
On Agnostic Boosting and Parity Learning

Adam Tauman Kalai
∗

College of Computing
Georgia Inst. of Technology

Atlanta, GA, USA
atk@cc.gatech.edu

Yishay Mansour
†

Google Inc.
New York, NY, USA

and
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

mansour@tau.ac.il

Elad Verbin
‡

Institute for Theoretical
Computer Science
Tsinghua University

Beijing, China
eladv@tsinghua.edu.cn

ABSTRACT
The motivating problem is agnostically learning parity func-
tions, i.e., parity with arbitrary or adversarial noise. Specif-
ically, given random labeled examples from an arbitrary dis-
tribution, we would like to produce an hypothesis whose ac-
curacy nearly matches the accuracy of the best parity func-
tion. Our algorithm runs in time 2O(n/ logn), which matches
the best known for the easier cases of learning parities with
random classification noise (Blum et al, 2003) and for ag-
nostically learning parities over the uniform distribution on
inputs (Feldman et al, 2006).

Our approach is as follows. We give an agnostic boost-
ing theorem that is capable of nearly achieving optimal ac-
curacy, improving upon earlier studies (starting with Ben
David et al, 2001). To achieve this, we circumvent previous
lower bounds by altering the boosting model. We then show
that the (random noise) parity learning algorithm of Blum
et al (2000) fits our new model of agnostic weak learner. Our
agnostic boosting framework is completely general and may
be applied to other agnostic learning problems. Hence, it
also sheds light on the actual difficulty of agnostic learning
by showing that full agnostic boosting is indeed possible.

∗Research partly performed while visiting the Weizmann In-
stitute, and supported in part by NSF SES-0734780.
†This work was supported in part by the IST Programme
of the European Community, under the PASCAL Network
of Excellence, IST-2002-506778, by a grant no. 1079/04
from the Israel Science Foundation, by a grant from United
States-Israel Binational Science Foundation (BSF), and an
IBM faculty award. This publication reflects the authors’
views only.
‡Some of this research was done while at Tel Aviv University,
Tel Aviv, Israel. This work was supported in part by the Na-
tional Natural Science Foundation of China Grant 60553001,
and the National Basic Research Program of China Grant
2007CB807900,2007CB807901.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures

General Terms
Algorithms, Theory

Keywords
agnostic learning, agnostic boosting, learning parity with
noise, sub-exponential algorithms

1. INTRODUCTION
The goal of binary classification is to learn, from labeled

examples drawn from a distribution, to predict labels of fu-
ture examples drawn from the same distribution. In normal
PAC learning, one assumes that the labels are determined
by a function f that belongs to some restricted class C,
such as the class of (small) DNF expressions on the input
bits. In agnostic learning [16], on the other hand, one avoids
making any assumptions relating to the process generating
labels for examples. Thus, we allow any or no relationship
between labels and examples. Clearly some relaxation of
the goal is required, since one can not hope to learn pure
random noise. In agnostic learning, the goal of the learner
is to return an hypothesis that nearly matches the error of
the best classifier from some given class C. Thus, we can see
that PAC learning is the special case where the best classi-
fier has zero error, though in most applications of interest
the best classifier has non-zero error.

There are two main points to this paper. The first is an
agnostic boosting theorem. The boosting algorithm itself
is a small modification to boosting by branching programs
[14, 12]. It receives a weak learner, which only needs to
guarantee an accuracy slightly better than 1/2. The booster
outputs an hypothesis whose error nearly matches the error
of the best classifier in the class. The key insight is a novel
understanding of what an weak agnostic learner should do,
which is what enables us to match the error of the best
classifier. We remark that our boosting algorithm makes no
assumption regarding the underlying distribution and works
for an arbitrary distribution.

To demonstrate the power of our agnostic boosting model,
we show how one can build an agnostic weak learner for the

629

class of parity functions which works for arbitrary distribu-
tions. The class of parity functions is notoriously hard to
learn even with random classification noise and the uniform
distribution, let alone agnostic learning with arbitrary dis-
tribution. Not surprisingly, our weak learner for parity does
not run in polynomial time but rather 2O(n/ logn), which is
still faster than the trivial 2O(n) bound.

