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Abstract

A significant theoretical advantage of search-and-score methods for learning
Bayesian Networks is that they can accept informative priorbeliefs for each pos-
sible network, thus complementing the data. Currently however, there are limited
practical ways of assigning priors to each possible network. In this paper, we
present a method for assigning priors based on beliefs on thepresence or absence
of certain paths in the true network. Such beliefs correspond to knowledge about
the possible causal and associative relations between a pair of variablesX and
Y . This type of knowledge naturally arises from prior experimental and observa-
tional datasets, among others. We show that incorporating such prior knowledge
may not only improve the learning of the direction of the causal relations in the
network, but also the learning of the network skeleton. Thisis particularly the
case when sample size is low and thus prior knowledge increases in importance.
Our approach is based on converting possibly-incoherent beliefs about marginals
to joint distributions of priors by use of optimization theory.

1 Introduction

One theoretical advantage of the search-and-score approach to learning Bayesian Networks [1] ver-
sus the constraint-based approach [2] is that the former naturally accepts priors for each network.
Since the number of possible networks is super-exponentialto the number of variables, in a practical
setting one has to assign priors in an implicit way, avoidingenumeration of all structures. For exam-
ple, one could devise an easily-computable function for theprior given a network. In addition, prior
network probabilities have to be assigned so that they reflect our prior knowledge on the domain.

In this paper, we present a method that accepts users’ beliefs (probabilities) regarding the possible
paths between a set of pairs of variables〈X,Y 〉. Paths between variables directly correspond to
causalor associativerelations, e.g.,X causesY , X andY do not cause each other but have a
common ancestor, orX andY are statistically associated. For each possible network, the method
can efficiently compute its prior corresponding to these input beliefs. It can thus be employed by a
search algorithm trying to maximize the score of a network.

Causal knowledge is naturally derived from prior experimental data while associative knowledge
from observational data. For example, consider a datasetD measuring the average amount of ex-
ercise per weekE, calcium in dietC, occurrence of osteoporosis by 60yrsO and smokingS in
a cohort of women. A Bayesian Network could be induced by any appropriate learning method.
However, if a priorexperimental studyshowed that increasing the amount of exercise, reduces the
occurrence of the disease, then the knowledge fact that [E causes (i.e., causally affects)O] with
probabilityp should be incorporated during learning. Similarly, if a prior cohort study (observa-
tional study) has shown that smoking correlates with reduced exercising then knowledge [S andE
are associated] with probabilityp′ should also be included. The belief strengthsp andp′ depend on
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several factors, such as the statistical power of the study,the p-values, and the quality of the prior
studies. Notice that the fact [E causesO] does notcorrespond to the presence of the edgeE → O
in the network: the edge implies adirectcausal relation while [E causesO] does not depend on the
context of modeled variables.

In simulated proof-of-concept experiments we show that thenew scoring method can indeed take
advantage of prior knowledge. When provided with causal knowledge, it is able to better learnthe
orientationsof the edges and the causal relations. For example, let us assume that one learns from the
data the Markov-Equivalence class of the Bayesian Networks(called the Partially Directed Acyclic
Graph (PDAG) or the essential graph) [2] with the maximum likelihood to beX − Y − Z. When
given prior knowledge that [X causesZ] with high probability, the networkX → Y → Z obtains a
higher a posteriori probability than all other networks in the PDAG. In addition, informative priors
can also facilitate learningthe skeletonof the network; intuitively, prior belief thatX andY are
associated tends to induce the true edges that connect the two variables.

One important technical difficulty in the proposed method isthat of computing the joint distribution
of the input path beliefs, e.g., computingP (X causesY, Y causesZ) givenP (X causesY ) = 0.8
andP (Y causesZ) = 0.8. On one hand, there may be several choices for the joint giventhe same
marginal beliefs. For example, in the above scenario we can inferP (X causesY, Y causesZ) ∈
[0.6, 1]. Thus,path beliefs are inherently dependent. On the other hand, the beliefs maybeincoherent
[3], i.e,. not extendable to a joint distribution that satisfies the probability axioms. We present a
method that computes a joint distribution of the path properties such that: when the path beliefs are
coherent the joint is the closest to uninformative priors; when the input beliefs are incoherent the
paths’ joint is chosen coherent and induces path probabilities that are the closest to the input beliefs.
Once the joint is computed, it can be employed to compute the prior of a network, e.g., the prior of
X → Y → Z is proportional toP (X causesY, Y causesZ).

