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ABSTRACT
Let P = (X,<P ) be a partial order on a set of n elements
X = {x1, x2, · · · , xn}. Define the quantum sorting prob-
lem QSORTP as: given n distinct numbers x1, x2, · · · , xn

consistent with P , sort them by a quantum decision tree
using comparisons of the form “xi : xj”. Let Qε(P ) be
the minimum number of queries used by any quantum deci-
sion tree for solving QSORTP with error less than ε (where
0 < ε < 1/10 is fixed). It was proved by Høyer, Neerbek and
Shi (Algorithmica 34 (2002), 429-448) that, when P0 is the
empty partial order, Qε(P0) ≥ Ω(n logn), i.e., the classical
information lower bound holds for quantum decision trees
when the input permutations are unrestricted.
In this paper we show that the classical information lower

bound holds, up to an additive linear term, for quantum
decision trees for any partial order P . Precisely, we prove
Qε(P ) ≥ c log2 e(P )− c′n where c, c′ > 0 are constants and
e(P ) is the number of linear orderings consistent with P .
Our proof builds on an interesting connection between sort-
ing and Körner’s graph entropy that was first noted and
developed by Kahn and Kim (JCSS 51(1995), 390-399).

Categories and Subject Descriptors
F.1 [Theory of Computation]: Computation by Abstract
Devices
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1. INTRODUCTION
How much can a computation be helped by the use of

quantum algorithms has often been studied in the black-
box model, which is also called the oracle model, or the
quantum decision tree model. To determine the value of a
function f(x1, x2, · · · , xN ), queries of the form “xi =?” are
successively asked and the quantum state gets updated by
this information. After a predetermined number of steps,
the quantum state is measured to produce the output. This
standard model has been extensively studied in recent years,
and several lower bound techniques have been developed and
applied. For detailed descriptions of the model, we refer the
readers to recent literature on this subject (see e.g., [1, 2, 3,
4, 5, 10, 19]).
Exactly when and how much speed-up can be achieved is

still unresolved for many problems in the quantum decision
tree model. In this paper we focus on a specific issue which
relates to the information lower bound for classical decision
trees. To identify an unknown item taken from a pool of
M possibilities, it takes at least log2 M tests in the classical
framework if the information obtained from one test is only 1
bit. However, this is no longer true in general when quantum
states can be used to collect and process information.
Two of the fundamental search problems in which infor-

mation bounds play a part are the ordered table search,
and the sorting problem. In both cases, there is a natu-
ral information bound in the classical decision tree model,
with a matching upper bound. In the quantum setting, the
ordered table search problem has been extensively studied
(Farhi et al [8], Ambainis [2], Buhrman and de Wolf [6]), and
it was demonstrated in these papers that the information
bound Ω(logn) is asymptotically valid for quantum decision
trees. For the sorting problem, Høyer, Neerbek and Shi [10]
showed that the information lower bound also remains valid
for quantum decision trees, i.e., Ω(n logn) quantum queries
are needed.
In this paper, we study a class of problems known as the

sorting problems for partial orders. Let P be a partial or-
der on a set of n elements {x1, x2, · · · , xn}. Given n input
numbers consistent with P , Fredman [9] showed that there
is a classical decision tree using log e(P ) + 2n binary com-
parisons xi : xj to determine the linear orderings of these
numbers, where e(P ) is the number of linear orderings con-
sistent with P . Subsequent work by Kahn and Saks [13]
(see also [11, 12]) showed that O(log e(P )) comparisons are
sufficient. Thus, the information lower bound log2 e(P ) is
asymptotically tight for classical decision trees. For quan-
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tum decision trees, it is not clear whether the information
lower bound is valid (except it is known to be true when P
is empty as shown in [10]). This is the focus of our inquiry.
Define the quantum sorting problem QSORTP as: given n

distinct numbers x1, x2, · · · , xn consistent with P , sort them
by a quantum decision tree using comparisons of the form
“xi : xj”. Let Qε(P ) be the minimum number of queries
used by any quantum decision tree for solving QSORTP

with error less than ε (where 0 < ε < 1/10 is fixed).
Our main result is that the classical information lower

bound holds, up to additive linear term, for quantum deci-
sion trees for any partial order P . Let 0 < ε < 1/10 be any
fixed constant.
Theorem 1 There exist absolute constants c, c′ such that
Qε(P ) ≥ c log e(P )− c′n.
Our proof relies on the general approach used in [10],

and builds on an interesting connection between sorting and
Körner’s graph entropy in the classical decision tree setting
that was first noted and developed by Kahn and Kim [11].
The main underlying idea in our proof is that, when adapted
for partial order P , the complexity measure used in [10]
turns out to be almost the same as the entropy considered
in [11].