Combining our two results: the agnostic boosting algo-
rithm and the weak agnostic learner for parity function, we
get an 2O(n/ logn) time algorithm for computing an hypothe-
sis whose error almost matches that of the best parity func-
tion. This learning result, although not impressive in the
running time, works in a highly noisy environment and han-
dles an arbitrary distribution.

1.1 Learning Models
The agnostic model of binary classification [16] is the most

general (and adversarial) noise-tolerant extension of PAC
learning, and it is also the most computationally demand-
ing. In this model, there is an arbitrary distribution D over
binary labeled examples (x, y) ∈ X × {0, 1}. There is also
a class C of concepts c : X → {0, 1}. Based on random
labeled examples from D, the goal is to output a predictor
h : X → {0, 1} with low error on future examples,

err
D

(h) = P(x,y)∼D[h(x) 6= y].

An agnostic learner’s error is required to be near that of the
best predictor in C. In particular, it should not be much
larger than

opt
D

(C) = min
c∈C

err
D

(c).

In Valiant’s original PAC model [22], D was noiseless, i.e.,
optD(C) = 0, and PAC learners guarantee errD(h) ≤ ε. In
agnostic learning, since D is arbitrary, the goal is to find h
with errD(h) ≤ optD(C) + ε. ”(The polynomial-time algo-
rithm for PAC-learning parity, based on Gaussian elimina-
tion, is the one striking exception to this rule of thumb, since
it cannot be made to work in the Statistical Query model
[3].)

Classification noise is a model lying in between PAC and
agnostic learning. Here, it is assumed that there is a true
function f ∈ C, and that labels y agree with f(x) with
probability 1 − η > 1/2, independently for each x. Most
of the efficient PAC learning algorithms can be translated
from the noiseless to the classification noise settings using
Kearns’ Statistical Query model [13].

Classification noise is a special case of agnostic learning
(opt = η). “Agnostic learning” can be viewed as learning
with arbitrary or even adversarial noise. However, Kearns,
Schapire, and Sellie [16] chose the term “agnostic learning”
because“noise” suggests an assumed connection between the
concept class C and the real-world distribution D.

Surprisingly, the three models of learnability are similar in
terms of number of examples required, disregarding compu-
tation. However, many computationally efficient PAC (with
classification noise) learning algorithms are known, while
the majority of agnostic learning results have been negative.
Even for trivial classes of functions, such as disjunctions over
{0, 1}n, efficient agnostic learning remains a frustrating hard
open problem. (For example, agnostic learning of disjunc-
tions would imply PAC learning of DNF [16].) Recently, it
was shown that the popular class of halfspaces is agnosti-

cally learnable, under mild distributional assumptions [11]
(and an exponential dependence on 1/ε).

In this paper, we give two further positive results for ag-
nostic learning. The first is a polynomial-time general ag-
nostic boosting algorithm. The second is its application to
the problem of agnostic parity. Next we will discuss each of
the contributions in more detail.

1.2 Agnostic boosting
Boosting is a central tool for the design of efficient PAC-

learning algorithms, which has also had a great impact in
practice. In the PAC setting, a weak learner is an algorithm
that guarantees error ≤ 1/2 − γ, for some γ bounded away
from 0. It was shown [21] that such a learner could be used
repeatedly to achieve error below any ε > 0. In the agnostic
setting, it is impossible to guarantee error < 1/2 (e.g., y ∈
{0, 1} may be uniformly random and independent from x).

Ben-David, et al [2] were the first to define the agnostic
boosting problem. They defined a weak agnostic learner as
one that achieves error ≤ optD(C)+β for some β < 1/2 and
showed that such a weak agnostic learner could be boosted
to a certain (non-optimal) amount. In subsequent work,
Gavinsky [6] showed that such a learner can be boosted to
achieve error ≤ opt

1/2−β + ε and gave a lower-bound off by a

factor of 2.
We suggest the following new definition of weak learner in

the agnostic setting, for 0 < γ ≤ α ≤ 1/2.

Definition 1. (α, γ)-weak agnostic learner (ideal-
ized version). The learner takes labeled examples from ar-
bitrary distribution D on X × {0, 1}, and outputs h : X →
{0, 1} such that,(

opt
D

(C) ≤ 1

2
− α

)
=⇒

(
err
D

(h) ≤ 1

2
− γ
)
.