There are currently several other methods that make use of prior knowledge when learning a net-
work, e.g., using knowledge regarding the parameters of thenetwork [4], a causal total order of
the variables [1] (i.e. totally ruling out all networks thatto not admit the given total order), or the
presence or absence of directed edges in the network [5] possibly with beliefs assigned to them
[6, 7]. Directed edges correspond todirect causal relations, i.e,. relations not mediated by any other
variable in the model. Being “direct” depends on the context, i.e., the modeled variables. Such
knowledge does not naturally arise from other sources such as past datasets or even expert opinion.
Other work represents prior knowledge in the form of a prior Bayesian Network: prior probabili-
ties are assigned based on the distance from this network [8]. Again, it is highly unlikely that such
complete prior knowledge is available in a domain to construct this prior network. In general, it can
be argued that the type of knowledge the existing methods canincorporate during learning is not in
a form that can be easily acquired. As a result, uniform - and thus uninformative - priors are com-
monly used when learning Bayesian Networks from data.The problem of incorporating informative
priors while learning is listed in the list of open problems in a recent causality editorial[9]

Prior work that specifically considers the problem of path constraints or beliefs is [10, 11]. The
method in [10] assumes onefirst learnsa Markov-Equivalence class of Maximal Ancestral Graphs
(a generalization of Bayesian Networks that admits hidden variables) [2] from data andthen, prior
knowledge in the form of path constraints is imposed on the graph. In contrast, in this work the
network is learntwith the help of the prior knowledge. Second, in these works the path priors consist
of hard constraints that do not admit degrees of belief. In [11] a method is presented for incorporating
beliefs on paths, but relies on computationally expensive Markov Chain - Monte Carlo (MCMC)
simulations. However, neither the latter, nor any other method dealing with prior knowledge [6, 7]
deals with the issues of dependent, and possibly, incoherent beliefs.

2 Background

We assume the reader’s familiarity with Bayesian Networks [12, 13] corresponding learning algo-
rithms and just briefly review the basic concepts. LetV be a set ofn random variablesV1, . . . , Vn.
In the rest of the paper, we assume discrete variables but themethod applies to any type of variables.
A Bayesian Network(BN) overV is a pairB = 〈GV ,PV〉, whereGV is aDirected Acyclic Graph
(DAG) representing conditional independencies between variablesV , andPV is the joint distribution
of V . The graph and distribution must be connected by the equationPV =

∏
P (Vi|PaG(Vi)), where
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PaG(Vi) are the parents ofVi in G. The above equation is equivalent to what is called the Markov
Condition. When the network is fixed in a context we drop the indexesV ,G from the equations.

Theskeletonof a Bayesian NetworkG is the undirected graph which can be constructed by ignoring
the orientations ofG. A triple of vertices〈X,Y, Z〉 is called acollider in G, if X → Y ← Z is
in G. A collider 〈X,Y, Z〉 is unshielded if X andZ are not adjacent inG. Two BNs are called
Markov equivalent if: (a) they have the same skeleton, and (b) they have the sameset of unshielded
colliders. APartially Directed Acyclic Graph (PDAG) (also known as essential graph) is a graph
representing a set of Markov equivalent BNs. It has the same skeleton as all BN representatives and
an edge is directed if and only if it is invariant in all BN representatives, and is undirected otherwise.
We call adirected path fromX to Y (denoted asX ⇒ Y ) in a graph a sequence of unique edges
and nodes in the graphX → V1 → . . . → Vj → Y . We denote asX ⇔ Y the case where there
is a distinct nodeZ ∈ V that is a common ancestor ofX andY (i.e.,X ⇐ Z ⇒ Y ) but neitherX
is an ancestor ofY nor the reverse. Ad-connecting path(given the empty set) betweenX andY
exists if eitherX ⇒ Y , X ⇐ Y , orX ⇔ Y . The absence of ad-connecting path betweenX and
Y is denoted asX < Y . In the rest of the paper, we assume the Faithfulness Condition [2] that
(together with the Markov Condition) implies thatthere is ad-connecting path betweenX andY ,
if and only if the two nodes are statistically associated (dependent). This assumption is important
only when considering associative priors.