2. PRELIMINARIES
2.1 Review of Lower Bounds in Høyer et al
We review the lower bound proof by Høyer, Neerbek and

Shi [10] on quantum sorting. We begin with a general frame-
work. Let f : S → {0, 1}m, where S ⊆ {0, 1}N . Consider a
quantum decision tree for computing f with probability er-
ror bounded by ε > 0. Let |ξj

x > be the quantum state after
j oracle steps, when x ∈ S is the oracle. Then |ξ0

x > is equal
to some fixed initial state (independent of x). After T steps
at the end of computation, we must have | < ξT

x |ξT
y > | ≤ ε′

if f(x) �= f(y), where ε′ = 2(ε(1− ε))1/2.
To prove a lower bound, a weight function ω : S × S →

[0,∞) is chosen. Define, for each 0 ≤ j ≤ T ,

Wj =
∑

x,y∈S

w(x, y) < ξj
x|ξj

y > .

If one can manage to show that, independent of the quantum
algorithm used, there is an upper bound δ to |Wj −Wj+1|,
and a lower bound M to W0−WT , then one obtains a lower
bound T ≥ M/δ on the quantum complexity.
Consider the sorting of n numbers x1, x2, · · · , xn by com-

parisons of the form xi : xj . In this case we have a function
f : S → {0, 1}m where S ⊆ {0, 1}N (with N = n(n − 1)
and m ≥ log2(n!)). The set S consists of all the oracles
x = (xi,j |i �= j) that represent a set of n(n − 1) bits con-
sistent with some underlying linear orderings of the xi’s.
Thus, we can identify each oracle xσ ∈ S with a unique per-
mutation σ of {1, 2, · · · , n}, such that xσ

i,j = 1 if and only if
σ(i) < σ(j).
In [10], a lower bound to sorting n elements was obtained

by an ingenious choice of the weight function ω. Let σ be
any permutation of {1, 2, · · · , n}. For every 1 ≤ k ≤ n − 1

and 1 ≤ d ≤ n − k, define a new permutation σ(k,d) =
(k, k+1, · · · , k+d)◦σ. In other words, let (x1, x2, · · · , xn) =
(σ(1), σ(2), · · · , σ(n)) be the assignment of values to xi’s
corresponding to σ. Then the assignment (x′

1, x
′
2, · · · , x′

n)

corresponding to σ(k,d) is obtained from (x1, x2, · · · , xn) by
replacing the entry i with i + 1 for k ≤ i < k + d, and the

entry k+d with i. Thus, the following is true for τ = σ(k,d):

σ−1(i) =




τ−1(k) if i = k + d
τ−1(i+ 1) if k ≤ i < k + d
τ−1(i) otherwise

Define the weight function

ω(σ, τ) =
1

d
if τ = σ(k,d) for some k and d;

ω(σ, τ) = 0 otherwise.

With this choice, they were able to show the bounds be-
low, for any quantum decision tree.
Lemma 1[10] For each 0 ≤ j < T , |Wj −Wj+1| ≤ 2πn!.
Lemma 2[10] W0 = n!(nHn − n), WT ≤ ε′W0, where
Hn =

∑
1≤i≤n 1/j.

