
Finding Additive Biclusters with Random Background
(Extended Abstract)

Jing Xiao1, Lusheng Wang2, Xiaowen Liu3, and Tao Jiang4

1 Department of Computer Science and Technology, Tsinghua University
����������	
����
��������
���
��

2 Department of Computer Science, City University of Hong Kong, Hong Kong
�����	��
�����
���
��

3 Department of Computer Science, University of Western Ontario, London, Ontario, Canada
N6A 5B7

������������	�
���
��

4 Department of Computer Science and Engineering, University of California, Riverside

�����	��
���
���

Abstract. The biclustering problem has been extensively studied in many
areas including e-commerce, data mining, machine learning, pattern recognition,
statistics, and more recently in computational biology. Given an n � m matrix
A (n � m), the main goal of biclustering is to identify a subset of rows (called
objects) and a subset of columns (called properties) such that some objective
function that specifies the quality of the found bicluster (formed by the subsets
of rows and of columns of A) is optimized. The problem has been proved or
conjectured to be NP-hard under various mathematical models. In this paper,
we study a probabilistic model of the implanted additive bicluster problem,
where each element in the n � m background matrix is a random number from
[0� L � 1], and a k � k implanted additive bicluster is obtained from an error-free
additive bicluster by randomly changing each element to a number in [0� L � 1]
with probability �. We propose an O(n2m) time voting algorithm to solve the
problem. We show that for any constant Æ such that (1 � Æ)(1 � �)2

�
1
L � 0,

when k � max
�

8
�

�
n log n� 8 log n

c � log(2L)
�
, where c is a constant number, the

voting algorithm can correctly find the implanted bicluster with probability at
least 1� 9

n2 . We also implement our algorithm as a software tool for finding novel
biclusters in microarray gene expression data, called VOTE. The implementation
incorporates several nontrivial ideas for estimating the size of an implanted
bicluster, adjusting the threshold in voting, dealing with small biclusters, and
dealing with multiple (and overlapping) implanted biclusters. Our experimental
results on both simulated and real datasets show that VOTE can find biclusters
with a high accuracy and speed.

Keywords: bicluster, Cherno� bound, polynomial-time algorithm, probability
model, computational biology, gene expression data analysis.

1 Introduction

Biclustering has proved extremely useful for exploratory data analysis. It has important
applications in many fields, e.g., e-commerce, data mining, machine learning, pattern

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 263–276, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

264 J. Xiao et al.

recognition, statistics, and computational biology [24]. Data arising from text analysis,
market-basket data analysis, web logs, microarray experiments etc. are usually arranged
in a co-occurrence table or a matrix, such as word-document table, product-user table,
cpu-job table, or webpage-user table. Discovering a large bicluster in a product-user
matrix indicates, for example, which users share the same preferences. Biclustering has
therefore applications in recommender systems and collaborative filtering, identifying
web communities, load balancing, discovering association rules, etc.

Recently, biclustering becomes an important approach to microarray gene expression
data analysis [5]. The underlying bases for using biclustering in the analysis of gene
expression data are (i) similar genes may exhibit similar behaviors only under a subset
of conditions, not all conditions, and (ii) genes may participate in more than one
function, resulting in a regulation pattern in one context and a di�erent pattern in
another. Using biclustering algorithms, one may obtain subsets of genes that are co-
regulated under certain subsets of conditions.

Given an n�m matrix A, the main goal of biclustering is to identify a subset of rows
(called objects) and a subset of columns (called properties) such that a pre-determined
objective function which specifies the quality of the bicluster (consisting of the found
subsets of rows and columns) is optimized.

Biclustering is also known under several di�erent names, e.g., “co-clustering”, “two-
way clustering”, and “direct clustering”. The problem was first introduced by Hartigan
in the 70’s [8]. Since then, it has been extensively studied in many areas. Several
objective functions have also been proposed for measuring the quality of a bicluster.
Almost all of them have been proved or conjectured to be NP-hard [16,19].

Let A(I� J) be an n � m(n � m) matrix, where I � �1� 2� � � � � n� is the set of rows
and J � �1� 2� � � � �m� is the set of columns. Each element ai� j of A(I� J) is an integer in
[0� L � 1] indicating the weight of the relationship between object i and property j. For
subset I� � I and subset J� � J, A(I�� J�) denotes the bicluster of A(I� J) that contains
only the elements ai� j satisfying i � I� and j � J�. When a bicluster contains only a
single row i and a column set J�, we simply use A(i� J�) to represent it. Similarly, we
use A(I�� j) to represent the bicluster with a row set I� and a single column j. There are
several ways to model the relationship between objectives (or genes) [24].