Assume we are given a complete multinomial datasetD over variablesV . The probability of a
network (or model)G overV is P (G|D) = P (D|G)·P (G)

P (D) ∝ P (D|G) · P (G). Taking the logarithm
of each side we obtainlogP (G|D) ∝ logP (D|G)+logP (G). The first term is the log likelihood of
the data given the graph, while the second the log of the priorof the graph. The graph that maximizes
logP (G|D) also maximizes the right-hand side. Bayesian scoring methods such as BDe, BDeu, [8]
and K2 [1] try to approximate the log-likelihood based on different assumptions. Thus, in general
all such scoring methods can be decomposed as:

Sc(G|D) = Sc(D|G) + Sc(G) (1)

When priors are uniform the termSc(G) can be ignored during maximization. In our setting how-
ever, this term may become important.

3 Representing Prior Path Beliefs

For any pairX,Y ∈ V we may have a prior belief on the possible paths connecting the two variables
in the network. It is important that we devise cases for such paths that aremutually exclusiveand
allow the representation of common types of causal and associative knowledge. This is possible
as follows: we define the variablesri,j taking values in the set{⇒,⇐,⇔,<} with the semantics
Vi ⇒ Vj , Vi ⇐ Vj , Vi ⇔ Vj , andVi < Vj respectively. When the specific variablesVi, Vj we refer
to are not important we will use a single index:rk. The inputK (knowledge) to our method is a set
of prior distributions for some variablesri,j . An example is shown in Table 1a(Top) expressing the
belief that most likely there is a directed path fromX to Y and fromY toZ.

The possible paths between variables dictate their possible causalandassociativerelations. When
the Bayesian Network is interpreted causally, thenX ⇒ Y is equivalent to [X causesY ]. In
addition, as discussed in the previous section:X ⇒ Y orX ⇐ Y orX ⇔ Y is equivalent to [X is
associated withY ]. Thus, a distributionPrX,Y

= 〈π⇒, π⇐, π⇔, π<〉 corresponds to the following
beliefs about the causal and associative relations:

P (X causesY ) = π⇒ P (X does not causeY ) = π⇐ + π⇔ + π<

P (X associated withY ) = π⇒ + π⇐ + π⇔ P (X not associated withY ) = π<

In practice, it is useful to allow the user to specify prior beliefs directly on the events [X (not) causes
Y ] and [X is (not) associated withY ] from which the distributionPrXY

can be derived, than the
opposite. This is not difficult: for example givenP (X causesY ) = π⇒ the mass of probability
1 − π⇒ has to be distributed in a reasonable way to the other three valuesπ⇐, π⇔, π<. However,
we avoid this belief representation to simplify the presentation of the method.
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Table 1: (a) (Top Part) Prior beliefsK regarding the paths between three pairs of variables. The
beliefs areincoherent: P (X ⇒ Y ) = 0.8 andP (Y ⇒ Z) = 0.9 imply thatP (X ⇒ Z) ∈ [0.7, 1].
(a) (Bottom Part) InducedcoherentbeliefsK ′ stemming fromK by solving the quadratic program
in Eq. 10. (b) A part of the joint probability distributionJ computed by solving Eq. 10 with input
K . The number of DAGs with 5 nodes for each configurationsNC is also shown. The total number
of DAGs with 5 vertices isN = 29281. The total number of configurations is43 = 64. Notice that
C2 andC3 have both zero counts and zero probability, because they areinvalid.

(a)

K ⇒ ⇐ ⇔ <

rX,Y (r1) 0.8 0.132 0.028 0.04
rY,Z(r2) 0.9 0.066 0.014 0.02
rX,Z(r3) 0.6 0.264 0.056 0.08

K ′
⇒ ⇐ ⇔ <

rX,Y (r1) 0.705 0.175 0.051 0.069
rY,Z(r2) 0.802 0.114 0.042 0.042
rX,Z(r3) 0.611 0.245 0.061 0.083

(b)

rX,Y rY,Z rX,Z pC NC

C1 ⇒ ⇒ ⇒ 0.5068 2800
C2 ⇒ ⇒ ⇐ 0 0
C3 ⇒ ⇒ ⇔ 0 0
. . . . . . . . . . . . . . . . . .
C49 < ⇒ ⇒ 0.0244 1045
. . . . . . . . . . . . . . . . . .
C64 < < < 1.57 · 10−9 309