It follows from Lemmas 1 and 2 that T ≥ Ω(n log n) for
the sorting problem (with n unrestricted input numbers).
2.2 Review of Polytopes and Graph Entropy
We first review some concepts and results from Stan-

ley [21]. Let P = (X,<P ) be a partial order on a set
X = {x1, x2, · · · , xn}. A point y = (y1, y2, · · · , yn) ∈ Rn

is said to be consistent with P , if yi ≤ yj whenever xi≤Pxj .
For any y consistent with P , and for each 1 ≤ i ≤ n, let
di(y) = yi if xi is a minimal element in the partial order
P ; otherwise, let di(y) be the minimum of yi − yj for any j
satisfying xj <P xi.
The order polytope O(P ) is the set of all the points y =

(y1, y2, · · · , yn) ∈ [0, 1]n consistent with P . The chain poly-
tope C(P ) is the set of points z = (z1, z2, · · · , zn) ∈ [0, 1]n

satisfying zi1+zi2+· · ·+zik ≤ 1 if xi1 <P xi2 <P · · · <P xik

is a chain in P . Define a transfer map φ : O(P ) → C(P ) by
the formula φ(y) = (d1(y), d2(y), · · · , dn(y)).
Let ∆(P ) be the set of all permutations of {1, 2, · · · , n},

and recall e(P ) = |∆(P )|. For each σ ∈ ∆(P ), let Oσ(P ) be
the subset of points inO(P ) consistent with the permutation
σ.
Lemma 3 [21] (a) For any σ ∈ ∆(P ), φ is a linear, measure-
preserving bijection when its domain is restricted to Oσ(P ).
(b) φ is a continuous, piecewise-linear, measure-preserving
bijection from O(P ) onto C(P ).
We now review a special entropy in connection with par-

tial orders, which is based on the concept graph entropy
first introduced by Körner [14]. Graph entropy has an ex-
tensive literature, including applications to complexity the-
ory (e.g. Körner [15], Newman, Ragde and Wigderson [16],
Radhakhrishnan [17]). We refer the readers to Csiszár et al
[7], or Simonyi’s survey [20] for additional information. We
restrict our discussions here to those needed for this paper.
For any z = (z1, z2, · · · , zn) with zi > 0, define

ψ(z) = log2 n− 1

n

∑
1≤i≤n

log2

1

zi
. (1)

In connection with sorting problems (in the classical set-
ting), Kahn and Kim [11] define the following entropy notion
associated with P :

H(P ) = max{ψ(z) | z ∈ C(P ) }. (2)

This can be described alternatively as the graph entropy
of the comparability graph of P . It is known [7] that the
maximum is finite and achieved at a unique point z in the
polytope.
Lemma 5 [11] log2 e(P ) ≤ nH(P ) ≤ O(log2 e(P )).
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3. PROOF OF THEOREM 1
We adopt the general approach in [10] described in the

previous section. Let the set of oracles S consist of those
labelled by permutations in ∆(P ). Define the weight func-
tion ω in the same way, except of course ω is defined only on
S × S. Consider any quantum decision tree B for QSORTP

with error bounded by ε. Define ε′,Wj as in the previous
section. Let AP =

∑
σ,τ∈∆(P ) ω(σ, τ).

Lemma 6 For each 0 ≤ j < T , |Wj −Wj+1| ≤ 2πe(P ).
Lemma 7 W0 −WT ≥ (1− ε′)AP .
The proof of Lemma 6 is exactly the same as the proof of

Lemma 1 as given in [10]. Lemma 7 follows easily from the
requirement on the initial and final quantum states produced
by the quantum decision tree B.
Proposition 1 There exist absolute constants λ, λ′ > 0
such that

1

e(P )
AP ≥ λ log e(P )− λ′n.

It follows immediately from Lemmas 6, 7 and Proposition
1 that

T ≥ (1− ε′)AP

2πe(P )

≥ 1− ε′

2π
(λ log e(P )− λ′n),

which gives Theorem 1.
We prove Proposition 1 in two steps.

Proposition 2

1

e(P )
AP ≥ Ω(nEz∈C(P )(ψ(z))).

Proposition 3 There exists an absolute constant µ > 0
such that

Ez∈C(P )(ψ(z)) ≥ H(P )− µ.

Clearly, Proposition 1 follows from Lemma 5, Propositions
2 and 3. We now prove Proposition 2.
Note that each permutation σ ∈ ∆(P ) gives rise naturally

to a point (σ(1), σ(2), · · · , σ(n)) in Rn, and we shall use the
notation di(σ) with this understanding.
Lemma 8 For any σ ∈ ∆(P ),

log2 di(σ) ≥ log2(n+ 1) +Ey∈Oσ(P )(log2 di(y)).