Constant model: A bicluster A(I�� J�) is an error-free constant bicluster if for each
column j � J�, for all i � I�, ai� j � c j, where c j is a constant for any column j.

Additive model: A bicluster A(I�� J�) is an error-free additive bicluster if for any pair
of rows i1 and i2 in A(I�� J�), ai1� j � ai2� j � ci1�i2 , where ci1�i2 is a constant for any pair of
rows i1 and i2.

The additive model is a general model of biclusters that covers several other popular
models as its special cases. See [17] for a detailed discussion on various models
of biclusters. This model has many applications and has been extensively studied
[2,11,13,15,16,17,19,20,21,24]. In this paper, we will focus on the additive model.
In particular, we study a probabilistic model of implanted additive biclusters that has
recently been used in the literature for evaluating biclustering algorithms [15,20].

The probabilistic additive model: Our probabilistic model for generating the implanted
bicluster and background matrix is as follows. Let A(I� J) be an n � m matrix, where

Finding Additive Biclusters with Random Background 265

each element ai� j is a random number in [0� L� 1] generated independently. Let B be an
error-free k� k additive bicluster. The additive bicluster B� with noise is generated from
B by changing each element bi� j, with probability �, into a random number in [0� L� 1].
We then implant B� into the background matrix A(I� J) and randomly shu�e its rows
and columns to obtain a new matrix A�(I� J). For convenience, we will still denote the
elements of A�(I� J) as ai� j’s.

From now on, we will consider matrix A�(I� J) as the input matrix. Let IB � I and
JB � J be the row and column sets of the implanced bicluster in A�. The implanted
bicluster is denoted as A�(IB� JB).

The implanted additive bicluster problem: Given the n � m matrix A�(I� J) with an
implanted additive bicluster as described above, find the implanted additive
bicluster B�.

Based on the above probabilistic model, we propose an O(n2m) time voting algorithm
for finding the implanted bicluster. We show that for any constant Æ such that (1 �
Æ)(1 � �)2 � 1

L � 0, when n � m3 and k � max
�

8
�

�
m log m�

8 log m
c � log(2L)

�
, where

c � min� (1��)Æ2k
2L �

(1�2�)2

8L �
(L�2)2

12L3 �, the voting algorithm can correctly find the implanted
bicluster with probability at least 1 � 9m�2. We also implement our algorithm into
a software tool, called VOTE. In order to make tool applicable in a real setting, the
implementation has to incorporate several nontrivial ideas for estimating the size of an
implanted bicluster, adjusting the threshold in voting, dealing with small biclusters,
and dealing with multiple and overlapping biclusters. Our extensive experiments
on both simulated and real datasets show that VOTE can find implanted additive
biclusters with high accuracy and eÆciency. More specifically, VOTE has a comparable
performance�accuracy as the best programs compared in [20,15], but much faster
speed.

We note in passing that a closely related problem of finding an implanted clique�
distribution in a random graph has been studied in the graph theory community [1,6,12].
In [12], Kucera claimed that when the size of the implanted clique is at least
�(

�
m log m), where m is the number of vertices in the input random graph, a simple

approach based counting the degrees of vertices can find the clique with a high
probability. Alon et al. gave an improved algorithm that can find implanted cliques
of sizes at least �(

�
m) with a high probability [1]. Feige and Krauthgamer gave an

algorithm that can find implanted cliques of similar sizes in semi-random graphs [6].
It is easy to see that this problem of finding implanted cliques is a special case of our
implanted bicluster problem, where the input matrix is binary and all the elements in the
bicluster matrix are 1’s. We observe that while it may be easy to modify Kucera’s simple
degree-based method to work for implanted constant biclusters under our probabilistic
model, it is not obvious that the above results would directly imply our results on
implanted additive biclusters.

In the rest of the paper, we first present the voting algorithm and analyze its
theoretical performance on the above probabilistic model. We then describe the
implementation of VOTE, and the experimental results. Due to the page limit, the proofs
will be omitted in this extended abstract but will be provided in the full paper.

266 J. Xiao et al.

2 The Three Phase Voting Algorithm

We start the construction of the algorithm with some interesting observations. Recall
that B is an error-free k � k additive bicluster and A� is the random input matrix with a
noisy additive bicluster B� implanted.

Observation 1. Consider the k rows in B. There are at least k
L rows that are identifical.

That is, there exists a row set IC � IB with 	IC 	 � k
L such that A�(IC� JB) is a constant

bicluster with noise.