4 Computing Priors and Scores

In this section, we derive a scoreSc(G|D,K) for a network graphG given dataD andn prior
distributions on paths beliefs inK . An important requirement for the computation of the score is
knowledge of a joint distributionJ = P (r1, . . . , rn) = P (r) such that its marginals correspond to
the distributions inK . J assigns a probability value to each of the4n possible joint instantiations of
values to variablesr = 〈r1, . . . rn〉. We denote withC (configuration) such a given joint instantiation
and define

pC = P (r = C|J)

In this section, we assumeJ is already computed; the next section describes the detailsof this
computation. The jointJ stemming fromK in Table 1a(Top) is shown in Table 1b. It is important to
notice thatfor each graphG the configurationC is uniquely determined. For example, in the joint
of Table 1b, if in a graphG it holdsX ⇒ Y , Y ⇒ Z, X ⇒ Z thenr = C1. Thus, it makes sense
to denote withCG the joint instantiation of variablesr in graphG.

Let G be a Bayesian Network graph andD a dataset over the same variables. We now compute the
probabilityP (G|D, J):

P (G|D, J) =
P (D|G, J) · P (G|J)

P (D|J)
=

P (D|G) · P (G|J)

P (D|J)

The second equation stems from the fact that given the graphG the dataD are independent ofJ
(J does not provide any additional information about the data once the graph is known). The factor
P (D|J) is a normalizing constant that does not need be computed whenwe maximize the above
equation over different graphs. The factorP (D|G) is the likelihood of the data given the graph; in
Section 2 we mention several approximations (e.g., BDeu) based on different set of assumptions for
each computation. We now focus on the priorP (G|J):

P (G|J) =
∑

C

P (G,C|J) = P (G,CG|J)

The last equation holds becauseP (G,C|J) equals zero for allC 6= CG, since each graph entails
exactly one configuration. Subsequently:

P (G|J) = P (G,CG|J) = P (G|J,CG) · P (CG|J) = P (G|CG) · P (CG|J) = P (G|CG) · pCG

The factorP (G|CG) is our prior on a graphG given that a specific configuration holds. Given no
other preference or knowledgewe assign the same (uniform) prior to all graphs with the samecon-
figuration. Thus, lettingNC be the number of graphs over nodesV sharing the same configuration
C thenP (G|CG) = 1/NCG

and so :

P (G|J) =
pCG

NCG

and Sc(G|J) = log pCG
− logNCG

(2)
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Similarly to Eq. 1 the overall score of a graph is:

Sc(G|D, J) = Sc(D|G) + Sc(G|J) (3)

The scoreSc(G|D, J) has two desirable properties:

1. Markov-Equivalent graphs that satisfy the same path-beliefs obtain the same score.
The last term in the equation above is the same for graphs sharing the same configura-
tion. The first term is the same for Markov-equivalent graphsprovided one employs an
appropriate scoring function, such as the BDe and BDeu scores [8].

2. For uninformative prior beliefs, all graphs are equiprobable, i.e., P (G|J) = 1/N ,
whereN is the number of graphs over nodesV . With uninformative beliefs we expect
to encounter a given configuration with probability equal tothe proportion of the graphs
satisfying the configuration, i.e,.pC = NC

N
. In that case,P (G|J) = NC

N
· NC = 1

N
and

we end up with uniform priors as we would expect.

While Eq. 2 follows the above two properties, we point out to the fact that the factor1/NCG

may seem to provide counter-intuitive results at a first glance. Let’s assume that for configurations
C1, C2, the following holds:p1 = 0.6 andp2 = 0.2. In other words, the prior beliefs state that it is
3 times more probable a priori that the true graph has configurationC1 thanC2. Now, let us assume
thatN1 = 60 andN2 = 10 and letG1, G2 be two graphs consistent with configurationsC1, C2

respectively. We then obtain:

P (G1|J)

P (G2|J)
=

p1 ·N2

p2 ·N1
=

0.6× 10

0.2× 60
=

1

2

Thus, any graph consistent withC2 has twice the prior than any graph inC1. This may seem counter-
intuitive since the user has specified thatC1 is 3 times more likely to be encountered thanC2. This
is true considering the total probability mass ofC1 andC2. However, since this mass is distributed
over more graphs consistent withC1 thanC2, each individual graph in the first configuration is less
probably than any graph in the second configuration.

The implications of the above observation is that, everything else being equal, higher priors will
tend to be assigned to graphs in “small” configurations, i.e., consistent with only a few graphs . If
this behavior is not desirable then one can drop the1/NC factor and use:

P (G|J) = pCG
and Sc(G|J) = log pCG

(4)

However, if this score is used in place of Eq. 2 then Property 2above is not satisfied any more.

