.[A[®, 7 (10)
=1 k=1

This problem tries to simultaneously minimize a trade-@feen (a) the difference between the
marginal probabilities and the user beliefs and, (b) thiedéhce between the solution jpd and the
uninformative jpd. The trade-off is controlled by the pastara. Fora = 0 one finds a valid jpd
so that its marginals are as close as possible to the inpefadrora = 4n /4" (the ratio of terms

in each summand) each summand is assigned equal importhisis the value we employ in our
experiments). Table1b contains the joinstemming fronK of Table[Ta(Top) computed by solving
Eq.[10. For comparison with the input beliéfs Tabld Ta(Bottom) contains the marginal belikfs
implied by J: «; ; = m; ; + si ;. The values in Table 1a(Top) and Tablé 1a(Bottom) are cloih,
the later one representing coherent beliefs.

Determining Invalid Configurations. To identify all constraints in Ed.] 6 we have implemented the
following algorithm. For each configuratiafi, we construct a grap&’ with nodes the variables
that appear in at least one prior path belief. For each as@gtrxy = “ = " orrxy = “ <7

in C, we add the edg&X — Y or X «+ Y respectively, inG’. In addition, for each assignment
rxy = “< 7 we add a new dummy nodg to G’ and add the edges + V; — Y. Configuration
C'isinvalid in jthe following cases: (&)’ contains cycles, (b) for som¥, Y in G’, X has a directed
pathtoY andryy = “% " orrxy = “< 7 in C, and (c) for someX,Y in G’, X has a path to

Y in G’ (not necessarily directed) amgty = “ < 7 in C.

This algorithm is obviously sound, but it is not complete. dlgem may arise when the number
of dummy nodes added 1@ exceeds the number of available nodes (variables) in tlee tlathat
case, it may seem that a configuration is valid, but there noap@ enough variables to satisfy all
confoundings relations in the context of the remaining path constraifitee simplest example is
a dataset with two variable¥ andY: the configuration'xy = “ < ” is invalid as there is no
other variable to serve as common ancestor. Yet, the ab®es aaill not identify it as such. A
less trivial example igxy = “ & ” andryz = ¢ = ” when the only variables ar&,Y, Z.
Sincerxy = “ & ” it has to be thafX « Z = Y which conflicts withryz; = “ = 7. Our
intuition is that a complete algorithm requires solving astoaint satisfaction problem. However,
when the number of variables in the data is large relativeéaumber of path beliefs (specifically
if |Vaata| > |V | holds), the algorithm becomes complete (proof omitted fiace).

6 Experimental Results

Employing Causal Knowledge We consider the grapf’ — Y — Z. As prior knowledge
we setP(X = Z) = 0.9 and distribute the remaining 0.1 mass of probability to tmaining
values ofrx z proportional to the values that correspond to a uniformrpli¢e repeat the following



experimentl0000 times: (a) we randomly select the number of states for eaghbla to be either
3 or 4, (b) we sample the cpts for each variable using the gadistdbution (yamrnd Matlab
function with shape parametdrset t00.5 and scale parametét set tol), (c) we sample a dataset
of size200 from the network given the previously sampled cpts, (d) veegase the samples of the
dataset to provide to the scoring method from 10 to 200 witp size of 10, (e) we identify the
highest scoring network out of all 25 possible DAGs usinginfative priors and the BDeu score
with Equivalent Sample Size (ESS) set to 1 (se€fq. 3), (fiméazly identify the highest scoring
network with uniform priors.

Results: Figure[2a plots the percentage of the time the PDBG Y — Z of the true network was
found exactly with and without informative priors. Firsttioe, that when the true PDAG is found
exactly, the edges are alatways oriented correctly since the true network has a higin®r than

any other Markov-equivalent grapHPerhaps more surprising though, notice that the inforraati
priors alsaincrease the learning of the skeletofhe beliefX = Z tends to add a path fro¥ to

Z. The associationX — Y andY — Z are always higher than or equal to the association between
X — Z (seel[17]). Thusit is the correct pathX — Y — Z that tends to be induced, rather than any
other network with a pattk’ = 7.

Employing Associative Knowledge We run a similar proof-of-concept experiment where the
true network is a single collideK — Y <« Z. We use the same settings as before for three
cases: correct associative prigtéX < Z) = 0.9, uniform priors, and incorrect associative priors
P(X associated witlZ) = 0.9.

Results: The results are shown in Figurel2b. As expectastrect prior beliefs clearly improve
the chances of identifying the true PDAG; the effect is dyxdbe opposite when misleading, in-
correct beliefs are provided to the algorithi®f course, asymptotically the priors, whether correct,
incorrect, or uninformative play no role.

Learning Larger Networks. We sample 1000 datasets from the distribution of the ALARM-n
work [18]. We learnt the network using greedy search-amateswith the typical operators add,
delete, and reverse an edge, and the BDeu metric with ESS=lvavy the sample size given to
the algorithms withi{ 50, 75, 100, 150, 200}. For each dataset, we randomly pick 5 pax5Y") of
variables on which to provide informative associative idf X < Y in the true network, we set
P(X @ Y) =0.9, otherwise, we seP(X < Y) = 0.1. We run search-and-score starting from the
empty graph with and without the informative priors and comegghe Structural Hamming Distance
[19] from the true network. The simple search operators da@onsider and neither exploit the path
beliefs to improve optimization. We thus, also run the seaned-score algorithm starting from the
true network to gauge the potential for improvement whenteebsearch method is employed, that
at some point visits the true network.

Results: The results are shown in Figufe]l2cln both cases, the SHD is smaller with the
informative priors than with uniform priors. The differences in SHD for each sample size
are always statistically significant (using a one-samplest}, with p-value close to the ma-
chine epsilon. For low sample sizes (50 and 75) the 95% cardalénterval of the SHD
differences aregf10.0959,11.7821],[6.1051, 7.2349] when starting from the empty graph, and
[8.8170,10.6630], [6.2721, 7.5399] when starting from the true graph.

7 Discussion and Conclusions

We present a method for computing informative priors givesetaof causal and associative beliefs
on pairs of variables. The priors can then be employed by easch-and-score learning algorithm.
Such beliefs can be induced from prior experimental or olagiemal studies respectively, among
other sources. The method, for the first time, addressesshes of incoherent priors and priors that
are notindependent. Providing correct priors about pagwausal or associative relations improves
learning both in terms of identifying the orientation of #ges (for causal priors), but also in terms
of identifying the skeleton of the network.

There are numerous issues to still address regarding betméthod and the general problem. The
algorithm computes a joint of prior beliefs that is exporario the input (number of beliefs). More

efficient algorithms that perform this operation impligitire desirable. The search method for
the optimal graph, in the context of informative priors b@es more complicated; typical greedy-



search with operators on the edges alone may not suffice. Etergnd efficient algorithms for
determining invalid configurations, as well as closed-f@wtutions for computing the number of
graphs given path constraints are desirable. Finally ripm@ting the strength of the causal effects
or associations and other prior knowledge characteristias interesting future direction to pursue.
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