Consider a row i1 � IB and a column j1 � JB. For each row i2 � IB, ci1�i2 � ai1� j1 � ai2� j1
is an integer in [ai1� j1 � L � 1� ai1� j1]. Based on the value ci1�i2 , we can partition IB into
L di�erent row sets Id

B � �i2	i2 � IB & ci1�i2 � d�, d � ai1� j1 � L � 1� � � � � ai1� j1 . Let IC be
one of the row sets with the maximum cardinality, 	IC 	 � maxd 	Id

B	. Then, A(IC� JB) is a
constant bicluster and 	IC 	 � k

L . Let 	IC 	 � l.
Our algorithm has three phases. In the first phase of the algorithm, we want to find

the row set IC in A�(I� J). In order to vote, we first convert the matrix A�(I� J) into a
distance matrix D(I� J) containing the same sets of rows and columns, and then focus
on D(I� J).

Distance matrix: Given an n�m matrix A�(I� J), we can convert it into a distance matrix
based on a row in the matrix. Let i� � I be any row in the matrix A. We refer to row
i� as the reference row. Define di� j � ai� j � ai�� j. In the transformation, we subtract the
reference row i� from every row in A�(I� J). We use D(I� J) to denote the n�m distance
matrix containing the set of rows I and the set of columns J with every element di� j. For
a row i � I and a column set J� � J, the number of occurrences of u, u � [�L�1� L�1],
in D(i� J�) is the number of elements with value u in D(i� J�), denoted by f (i� J�� u) �
	�di� j	di� j � u & j � J��	. The number of occurrences of the element that appears the most
in D(i� J�) is f �(i� J�) � maxu f (i� J�� u). Similarly, for a row set I� � I and a column
j � J, the number of occurrences of u in D(I�� j) is the number of elements with value u
in D(I�� j), denoted by f (I�� j� u). The number of occurrences of the element that appears
the most in D(I�� j) is f �(I�� j) � maxu f (I�� j� u).

Observation 2. Suppose that we use a row i� � IC as the reference row. For each row i1
in IC, the expectation of the number of 0’s in row i1 of D(I� J) is at least m�k

L � (1� �)2k.
For each row i2 in IB � IC, the expectation of the number of 0’s in row i2 of D(I� J) is at
most m�k

L � 2�k
L . For each row i3 in I � IB, the expectation of the number of 0’s in row i3

of D(I� J) is at most m�k
L � k

L .

Based on the observation, if the reference row i� is in IC , we can find the rows with
the most 0’s in the distance matrix to obtain a row set I0 by using the following voting
method.

The first phase voting
1. for i � 1 to n do
2. compute f (i� J� 0).
3. select rows i such that f (i� J� 0) � m

L � 4
�

m log m to form I0.

Finding Additive Biclusters with Random Background 267

When m and k are suÆciently large and � is suÆciently small, we can prove that,
with a high probability, the row set I0 is equal to IC . The proof will be given in the next
section.

In the second phase voting of the algorithm, we attempt to find locate the column set
JB of the implanted bicluster. It is based on the following observation.

Observation 3. For a column j1 in JB, the expectation of the number of occurrences of
the element that appears the most in D(IC� j1) is (1 � �)	IC 	. For a column j2 in J � JB,
the expectation of the number of occurrences of an element u in D(IC� j1) is 1

L 	IC 	.
With a high probability (and again assuming that � is suÆciently small), the number
of occurrences of the element that appears the most in the columns of JB is greater
than the number of occurrences of the element that appears the most in the columns
of J � JB. That is, for two columns j1 � JB and j2 � JB, with a high probability,
f �(I0� j1) � �I0 �

2 � f �(I0� j2). Based on the property, we can use voting to find a column
set J1.

The second phase voting
1. for j � 1 to m do
2. compute f �(I0� j).
3. select columns j such that f �(I0� j) � �I0 �

2 to form J1.

We can prove (in the next section) that, with a high probability, J1 is equal to the
implanted column set JB.

Similarly, the third phase voting of the algorithm is designed to locate the row set IB

of the implanted bicluster. But, before the voting, we need correct corrupted columns
of the distance matrix D(I� J) caused by the elements of the reference row i� that
were changed during the generation of B�. Recall that f �(I0� j) � maxu f (I0� j� u). Let
f (I0� j� u j) � f �(I0� j). For every j � J1, if u j � 0, then the element ai�� j was changed
when B� was generated (assuming J1 � JB), and we can thus correct each element di� j

in the jth column of the matrix D(I� J) by subtracting u j from it.
In the following, let us assume that the entries in the submatrix D(I� JB) have been

adjusted according to the correct reference row i� as described above. The following
observation holds.