Computing the number of graphsNC . The numberN of DAGs over nodesV has been solved
in closed-form [14]. However, there is no closed-form to thebest of our knowledge for the number
NC of DAGs that satisfy certain path-constraints. When the number of nodes is small (up to 5-
6) one can enumerate all DAGs and compute eachNC for each configurationC by counting. The
number of possible DAGs however, grows super-exponentially to the number of nodes and complete
enumeration is not an option. In this case, we estimate thesecounts by sampling a numberS of
random DAGs with uniform probability. Specifically, we implemented the recent method in [15]
that unlike prior work [16], avoids the use of expensive Markov-Chain, Monte-Carlo methods to
ensure uniform sampling from the space of DAGs.N̂C can be estimated asSC

S
N , whereSC is the

number of sampled DAGs that conform to configurationC. When the number of configurations is
large orNC/N is small one may never sample any graph consistent withC. To avoid zero estimates,
we apply the Laplace correction:̂NC = SC+l

S+cl
N , wherec is the number of configurations andl an

arbitrary parameter (we use the valuel = 1).

5 Computing the Joint Distribution J given Prior Path Beliefs K

Eq. 2 shows how to compute the prior probability of a graph given the joint distributionJ of
path beliefsr. In this section, we show how to computeJ given the marginal beliefs on paths
involving pairs of variables stored inK . We denote withπk,j the probability thatrk takes value
j ∈ {⇒,⇐,⇔,<}:

πk,j = P (rk = j)

5



(a) (b)

Figure 1: We assume the prior beliefsK in Table 1a(Top) and the correspondingJ in Table 1b. (a)
The configurationC1 = {X ⇒ Y, Y ⇒ Z,X ⇒ Z} holds in the graph. Forp1 = 0.5068 (see Table
1b) we obtain the scoreSc(G|K) = log(0.5068)− log(2800) = −8.6171. (b) The configuration
C49 = {X < Y, Y ⇒ Z,X ⇒ Z} holds in the graph. Forp49 = 0.0244 we obtain the score
Sc(G|K) = log(0.0244)− log(1045) = −10.6662. As expected, the first graph has a higher prior
than the second one sinceX ⇒ Y is given a higher probability thanX < Y in Table 1a(Top).

The valuesπ are provided inK . Theunknown quantitiesarepC for each configurationC in J . Let
Ck,j = {C, s.t. rk = j}, i.e., the set of configurations where variablerk obtains valuej. For eachk
andj we obtain the following constraints:

πk,j =
∑

C∈Ck,j

pC (5)

In other words, the marginals of the joint should equal our input path beliefs. An important obser-
vation that is characteristic of this problem, is thatpath beliefs are not independent in general.For
example if one believes with certaintyX ⇒ Y ⇒ Z, then they have to believeX ⇒ Z to be coher-
ent. Thus, it is important to consider the following constraints, stemming from the path semantics
of the variablesr :

pC = 0, whenC is invalid (6)
By invalid we mean a configuration that cannot be satisfied by the graph of any Bayesian Network
overV , e.g., it contains directed cycles. The algorithm to detectinvalid configurations is discussed
later. To complete the problem specification we impose that:

∑

C

pC = 1 and pC ≥ 0 (7)

If constraints in Eqs. 5, 6, 7 can be satisfied then a joint distribution adhering to the probability
axioms can be found such that the prior marginal path beliefshold. In this case, by definition
K is coherent, otherwise it isincoherent. Notice that all constraints together form a set of linear
equations that is easy to solve or determine it has no (non-negative) solution. However, the number
of unknownspC equals4n, wheren are the input path beliefs and so the computational overhead
increases exponential withn.

Dealing with Coherent Beliefs. The systems of equations contains4n constraints from Eq. 5,m
constraints from Eq. 6 and 1 constraint from Eq. 7 and4n unknowns. For most typical problems,
4n+m+ 1≪ 4n and so the system may have infinite solutions. We argue that one should choose
a solution jpdJ as close to the uninformative one as possible. Any other distribution may introduce
bias towards certain configurations, even if the prior knowledge does not suggest preference over
those configurations. In other words, if the uninformative jpd is a coherent extension of the prior
knowledge, there is no reason to prefer any other solution over it. The problem can be formulated
as follows:

min
p

4n∑

k=1

(pk −
Nk

N
)2 subject to constraints in Eqs. 5, 6, 7 (8)

The quantityNk

N
, whereNk is the number of graphs consistent with configurationCk andN the total

number of DAGs overV corresponds to the uninformative priors where each graph isequiprobable.
The optimization problem of Eq. 8 is a quadratic program (quadratic objective function with linear
constraints) and can be solved accurately and relatively efficiently (to the number of unknowns).