Note that a good weak learner has α as small as possi-
ble and γ as large as possible. Note also that the above is
idealized – actual guarantees can only hold with high prob-
ability. This definition differs from the PAC definition, in
that the algorithm is only required to succeed when there
is some concept in C with error ≤ 1/2 − α. For α = 1/2,
this matches the standard definition of γ-weak learner in the
noiseless PAC setting.

Also note that one cannot expect a (α, γ)-weak agnostic
learner to help in guaranteeing error < opt +α (just consider
an input distribution where opt > 1/2 − α, so the agnostic
weak learner guarantee is vacuous). Given any (α, γ) weak
agnostic learner, our algorithm produces an hypothesis with
error arbitrarily close to opt +α.

Theorem 1 (Informal Statement). Given any (α, γ)-
weak agnostic learner and any ε > 0, with high probability
the boosting algorithm outputs h with

err
D

(h) ≤ opt +α+ ε.

The algorithm makes poly(γ−1, ε−1) calls to the weak learner.

The algorithm we use is essentially a boosting algorithm due
to Mansour and McAllester [18]. This algorithm has been
used in the context of boosting with classification noise [12].

In the examples of weak learners we give in this paper, one
can pick the parameter α to be arbitrarily small. However,
one can envision applications in which this parameter would
be essential to achieve the weak learning.

630

We next illustrate through the class of unions of n intervals
on X = R. While this class is already known to be learnable
[16], it serves the purpose of demonstrating how our agnostic
boosting theorem can be used to get fully polynomial-time
learners. We then move on to the more challenging applica-
tion of agnostic learning of parity functions.

1.3 Agnostic learning of parity functions
Learning parity with noise is a longstanding open prob-

lem in computational learning theory, which has attracted
attention in recent years [4, 5, 20, 9, 10, 19, 17, 7], for several
reasons. Firstly, an efficient algorithm, if one exists, can be
used [5] to solve outstanding open problems in learning the-
ory, such as the problem of learning DNF, and would have
implications for decoding random linear codes, as well. The
common belief, however, is that parity with noise is hard,
even when D is the uniform distribution [13]. Thus, the goal
is to understand how hard it is. Parity with noise seems to be
a relatively easy problem compared to NP-Hard problems,
similarly to factoring, graph isomorphism, or various lattice
problems. Parity with noise also seems to be a difficult-
on-average problem, and thus is useful as an hypothesis for
achieving conditional hardness-on-average results and as a
cryptographic primitive [3, 20, 9, 10]. In either case, parity
with noise is a beautiful mathematical problem whose roots
are found in Gaussian elimination, and which captures the
inherent computational difficulty of dealing with noisy data.

It is important to note that the difficulty of parity with
noise is complexity-theoretic, rather than information-theoretic.
Indeed, given m = O(n) samples, selecting the parity with
the minimal error rate on the sample would give a good
approximation to the best parity function.

Let X = {0, 1}n. A parity function is a function c(x) =∑n
i=1 xizi (mod 2) for some z ∈ {0, 1}n. Let Pn be the

class of parity functions on n bits. Learning Pn seems to
be quite challenging even in the case of classification noise.
The current fastest algorithm, due to Blum, et al [4] runs

in time 2O(n/ logn) for noise rate η = 1
2
− 2−n

1−δ
(any con-

stant δ > 0).1 Recently Feldman, et al [5], showed that
any algorithm for learning parity with random classification
noise w.r.t. the uniform distribution on {0, 1}n can be used
to agnostically learn parity (among other things), with a
polynomial blowup in the number of examples and in run-
ning time, assuming that the distribution D is uniform over
x ∈ {0, 1}n (and the labels selected in a potentially adversar-
ial way). This implies one can learn agnostic parity in time

2O(n/ logn) for the uniform distribution over x ∈ {0, 1}n.
Our result regarding parity matches this runtime in the gen-
eral distribution case, and uses a different approach.

Theorem 2. There is an algorithm such that, for any
n ≥ 1 and distribution D over (x, y) ∈ {0, 1}n × {0, 1},
with probability ≥ 0.99, given as input m = 2O(n/ logn) in-
dependent samples from D, outputs a circuit computing h :
{0, 1}n → {0, 1} such that,

err
D

(h) ≤ opt
D

+2−n
0.99

The runtime and number of samples used by the algorithm
is 2O(n/ logn).