Observation 4. For a row i1 in IB, the expectation of the number of occurrences of the
element that appears the most in D(i1� JB) is at least (1 � �)k. For a row i2 in I � IB,
the expectation of the number of occurrences of the element that appears the most in
D(I2� jB) is k

L .

We can thus find a row set I1 in A�(I� J1) as follows.

The third phase voting
1. for i � 1 to n do
2. compute f �(i� J1).
3. select rows i such that f �(i� J1) � �J1�

2 to form I1.

We can prove (in the next section) that, if 	I1	 � k, with a high probability, I1 is
equal to the implanted column set IB. Therefore, a voting algorithm based on the above

268 J. Xiao et al.

The Three Phase Voting Algorithm

Input: An n × m matrix A′(I, J), an integer k, noise level θ, and L.
Output: A bicluster A′(I1, J1).
1. for each row i∗ ∈ I, do

2. construct the n × m distance matrix D(I, J) from A′(I, J) with reference row i∗.
3. find a row set I0 by using the first phase voting.
4. if |I0| ≥ k

L , then

5. find a column set J1 by using the second phase voting.
6. correct the corrupted columns in submatrix D(I, J1).
7. find a row set I1 by using the third phase voting.
8. if |I1| ≥ k and |J1| ≥ k, output A′(I1, J1) and return.

Fig. 1. The three phase voting algorithm

procedures, as given in Figure 1, can be used to find the implanted bicluster with a high
probability. Since the time complexity of the steps 2 - 7 of the algorithm is O(nm) and
these steps are repeated n times, the time complexity of the algorithm is O(n2m).

3 Analysis of the Algorithm

In this section, we will prove that, with a high probability, the above voting algorithm
correctly outputs the implanted bicluster.

Recall that in the submatrix A�(IB� JB), each element was changed with probability
� to generate B� from B. We will show that, with a high probability, there exists a row
i � IC such that row i has at least (1� Æ)(1� �)k unchanged elements in A�(i� JB) for any
0 � Æ � 1.

In the analysis, we need the following two lemmas from [18,14].

Lemma 1. [18] Let X1� X2� � � � � Xn be n independent random binary (0 or 1) variables,
where Xi takes on the value of 1 with probability pi, 0 � pi � 1. Let X �

�n
i�1 Xi and

� � E[X]. Then for any 0 � Æ � 1,

(1) Pr(X � (1 � Æ)�) �
�

eÆ

(1�Æ)(1�Æ)

��
,

(2) Pr(X � (1 � Æ)�)
 e� 1
2 �Æ

2
.

Lemma 2. [14] Let Xi,1
 i
 n, X and � be defined as in Lemma 1. Then for any
0 � � � 1,

(1) Pr(X � � � �n)
 e� 1
3 n�2

,
(2) Pr(X � � � �n)
 e� 1

2 n�2
.

These two lemmas will be used to establish the next lemma.

Lemma 3. For any 0 � Æ � 1, with probability at least 1 � e� 1
2L (1��)k2Æ2

, there exists a
row i � IC that has at least (1 � Æ)(1 � �)k unchanged elements in A�(i� JB).

Suppose that there is a row i� � IC with (1� Æ)(1� �)k unchanged elements in A�(i� JB).
Now, let us consider the distance matrix D(I� J) with the reference row i�. We now show

Finding Additive Biclusters with Random Background 269

that, with a high probability, the rows in IC have more 0’s than those in I � IC in matrix
D(I� J). That is, with a high probability, our algorithm will find the row set IC in the first
phase voting.

Lemma 4. Let i� � IC be the reference row with (1 � Æ)(1 � �)k unchanged elements in
A�(i�� JB), and D(I� J) the distance matrix as described above. When 	 � (1�Æ)(1��)2�
1
L � 0 and k � 8

�

�
m log m, with probability at least 1�m�7 � nm�5, f (i� J� 0) � m

L �
�
2 k

for all i � IC, and f (i� J� 0) � m
L �

�
2 k for all i � I � IC.

The above lemma shows that, when a row i� with (1 � Æ)(1 � �)k unchanged elements
in A�(i� JB) is selected as the reference row, and m and k are large enough, I0 � IC with
a high probability. Next, we prove that, with a high probability, our algorithm will find
the implanted column set JB.

Lemma 5. Suppose that the row set I0 found in the first phase voting of Algorithm 1 is

indeed equal to IC. With probability at least 1�ke�
(1�2�)2

8L k �L(m�k)e�
(L�2)2

12L3 k , the column
set J1 found in the second phase voting of Algorithm 1 is equal to JB.