Proof of Lemma 8 First consider the case when xi is not
a minimal element under partial order P . Let j be such that
xj <P xi, di(σ) = σ(i) − σ(j). Then the expected value of
di(y) for a random y ∈ Oσ(P ) is the expected difference be-
tween the σ(i)-th and the σ(j)-th smallest elements among
n randomly chosen real numbers in the interval [0, 1]. By
standard results from order statistics, we have

Ey∈Oσ(P )(di(y)) =
1

n+ 1
di(σ). (3)

It is easy to verify that the above formula is valid in the other
case (when xi is a minimal element under P ). Now using
the convexity of logarithm and Equation (3), we obtain

Ey∈Oσ(P )(log2 di(y)) ≤ log2(Ey∈Oσ(P )(di(y))

= log2(
1

n+ 1
di(σ)).

This proves Lemma 8. Q.E.D.

It follows from Lemma 8 that

1

e(P )

∑
σ∈∆(P )

log2 di(σ)

≥ log2 n+
1

e(P )

∑
σ∈∆(P )

Ey∈Oσ(P )(log2 di(y))

= log2 n+Ey∈O(P )(log2 di(y)). (4)

From the definition of AP and ω, we have

AP ≥
∑

σ∈∆(P )

∑
1≤i≤n

(1 +
1

2
+ · · ·+ 1

di(σ)− 1
)

≥
∑

σ∈∆(P )

∑
1≤i≤n

Ω(log2 di(σ)). (5)

It follows from (4) and (5) that

1

e(P )
AP ≥ Ω(n log2 n+

∑
1≤i≤n

Ey∈O(P )(log2 di(y)))

= Ω(n log2 n+Ey∈O(P )(
∑

1≤i≤n

log2 di(y))).

By Lemma 3, φP is a 1-1 onto measure-preserving mapping
from O(P ) to C(P ). This leads to
1

e(P )
AP ≥ Ω(n log2 n+Ez=(z1,··· ,zn)∈C(P )(

∑
1≤i≤n

log2 zi))

= Ω(nEz∈C(P )(ψ(z))).

This proves Proposition 2.
To finish the proof of Proposition 1, we now prove Propo-

sition 3. First we derive two lemmas. Let Qn be the set of all
y = (y1, · · · , yn) ∈ Rn such that yi ≥ 0 and

∑
1≤i≤n yi ≤ 1.

Lemma 9 Let µ ≥ 100. Take a random y = (y1, y2, · · · , yn)
uniformly chosen from Qn. Then,

Pr{
∑

1≤i≤n

log2

1

yi
≥ n log2 n+ µn} ≤ e−µn/4.

Proof of Lemma 9 The proof is technical, and will be
delayed to the Appendix.
Let Fn ⊆ Rn be the set of all w = (w1, w2, · · · , wn) such

that wi ≥ 0 for all i and
∑

1≤i≤n wi ≤ n. For any w =

(w1, w2, · · · , wn) ∈ Fn, let Y denote the function on Fn

defined by Y (w) = 1
n

∑
1≤i≤n log2 wi.

Lemma 10 Let µ = 200, and let D ⊆ Fn be a polytope
of volume no less than 1. Then Ew∈D(Y ) ≥ −µ, for all
sufficiently large n.
Proof of Lemma 10
We assume that n is sufficiently large for all asymptotic

inequalities (such as n2e−n < e−n/6) valid. Let F−
n be the

set of all w ∈ Fn satisfying Y (w) ≤ −µ/2. Let Q−
n be the set

of all y ∈ Qn satisfying
∑

1≤k≤n log2
1

yk
≥ n log2 n + µn/2.

Note that Fn is Qn scaled up by a factor of n on all sides,
and F−

n is Q−
n scaled up by a factor of n. The probability

of a random w ∈ Fn falling into F−
n is exactly equal to the

probability for a random y ∈ Qn falling into Q−
n . By Lemma

9, we conclude that

V ol(F−
n ) ≤ e−µn/8V ol(Fn)

= e−µn/8 n
n

n!