Dealing with Incoherent Beliefs. In this case, there is no jpd that can equal the marginal input
beliefs. Instead of requesting coherent beliefs or ignoring the incoherency, we seek for joints with
marginals as close as possible to the user’s input beliefs. The constraints in Eq. 5 are now modified
to include slack variablessi,j , i.e., the amount by which the original constraints are violated:

πk,j + sk,j =
∑

C∈Ck,j

pC (9)
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Figure 2: Proof-of-concept, experimental results. (a) Learning the orientations and the skeleton is
facilitated by causal prior knowledge. (b) Learning the graph is facilitated by correct associative
prior knowledge and hindered by incorrect priors. (c) Learning the ALARM network with 5 pieces
of informative associative beliefs and without.

This system of equations is always solvable; out of all solutions preference should be given to solu-
tions that violate the original constraints the least, leading to the following optimization problem:

min
p,s

4n∑

l=1

s2l + α ·

4n∑

k=1

(pk −
Nk

N
)2 subject to constraints in Eqs. 9, 6, 7 (10)

This problem tries to simultaneously minimize a trade-off between (a) the difference between the
marginal probabilities and the user beliefs and, (b) the difference between the solution jpd and the
uninformative jpd. The trade-off is controlled by the parameterα. Forα = 0 one finds a valid jpd
so that its marginals are as close as possible to the input beliefs. Forα = 4n/4n (the ratio of terms
in each summand) each summand is assigned equal importance (this is the value we employ in our
experiments). Table 1b contains the jointJ stemming fromK of Table 1a(Top) computed by solving
Eq. 10. For comparison with the input beliefsK , Table 1a(Bottom) contains the marginal beliefsK ′

implied byJ : π′
i,j = πi,j + si,j . The values in Table 1a(Top) and Table 1a(Bottom) are close,with

the later one representing coherent beliefs.

Determining Invalid Configurations . To identify all constraints in Eq. 6 we have implemented the
following algorithm. For each configurationC, we construct a graphG′ with nodes the variables
that appear in at least one prior path belief. For each assignmentrXY = “ ⇒ ” or rXY = “ ⇐ ”
in C, we add the edgeX → Y or X ← Y respectively, inG′. In addition, for each assignment
rXY = “⇔ ” we add a new dummy nodeVd toG′ and add the edgesX ← Vd → Y . Configuration
C is invalid in jthe following cases: (a)G′ contains cycles, (b) for someX,Y in G′,X has a directed
path toY andrXY = “ < ” or rXY = “ ⇔ ” in C, and (c) for someX,Y in G′, X has a path to
Y in G′ (not necessarily directed) andrXY = “ < ” in C.

This algorithm is obviously sound, but it is not complete. A problem may arise when the number
of dummy nodes added toG′ exceeds the number of available nodes (variables) in the data. In that
case, it may seem that a configuration is valid, but there may not be enough variables to satisfy all
confounding⇔ relations in the context of the remaining path constraints.The simplest example is
a dataset with two variablesX andY : the configurationrXY = “ ⇔ ” is invalid as there is no
other variable to serve as common ancestor. Yet, the above cases will not identify it as such. A
less trivial example isrXY = “ ⇔ ” andrY Z = “ ⇒ ” when the only variables areX,Y, Z.
SincerXY = “ ⇔ ” it has to be thatX ⇐ Z ⇒ Y which conflicts withrY Z = “ ⇒ ”. Our
intuition is that a complete algorithm requires solving a constraint satisfaction problem. However,
when the number of variables in the data is large relative to the number of path beliefs (specifically
if |Vdata| ≥ |VG′ | holds), the algorithm becomes complete (proof omitted for space).