1These can be found by appropriate parameter settings in
Theorem 2 of [4], as observed by Lyubashevsky [17].

Note that the constants 0.99 can be replaced by arbitrary
constants less than 1. The circuit produced by the algo-
rithm is of size 2O(n/ logn). Our approach is to show that an
appropriate modification of the Blum et al’s algorithm [4]
gives a very weak agnostic learner, i.e., it has a small degree
of tolerance to agnostic noise. We note that our algorithm
is not a proper learner – its output is not a parity function.
In contrast the prior results [4, 5] are proper.

2. FORMAL DEFINITIONS
We will write opt and err when the distribution and con-

cept class are understood from context. Formally, there is a
domain X and a learner is an algorithm that takes as input
any number of labeled examples ∈ X × {0, 1}, an accuracy
parameter ε and a confidence parameter δ and outputs a
circuit computing a function h : X → {0, 1}.2

Definition 2. Learner A agnostically learns concept class
C of c : X → {0, 1}, if there is a polynomial p such that, for
every distribution D on X ×{0, 1} and every ε, δ > 0, given
m = p(1/ε, log 1/δ) examples, it outputs a circuit computing
h : X → {0, 1} such that, with probability ≥ 1 − δ over the
m examples,

err
D

(h) ≤ opt
D

(C) + ε.

The runtime of the algorithm should be polynomial m, 1/ε
and log(1/δ).

We now give a precise definition of weak agnostic learner.

Definition 3. (m,α, γ)-weak agnostic learner. For
m ≥ 1, 0 < γ ≤ α < 1/2, an (m,α, γ)-weak agnostic
learner is a learner that, when given m labeled examples
Zm = (x1, y1), . . . , (xm, ym) ∈ X × {0, 1} drawn from ar-
bitrary distribution D, outputs a circuit computing h : X →
{0, 1} such that,(

opt
D

(C) ≤ 1

2
− α

)
=⇒

(
Pr

Zm∼Dm

[
err
D

(h) ≤ 1

2
− γ
]
≥ 1/2

)
The difference between this definition and the idealized weak
agnostic learner is that we have specified the number of ex-
amples required and a success rate.

The following is our main theorem regarding our agnostic
boosting.

Theorem 3. There is an agnostic boosting algorithm, that
given any 0 < γ < α ≤ 1/2, any (m,α, γ)-weak agnostic
learner and δ, ε > 0, with probability ≥ 1 − δ outputs a cir-
cuit computing h : X → {0, 1} such that

err
D

(h) ≤ opt +α+ ε.

The number of samples required is poly(m, 1/γ, 1/ε, log(1/δ)).
The algorithm makes poly(1/γ, 1/ε, log(1/δ)) calls to the weak
learner, and uses additional poly(1/γ, 1/ε, log(1/δ)) runtime.

The computational bounds of our boosting theorem are
stated in terms of the runtime of the weak agnostic learner,
which we do not bound a priori. This gives us the most

2For the purposes of this paper, we consider standard binary
circuits with unbounded fan-in. However, our boosting theo-
rem could easily be adapted to real-valued concepts/circuits
as well. What is important is that h can be evaluated
quickly.

631

flexibility in its application. In many cases of interest, there
is a sequence of concepts classes Cn of c : Xn → {0, 1},
for n = 1, 2, In that case, the algorithm must apply to
each n and the required number of training examples m is
permitted to be a polynomial in 1/ε and n as well. Parity
functions do fit into the asymptotic Cn setting. However,
our algorithm for parity with noise requires a number of
examples that is super-polynomial in n.

It will be more convenient to consider the following model
of a learner, which takes some number of labeled examples
as input and a single unlabeled example, and predicts the
label of that example. Such a learner is similar to an online
learner (where an arbitrarily long sequence of problems m =
1, 2, 3, . . . is given).