Similarly, we can prove that, with a high probability, our algorithm will find the
implanted row set IB.

Lemma 6. Suppose that the column set J1 found in the second phase voting of

Algorithm 1 is indeed equal to JB. With probability at least 1 � ke�
(1�2�)2

8 k � 2L(n �
k)e�

(L�2)2

12L2 k, the row set I1 found in the third phase voting of Algorithm 1 is equal to IB.

Finally, we can prove that, with a high probability, no columns or rows other than those
in the implanted bicluster will be output by the voting algorithm.

Lemma 7. With probability at least 1�Ln(m�k)e�
(L�2)2

12L3 k�2Ln(n�k)e�
(L�2)2

12L2 k, no columns
or rows of A�(I� J) other than those in A�(IB� JB) will be output by the Algorithm 1.

Based on Lemmas 3, 4, 5, 6 and 7, we can show that, when m and k are large enough, the
three phase voting algorithm can find the implanted bicluster with a high probability.
Let c be a constant such that c � min� (1��)Æ2k

2L �
(1�2�)2

8L �
(L�2)2

12L3 �. In most applications, we
may assume that n � m3. Then, we have the following theorem.

Theorem 1. When n � m3, 	 � (1�Æ)(1��)2� 1
L � 0 and k � max

�
8
�

�
m log m�

8 log m
c

� log(2L)
�
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 � 9m�2.

If we replace m by n in the above analysis, the same proof shows that

Corollary 1. When 	 � (1 � Æ)(1 � �)2 � 1
L � 0 and k � max

�
8
�

�
n log n� 8 log n

c

� log(2L)
�
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 � 9n�2.

In the practice of microarray data analysis, the number of conditions m is much smaller
than the number of genes n. Thus, Theorem 1 allows the parameter k to be smaller (i.e.

270 J. Xiao et al.

it works for smaller implanted biclusters) than Corollary 1, although it assumes a
slightly more complicated condition (n � m3) and has a slightly worse success
probability.

4 The Implementation of the Voting Algorithm

The voting algorithm described in Section 2 is originally based on the probabilistic
model for generating the implanted additive bicluster. Many assumptions have been
used to prove its correctness. To deal with real data, we have to carefully resolve the
following issues.

Estimation of the bicluster size. In the voting algorithm, we assume that the size k
of the implanted bicluster is part of the input. However, in practice, the size of the
implanted bicluster is unknown. Here we develop a method to estimate the size of the
bicluster. We first set k to be a large number such that k � 	JB	. Let q be the maximum
number of rows such that f (i� J� u) � (m�k)Pr(di� j � u)�k among all u � [�L�1� L�1].
Our key observation here is that if k is greater than 	JB	, then q will be smaller than 	IB	.
If k is smaller than 	JB	, then q will be greater than 	IB	. Thus, we can gradually decrease
the value of k while observing that the value of q increases accordingly. The process
stops when q � 2k.

To set the initial value of k such that k � 	JB	, we set k � 3 � maxu(Pr(di� j � u)) � m.
This worked very well in our experiments.

Dealing with retangular biclusters. Many interesting biclusters in the practice
of microarray gene expression data are non-square. To deal with such rectangular
biclusters, where 	IB	 � 	JB	, we first try to obtain a square bicluster in the first phase
voting (assuming 	IB	 � 	JB) and then use the k rows in I0 for the second phase
voting. The third phase voting may in fact generate a rectangular bicluster with unequal
numbers of rows and columns.

Adjusting the threshold used in the first phase voting for a real input matrix. In
Step 3 of the first phase voting, we use the threshold f (i� J� 0) � m

L � 4
�

m log m to
select rows to form I0. This is based on the assumption that in the random background
matrix, di� j � 0 with probability 1

L . In order for the algorithm to work for any input
data, we consider the distribution of numbers in the whole input matrix. We calculate
the probability Pr

�
di� j � l

	
for each l � [�L � 1� L � 1] in the input matrix. In Step 3 of

the first phase voting, we choose all the rows such that f (i� J� u) � (m�k)Pr(di� j � u)�k.
In this way, we were able to make our algorithm to work well for real microarray data
where the background did not seem to follow some simple uniform�normal distribution.