≤ e−µn/9. (6)
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Let Jn be the set of all w = (w1, w2, · · · , wn) ∈ Fn with
0 ≤ w1 ≤ 2−µn.
With the help of equation (6) we obtain

∫
F−

n

| log2 w1|dw

≤
∫

Jn

| log2 w1|dw +

∫
F−

n −Jn

| log2 w1|dw

≤ nn−1

(n− 1)!

∫ 2−µn

0

| log2 w1|dw1

+ V ol(F−
n )| log2(2

−µn)|
≤ en(µn+ 1)2−µn + e−µn/9µn

≤ e−µn/10.

This implies

∫
F−

n

|Y (w)|dw ≤ 1

n

∑
1≤i≤n

∫
F−

n

| log2 wi|dw

=

∫
F−

n

| log2 w1|dw

≤ e−µn/10. (7)

Using (7) we obtain

∫
D

Y (w)dw =

∫
D−F−

n

Y (w)dw +

∫
D∩F−

n

Y (w)dw

≥ −V ol(D − F−
n )µ/2−

∫
F−

n

|Y (w)|dw

≥ −V ol(D)µ/2− e−µn/10.

As V ol(D) ≥ 1, this leads to

Ew∈D(Y ) =

∫
D

Y (w)dw

V ol(D)

≥ −µ

2
− e−µn/10

V ol(D)

≥ −µ.

This completes the proof of Lemma 10. Q.E.D.
We now use Lemma 10 to prove Proposition 3. By the

definition of H(P ), Proposition 3 can be written as

Ez∈C(P )(ψ(z)) ≥ ψ(a)− µ,

where a is the unique point z ∈ C(P ) for ψ(z) to achieve its
maximum. As seen in [7, 11], C(P ) is contained in the posi-
tive quadrant (all zi ≥ 0) of Rn bounded by

∑
1≤i≤n

zi
ai

≤ n.

Make the change of variables zi = aiwi for 1 ≤ i ≤ n.
Then z → w gives a one-to-one linear mapping of C(P ) in
the zi space onto a polytope C′(P ) in the wi space, with the
transformation dz = (

∏
1≤i≤n ai)dw between the infinites-

imal volume elements. Note that C′(P ) (which includes
all points in [0, 1]n) is a polytope of volume ≥ 1 in the
positive quadrant of Rn bounded by

∑
1≤i≤n wi ≤ n, i.e.,

C′(P ) ⊆ Fn. By Lemma 10, we have

Ew∈C′(P )(Y ) ≥ −µ. (8)

Now note that

ψ(z) = log2 n+
1

n

∑
1≤i≤n

log2(aiwi)

= log2 n+
1

n

∑
1≤i≤n

log2(ai) +
1

n

∑
1≤i≤n

log2(wi)

= ψ(a) + Y (w).

Thus,

Ez∈C(P )(ψ(z)) = ψ(a) +Ew∈C′(P )(Y ). (9)

It follows from (8) and (9) that

Ez∈C(P )(ψ(z)) ≥ ψ(a)− µ.

This proves Proposition 3.

4. DISCUSSIONS
We suggest several open problems for future investiga-

tions. Firstly, can one strengthen Theorem 1 to Qε(P ) ≥
Ω(log e(P ))? We conjecture that in fact the quantity AP in
Lemma 7 provides such a lower bound, even though the es-
timation techniques used in the present paper are not strong
enough to prove it.
Secondly, to what extent do various classical sorting lower

bounds remain valid? For example, suppose we allow any
ternary polynomial tests p(x1, x2, · · · , xn) : 0, what is the
number of quantum queries needed to sort n numbers?
Lastly, there are other information lower bounds whose

validity in quantum case is non-obvious. For example, see
Shi [18]. It would be very interesting to study systematically
all the classical information lower bounds for decision trees.
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APPENDIX
Proof of Lemma 9
Pick n random real numbers xj uniformly and indepen-

dently from the interval [0, 1], and sort them into ascending
order xi1 ≤ xi2 ≤ · · · ≤ xin . Let y = (y1, y2, · · · , yn) where
y1 = xi1 , and yj = xij − xij−1 , 2 ≤ j ≤ n. It is easily
verified that the generated y is a random point uniformly
distributed over Qn.
Consider the random variable