6 Experimental Results

Employing Causal Knowledge. We consider the graphX → Y → Z. As prior knowledge
we setP (X ⇒ Z) = 0.9 and distribute the remaining 0.1 mass of probability to the remaining
values ofrXZ proportional to the values that correspond to a uniform prior. We repeat the following
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experiment10000 times: (a) we randomly select the number of states for each variable to be either
3 or 4, (b) we sample the cpts for each variable using the gammadistribution (gamrnd Matlab
function with shape parameterA set to0.5 and scale parameterB set to1), (c) we sample a dataset
of size200 from the network given the previously sampled cpts, (d) we increase the samples of the
dataset to provide to the scoring method from 10 to 200 with step size of 10, (e) we identify the
highest scoring network out of all 25 possible DAGs using informative priors and the BDeu score
with Equivalent Sample Size (ESS) set to 1 (see Eq. 3), (f) we similarly identify the highest scoring
network with uniform priors.

Results: Figure 2a plots the percentage of the time the PDAGX − Y − Z of the true network was
found exactly with and without informative priors. First notice, that when the true PDAG is found
exactly, the edges are alsoalways oriented correctly since the true network has a higher prior than
any other Markov-equivalent graph. Perhaps more surprising though, notice that the informative
priors alsoincrease the learning of the skeleton.The beliefX ⇒ Z tends to add a path fromX to
Z. The associationsX − Y andY − Z are always higher than or equal to the association between
X − Z (see [17]). Thus,it is the correct pathX − Y − Z that tends to be induced, rather than any
other network with a pathX ⇒ Z.

Employing Associative Knowledge. We run a similar proof-of-concept experiment where the
true network is a single colliderX → Y ← Z. We use the same settings as before for three
cases: correct associative priorsP (X < Z) = 0.9, uniform priors, and incorrect associative priors
P (X associated withZ) = 0.9.

Results: The results are shown in Figure 2b. As expected,correct prior beliefs clearly improve
the chances of identifying the true PDAG; the effect is exactly the opposite when misleading, in-
correct beliefs are provided to the algorithm. Of course, asymptotically the priors, whether correct,
incorrect, or uninformative play no role.

Learning Larger Networks . We sample 1000 datasets from the distribution of the ALARM net-
work [18]. We learnt the network using greedy search-and-score with the typical operators add,
delete, and reverse an edge, and the BDeu metric with ESS=1. We vary the sample size given to
the algorithms within{50, 75, 100, 150, 200}. For each dataset, we randomly pick 5 pairs(X,Y ) of
variables on which to provide informative associative priors: if X < Y in the true network, we set
P (X < Y ) = 0.9, otherwise, we setP (X < Y ) = 0.1. We run search-and-score starting from the
empty graph with and without the informative priors and compute the Structural Hamming Distance
[19] from the true network. The simple search operators do not consider and neither exploit the path
beliefs to improve optimization. We thus, also run the search-and-score algorithm starting from the
true network to gauge the potential for improvement when a better search method is employed, that
at some point visits the true network.

Results: The results are shown in Figure 2c.In both cases, the SHD is smaller with the
informative priors than with uniform priors. The differences in SHD for each sample size
are always statistically significant (using a one-sample t-test), with p-value close to the ma-
chine epsilon. For low sample sizes (50 and 75) the 95% confidence interval of the SHD
differences are[10.0959, 11.7821], [6.1051, 7.2349] when starting from the empty graph, and
[8.8170, 10.6630], [6.2721, 7.5399]when starting from the true graph.

7 Discussion and Conclusions

We present a method for computing informative priors given aset of causal and associative beliefs
on pairs of variables. The priors can then be employed by any search-and-score learning algorithm.
Such beliefs can be induced from prior experimental or observational studies respectively, among
other sources. The method, for the first time, addresses the issues of incoherent priors and priors that
are not independent. Providing correct priors about pairwise causal or associative relations improves
learning both in terms of identifying the orientation of theedges (for causal priors), but also in terms
of identifying the skeleton of the network.

There are numerous issues to still address regarding both the method and the general problem. The
algorithm computes a joint of prior beliefs that is exponential to the input (number of beliefs). More
efficient algorithms that perform this operation implicitly are desirable. The search method for
the optimal graph, in the context of informative priors becomes more complicated; typical greedy-
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search with operators on the edges alone may not suffice. Complete and efficient algorithms for
determining invalid configurations, as well as closed-formsolutions for computing the number of
graphs given path constraints are desirable. Finally, incorporating the strength of the causal effects
or associations and other prior knowledge characteristicsis an interesting future direction to pursue.
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