When 	Ic	 is too small for voting. Recall that Ic is the set of the rows identical to the
reference row I� in the implanted bicluster. In other words, the set Ic contains all the
rows i with di� j � 0 for j � JB. The expectation of 	Ic	 is k

L . When k is small and L
is large, 	Ic	 (and thus I0) could be too small for the voting in the second phase to be
e�ective. To enhance the performance of the algorithm, we consider the set Iu

B for each
u � [�L � 1� L � 1] as defined in the beginning of Section 2, and approximate it using

Finding Additive Biclusters with Random Background 271

a set Iu
0 in the algorithm just like how we approximated the set IC � I0

B by the set I0 in
the first phase voting. Thus, the second phase voting becomes:

The second phase voting
1. for j � 1 to m do
2. compute f (Iu

0 � j� u) for each u � [�L � 1� L � 1].
3. select columns j such that

�L�1
u��L�1 f (Iu

0 � j� u) � (
�L�1

u��L�1 	Iu
0)
2 to

form J1.

Dealing with multiple and overlapping biclusters. In microarray gene expression
analysis, a real input matrix may contain multiple biclusters of interest, some of which
could overlap. We could easily modify the voting algorithm to find multiple implanted
biclusters by forcing it to go through all the n rounds (i.e. considering each of the n rows
as the reference row) and recording all the biclusters found. If the two biclusters found
in two di�erent rounds overlap (in terms of the area) by more than 25% of the area of
the smaller biclcuster, then we consider them as the same bicluster.

5 Experimental Results

We have implemented the above voting algorithm in C�� and produced a software,
named VOTE. In this section, we will compare VOTE with some well-known biclus-
tering algorithms in the literature on both simulated and real microarray datasets. The
tests were performed on a desktop PC with P4 3.0G CPU and 512M memory running
Windows operating system.

To evaluate the performance of di�erent methods, we use a measure (called match
score) similar to the score introduced in Prelić et al. [20]. Let M1� M2 be two sets of
biclusters. The match score of M1 with respect to M2 is given by

S (M1� M2) �
1

	M1	

A(I1 �J1)�M1

max
A(I2 �J2)�M2

	I1 � I2	 � 	J1 � J2	
	I1
 I2	 � 	J1
 J2	

�

Let Mopt denote the set of implanted biclusters and M the set of the output biclusters of
a biclustering algorithm. S (Mopt� M) represents how well each of the true biclusters is
discovered by a biclustering algorithm.

5.1 Simulated Datasets

Following the method in [15,20], we consider an n � m background matrix A. Let
L � 30. We generate the elements in the background matrix A such that the data
fits the standard normal distribution with the mean of 0 and the standard deviation of
1. To generate an additive b � c bicluster, we first randomly generate the expression
values in a reference row (a1� a2� � � � � ac) according to the standard normal distribution.
To obtain a row (ai1� ai2� � � � � aic) in the additive bicluster, we randomly generate a
distance di (based on the standard normal distribution) and set ai� j � a j � di for
j � 1� 2� � � � � c. After we obtain the b � c additive bicluster, we add some noise by

272 J. Xiao et al.

Table 1. Parameter settings for di�erent biclustering methods

Method Type of Bicluster Parameter Setting
BiMax Constant minimum number of genes and chips: 4
ISA Constant�Additive tg � 2�0� tc � 2�0� seeds � 500
CC Constant Æ � 0�5� � � 1�2
CC Additive Æ � 0�002� � � 1�2
RMSBE Constant�Additive � � 0�4� � � 0�5� � � �e � 1�2
OPSM Additive l � 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

M
at

ch
 S

co
re

Noise Level

VOTE RMSBE OPSM CC ISA

Fig. 2. Performance on small additive biclus-
ters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30405075100

M
at

ch
 S

co
re

Bicluster Size

VOTE RMSBE

Fig. 3. Performance on biclusters of di�erent
sizes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

M
at

ch
 S

co
re

Overlap Degree

VOTE RMSBE OPSM CC

Fig. 4. Performance on overlapping biclusters

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.00 0.05 0.10 0.15 0.20 0.25

M
at

ch
 S

co
re

Noise Level

20* 50$
20*40

20*30
20*20

30*20
40*20

50*20

Fig. 5. Performance on rectangular biclusters

randomly selecting � � b � c elements in the bicluster and changing their values to a
random number (according to the standard normal distribution). Finally, we insert the
obtained bicluster into the background matrix A and shu�e the rows and columns. We
compare our program, VOTE, with several well-known programs for biclustering from
the literature including ISA, CC, OPSM, and RMSBE [3,5,9,10,15]. The parameter
settings of di�erent methods are listed in Table 1.