Definition 4. (m,α, γ)-weak agnostic guesser. For
m ≥ 1, 0 < γ ≤ α < 1/2, an (m,α, γ)-expected weak agnos-
tic guesser is an algorithm with the following guarantee. Let
(x1, y1), (x2, y2), . . . , (xm, ym), (x, y) ∈ X × {0, 1} be drawn
independently from arbitrary distribution D. The input to
the algorithm is (x1, y1), . . . (xm, ym), and x; the output is a
prediction ŷ ∈ {0, 1} such that(

opt
D

(C) ≤ 1

2
− α

)
=⇒

(
Pr [ŷ 6= y] ≤ 1

2
− γ
)
,

where the above probability over (x1, y1), . . . , (xm, ym), (x, y)
drawn independently according to D.

It is not hard to see that an expected weak agnostic guesser
can be converted to a weak agnostic learner with a poly-
nomial blowup in examples, and a slightly worse guarantee.
Given any labeled data set, Z = (x1, y1), . . . , (xm, ym), the
idea is that we can construct a circuit QZ : X → {0, 1} such
that QZ(x) computes what the weak agnostic guesser would
predict on the data set and the unlabeled example x.

Lemma 4. Let L be an (m,α, γ)-weak agnostic guesser.
Then the following is a

(
m
γ

+ 32
γ2 log 20

γ
, α, γ/4

)
-weak ag-

nostic learner. Take m′ = γ−1 independent training sets
Z1, . . . , Zm′ and let circuits Q1, . . . , Qm′ be such that Qi(x)
computes L(Zi, x). Using 32

γ2 log 20
γ

additional labeled exam-

ples, test each Qi and output the one with minimal empirical
error.

The proof uses standard techniques and is given in the ap-
pendix.

2.1 Branching programs
For our purposes, a branching program is a rooted, di-

rected acyclic graph in which each leaf ` is labeled with a bit
b` and each internal node v has outdegree 2 and is labeled
with a Boolean function hv : X → {0, 1}. The branching
program computes a value, for each x ∈ X, starting at the
root. At any node v (starting at the root) one moves to the
child determined by hv(x), until one reaches a leaf ` and
the value is b`. Branching programs were introduced [18]
into boosting as a generalization of decision tree learning:
while decision trees are constructed by splitting nodes, for
branching programs nodes can be merged as well.

For ` ⊆ X we write D|` to denote D conditioned on x ∈ `,
i.e. D|`(S) = PrD[x ∈ S | x ∈ `]. We write p` to denote
PrD[y = 1|x ∈ `] and p to denote PrD[y = 1].

Definition 5 ([15]). Let the uncertainty of a distribu-

tion D be U(D) = 2
√
p(1− p). Let L be a partition of

X into disjoint subsets (such that X =
⋃
`∈L `). The un-

certainty of L under D is U(L, D) =
∑
`∈L w`u`, where

u` = U(D|`) = 2
√
p`(1− p`) is the uncertainty of the con-

ditional distribution D|` and w` = PrD[x ∈ `] is referred to
as the weight of `.

Definition 6. The balanced distribution of a distribu-

tion D, denoted by D̂, is defined as D̂(S) = 1
2

PrD[x ∈
S | y = 1] + 1

2
PrD[x ∈ S | y = 0], i.e., D̂ gives an equal

weight to both labels.

Given access to samples from D, it is easy to simulate

random samples from D̂; this is done by flipping a coin at
random to decide whether to choose a positive or negative
example, and then wait until one receives such an example.3

For `0 ∩ `1 = ∅, ` = `0 ∪ `1, we write

∆(`0, `1) = w`u` − w`0u`0 − w`1u`1 .

This change is the nonnegative increase in uncertainty of
a partition if we were to merge `0 and `1, (equivalently,
the decrease in uncertainty if we were to split ` into `0, `1).
Kearns and Mansour (Lemma 1) [15] show that,

∆(`0, `1) = 2

(
1

2
− P(x,y)∼D̂|`

[x 6∈ `y]

)2

w`u`. (1)

In other words, if h(x) is the classifier that is 1 if x ∈ `1
and 0 if x ∈ `0, then the change in uncertainty is 2(1/2 −
errD̂|`(h))2w`u`. (This is also Lemma 1 from [12].)