Yn(x1, x2, · · · , xn) = −
∑

1≤j≤n

ln yj . (10)

To prove Lemma 9, we need to show that

Pr{Yn ≥ n lnn+ (µ ln 2)n} ≤ e−µn/4. (11)

Let us generate x1, x2, · · · , xn sequentially. When we have
generated k random numbers x1, x2, · · · , xk, let Yk denote
the random variable defined as in equation (10) above, ex-
cept with n replaced by k. Let Y0 be the constant random
variable 0.

Lemma A1 Let 1 ≤ k ≤ n, and let x1, x2, · · · , xk−1 be
distinct. Then

Yk(x1, x2, · · · , xk) ≤ Yk−1(x1, x2, · · · , xk−1) + ln(2/δ),

where δ ≥ 0 is the minimum distance between xk and any
numbers in the set {0, x1, x2, · · · , xk−1}.
Proof of Lemma A1 The numbers x1, x2, · · · , xk−1 divide
the interval [0, 1] into k sub-intervals. Suppose that xk falls
into a sub-interval I of length u, and splits it into two parts
of length λu and (1− λ)u. There are two cases. If I is not
the rightmost sub-interval, then

Yk(x1, x2, · · · , xk)− Yk−1(x1, x2, · · · , xk−1)

= − ln(λu)− ln((1− λ)u) + lnu

≤ ln(
2

δ
).

If I is the rightmost interval, then

Yk(x1, x2, · · · , xk)− Yk−1(x1, x2, · · · , xk−1)

= − ln(λu)

≤ ln(
1

δ
).

This proves Lemma A1. Q.E.D.
Let us regard Y0 = 0, Y1, Y2, · · · , Yn as a sequence of ran-

dom variables where Yk depends only on x1, x2, . . . , xk. It
follows immediately from Lemma A1 that,

Pr{Yk − Yk−1 ≥ t} ≤ 4ke−t (12)

for all t ≥ 0.
Consider the probability distribution ρk over [0,∞]:

ρk(t) =

{
0 t ≤ ln(4k)
4ke−t t > ln(4k).

Let Ak be a real-valued random variable defined on some
probability space such that ρk is the density function for
the distribution of the value of Ak, i.e.,

Pr{Ak ≥ t} =
∫ ∞

t

ρk(τ)dτ. (13)

It is easily verified from equations (12) and (13) that
Pr{Yk − Yk−1 ≥ t} ≤ Pr{Ak ≥ t}. That is, Yk − Yk−1

is stochastically dominated by Ak. Now note that Yn =∑
1≤k≤n(Yk − Yk−1). This means

Pr{Yn ≥ T} ≤ Pr{A ≥ T}, (14)

where A =
∑

1≤k≤n Ak.

Lemma A2 Let T = n lnn+ (µ ln 2)n, then

Pr{A ≥ T} ≤ e−µn/4.

Proof Let T ′ = T − ln(4nn!). Then

Pr{A ≥ T}
=

∫
t=(t1,··· ,tn)∑

k tk≥T

dt
∏

1≤k≤n

ρk(tk)

= (
∏

1≤k≤n

(4k))

∫
t=(t1,··· ,tn)

tk≥ln(4k),
∑

k tk≥T

e−
∑

k tkdt

=

∫
s=(s1,··· ,sn)

sk≥0,
∑

k sk≥T ′
e−

∑
k skds

=

∫ ∞

T ′
e−v vn−1

(n− 1)!
dv.
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By assumption T ′ = T − ln(4nn!) ≥ ((µ ln 2)− 2)n, we have
for all v ≥ T ′,

vn−1

(n− 1)!
≤ ev/2.

It follows that

Pr{A ≥ T} ≤
∫ ∞

T ′
e−v/2dv

= 2e−T ′/2.

This implies

Pr{A ≥ T} ≤ e−µn/4,

and proves Lemma A2. Q.E.D.
Equation (11) follows from Lemma A2 and equation (14).

This completes the proof of Lemma 9.
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