Testing the performance on small biclusters. First, we test how well the programs are
able to find small implanted additive biclusters. Let n � m � 100 and b � c � 15 � 15,

Finding Additive Biclusters with Random Background 273

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e

Number of Rows

VOTE RMSBE

Fig. 6. Speeds of the programs

α
α
α
α
α

=0.001%
=0.1%
=0.5%
=1%
=5%

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

VOTE MSBE OPSM BiMax ISA Samba CC

Pr
op

or
tio

n
of

 B
ic

lu
st

er
s

pe
r

Si
gn

if
ic

an
ce

 L
ev

el

Biclustering Algorithms

Fig. 7. Proportion of biclusters significantly
enriched by a GO category. Here, � is the
adjusted significance score of a bicluster.

and consider implanted biclusters generated with di�erent noise levels � in the range of
[0� 0�25]. Figure 2 shows that VOTE and RMSBE outperform CC, OPSM and ISA with
on all noise levels.

Testing the performance on biclusters of di�erent sizes. Since RMSBE has the best
performance among the existing programs considered here, we compare VOTE with
RMSBE on di�erent bicluster sizes. In this test, the noise level is set as � � 0�2.
The sizes of the implanted (square) biclusters vary from 30 � 30 to 100 � 100 and the
background matrix is of size 500 � 500. As illustrated in Figure 3, VOTE outperforms
RMSBE when the size of the square bicluster is greater than 40, while RMSBE is more
powerful in finding small biclusters.

Finding multiple biclusters. To test the ability of finding multiple biclusters, we
first generate two b � b additive biclusters with o overlapped rows and columns.
The parameter o is called the overlap degree. The background matrix size is fixed
as 100 � 100. Both the background matrix and the biclusters are generated as before.
To find multiple biclusters in a given matrix, some methods, e.g., CC, needs to mask
the previously discovered biclusters with random values. One of the advantages of the
approaches based on a reference row, e.g., VOTE and RMSBE, is that it is unnecessary
to mask previously discovered biclusters. We test the performance of VOTE, RMSBE,
CC and OPSM on overlapping biclusters by using 20�20 additive biclusters with noise
level � � 0�1 and overlap degree o ranging from 0 to 10. The results are shown in
Figure 4. We can see that both VOTE and RMSBE are only marginally a�ected by
the overlap degree of the implanted biclusters. VOTE is slightly better than RMSBE,
especially when o increases.

Finding rectangular biclusters. We generate rectangular additive biclusters with
di�erent sizes and noise levels. The row and column sizes of the implanted biclusters
range from 20 to 50. The noise level � is from the range [0� 0�25]. The background
matrix is of size 100 � 100. The results are shown in Figure 5. We can see that the

274 J. Xiao et al.

performance of VOTE is not a�ected by the shapes of the rectangular biclusters. Since
RMSBE can only find near square biclusters, we compare the performance of VOTE
with that of an extension of RMSBE. Comparing Figure 5 with the test results given in
[15], our algorithm is better in finding rectangular biclusters.

Running time. To compare the speeds of VOTE and RMSBE, we consider background
matrices of 200 columns. The number of rows ranges from 1000 to 6000. The size of
the implanted bicluster is 50 � 50. The running time of VOTE and RMSBE is shown
in Figure 6. In the test, we let RMSBE randomly select 10% rows as the reference
row and 50 columns as the reference column. We can see that VOTE is much faster
than RMSBE. Moreover, for the real gene expression data of S. cerevisiae provided by
Gasch et al. [7], our algorithm runs in 66 seconds and RMSBE (randomly selecting 300
genes as the reference row and 40 conditions as the reference column) runs in 1230
seconds.

5.2 Real Dataset

Similar to the method used by Tanay et al. [22] and Prelić et al [20], we investigate
whether the set of genes discovered by a biclustering method shows significant
enrichment with respect to a specific GO annotation provided by the Gene Ontology
Consortium [7]. We use the web tool funcAssociate of Berriz et al. [4] to evaluate
the discovered biclusters. FuncAssociate first uses Fisher’s exact test to compute the
hypergeometric functional score of a gene set, then it uses the Westfall and Young
procedure [23] to compute the adjusted significance score of the gene set. The analysis
is performed on the gene expression data of S. cerevisiae provided by Gasch et al.
[7]. The dataset contains 2993 genes and 173 conditions. We set L � 30, filter out the
biclusters with over 25% overlapped elements, and output the largest 100 biclusters. The
running time of VOTE on this dataset is 66 seconds. The adjusted significance scores
(adjusted p-values) of the 100 biclusters are computed by using FuncAssociate. Here,
we compare the significance scores for RMSBE, OPSM, BiMax [20], ISA, Samba [22],
and CC obtained from Figure 7 in Liu et al. [15]. The result is summarized in Figure 7.
We can see that 92% of discovered biclusters by VOTE are statistically significant, i.e.
with 	
 5%. Moreover, the performance of VOTE in this regard is comparable to that
of RMSBE and is better than those of the other programs compared in [15].

6 Conclusion

Based on a simple probabilistic model, we have designed a three phase voting algorithm
to find implanted additive biclusters. We proved that when the size of the implanted
bicluster is �(

�
m log m), the voting algorithm can correctly find the implanted bicluster

with a high probability. We have also implemented the voting algorithm as a software
tool, VOTE, for finding novel biclsuters in real microarray gene expression data. Our
extensive experiments on simulated datasets demonstrate that VOTE performs very well
in terms of both accuracy and speed. Future work includes testing VOTE on more real
datasets, which could be a bit challenging since true biclusters for most gene expression
datasets are unknown.

Finding Additive Biclusters with Random Background 275

Acknowledgments

JX’s research is supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901, LW’s research is supported by a grant from City
University of Hong Kong [Project No. 7001996], and TJ’s research is supported by NSF
grant IIS-0711129, NIH grant LM008991-01, National Natural Science Foundation of
China grant 60528001, and a Changjiang Visiting Professorship at Tsinghua University.

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a Large Hidden Clique in a Random Graph.
Random Structures and Algorithms 13(3-4), 457–466 (1998)

2. Barkow, S., Bleuler, S., Prelić, A., Zimmermann, P., Zitzler, E.: BicAT: a biclustering analysis
toolbox. Bioinformatics 22(10), 1282–1283 (2006)

3. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression
data: the order-preserving submatrix problem. In: Proceedings of Sixth International
Conference on Computational Molecular Biology (RECOMB), pp. 45–55. ACM Press, New
York (2002)

4. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Charactering gene sets with
FuncAssociate. Bioinformatics 19, 2502–2504 (2003)

5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th
International Conference on Intelligent Systems for Molecular (ISMB 2000), pp. 93–103.
AAAI Press, Menlo Park (2000)

6. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semirandom
graph. Random Structures and Algorithms 16(2), 195–208 (2000)

7. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein,
D., Brown, P.O.: Genomic expression programs in the response of yeast cells to enviormental
changes. Molecular Biology of the Cell 11, 4241–4257 (2000)

8. Hartigan, J.A.: Direct clustering of a data matrix. J. of the American Statistical
Association 67, 123–129 (1972)

9. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular
organization in the yeast transcriptional network. Nature Genetics 31, 370–377 (2002)

10. Ihmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large-scale gene
expression data. Bioinformatics 20(13), 1993–2003 (2004)

11. Kluger, Y., Basri, R., Chang, J., Gerstein, M.: Spectral biclustering of microarray data:
coclustering genes and conditions. Genome Research 13, 703–716 (2003)

12. Kucera, L.: Expected complexity of graph partitioning problems. Disc. Appl. Math. 57, 193–
212 (1995)

13. Li, H., Chen, X., Zhang, K., Jiang, T.: A general framework for biclustering gene expression
data. Journal of Bioinformatics and Computational Biology 4(4), 911–933 (2006)

14. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–
171 (2002)

15. Liu, X., Wang, L.: Computing the maximum similarity biclusters of gene expression data.
Bioinformatics 23(1), 50–56 (2007)

16. Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. In:
Proceedings of the Fifteenth Annual Symposium on Combinatorial Pattern Matching, pp.
102–116 (2004)

276 J. Xiao et al.

17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey.
IEEE�ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

18. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, Cam-
bridge (1995)

19. Peeters, R.: The maximum edge biclique problem is NP-complete. Disc. Appl. Math. 131(3),
651–654 (2003)

20. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L.,
Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for
gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

21. Shamir, R., Maron-Katz, A., Tanay, A., Linhart, C., Steinfeld, I., Sharan, R., Shiloh, Y.,
Elkon, R.: EXPANDER - an integrative program suite for microarray data analysis. BMC
Bioinformatics 6, 232 (2005)

22. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene
expression data. Bioinformatics 18, suppl. 1, 136–144 (2002)

23. Westfall, P.H., Young, S.S.: Resampling-based multiple testing. Wiley, New York (1993)
24. Yang, J., Wang, W., Wang, H., Yu, P.: Æ-clusters: capturing subspace correlation in a large

data set. In: Proceedings of the 18th International Conference on Data Engineering, pp. 517–
528 (2002)

	Finding Additive Biclusters with Random Background
	Introduction
	The Three Phase Voting Algorithm
	Analysis of the Algorithm
	The Implementation of the Voting Algorithm
	Experimental Results
	Simulated Datasets
	Real Dataset

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