Given any partition L of X, there is a natural correspond-
ing predictor B(L): on each set ` ∈ L, B(L) predicts 1
iff p` >

1
2
. The error of B(L) under D is errD(B(L)) =∑

`∈L w` min(p`, 1−p`). Since for x ∈ [0, 1], min(x, 1−x) ≤√
x(1− x), the error of B(L) is at most 1

2
U(L, D). Thus, the

uncertainty of a partition gives an upper bound on the error
of the corresponding predictor, i.e., errD(B(L)) ≤ 1

2
U(L, D).

3. EXAMPLE: AGNOSTIC LEARNING OF
UNIONS OF INTERVALS

We first illustrate that our notion of agnostic boosting is
natural on the class of unions of n intervals. Let X = R,
and let Cn be the class of functions f(x) = I(x ∈

⋃n
i=1 Ii),

where each Ii is an interval (any kind) on the real line.

Claim 5. The algorithm that, given any m ≥ 1 labeled
examples (xi, yi) ∈ R× {0, 1}, outputs the single interval of
minimal empirical error is a (m,α, γ)-weak agnostic learner

of Cn for any α > 0 and γ = α
2n
− c
√

logm
m

, where c is a

constant.

The proof is similar to the argument used to show that ag-
nostic learnability of disjunctions implies PAC-learnability
of DNF [16].

Proof. Take f(x) = I(x ∈
⋃n
i=1 Ii) that has error opt ≤

1
2
− α. Let ξ be the error of the constant 0 predictor and

ξi be the error of the function hi(x) = I(x ∈ Ii). Then it

3This may take a great deal of time if p is very close to
0 or 1, but as we will see these situations do not pose a
problem for us since in such a case we are very close to the
all-zeros function or the all-ones function, so we will abort
the simulation after some bounded number of draws (see
also [8]).

632

is easy to see that (WLOG assuming the intervals are dis-
joint),

∑n
i=1 ξi = opt +(n−1)ξ. The reason is that each true

error of f is counted once and then each positive example is
counted an additional n− 1 times. Now, if ξ > 1

2
+ α/(2n),

then the error of the constant 1 predictor (i.e., the interval
(−∞,∞)) has error ≤ 1

2
− α/(2n). Otherwise,

1

n

n∑
i=1

ξi =
1

n
opt +

n− 1

n
ξ ≤ 1

2
− α

n
+

α

2n
=

1

2
− α

2n
.

Since one of the ξi’s must be no larger than their average,
there is some interval with error at most 1

2
− α

2n
.

By VC theory, with probability at least 1/2, for every in-
terval the difference between the empirical and true error

rates is at most c′
√

logm
m

, for some constant c′ > 0. There-
fore, with probability at least 1/2, the interval that mini-
mizes the empirical error has trued error at most 1/2− α

2n
+

2c′
√

logm
m

.

The above, combined with our boosting theorem, implies
that unions of n intervals are agnostically learnable in time
poly(n, 1/ε). While this class of functions is already known
to be agnostically learnable [16] using dynamic program-
ming, the above illustrates how boosting can give very sim-
ple solutions and fully polynomial-time algorithms.

4. AGNOSTIC BOOSTING ALGORITHM
In this section, we define and analyze an Agnostic Branch-

ing Program Boosting Algorithm (ABPBA), which is a small
modification the algorithm of Mansour and McAllester [18]
(that builds on ideas from Kearns and Mansour [15]). Our
presentation follows closely that of Kalai and Servedio [12],
parts verbatim. The main difference between prior versions
and ours is that we have simplified the algorithm into al-
ternately splitting and merging pairs of nodes, while Kalai
and Servedio had a merging phases in which multiple merges
might be performed. The analysis, of course, has to be al-
tered to handle agnostic learning.

4.1 The ABPBA Boosting Algorithm
Following [15, 18], we consider an idealized model where

exact probabilities can be computed. This simplification is
an approximation to reality in the sense that the above prob-
abilities can be estimated to arbitrary precision, and by rep-
etition, such an hypothesis can be achieved with arbitrarily
high probability.

The ABPBA algorithm iteratively constructs a branching
program in which each internal node v is labeled with an
hypothesis hv generated by the weak learner at some invo-
cation. In such a branching program, any instance x ∈ X
determines a unique directed path from the root to a leaf;
at each internal node v the outgoing edge taken depends on
the value hv(x). Thus, the set L of leaves ` corresponds to
a partition of X, and for each leaf ` we have probabilities
w` = Pr[x reaches `] and p` = Prx∈D[y = 1|x reaches `].
As described above, each leaf ` is labeled 1 if p` >

1
2

and
is labeled 0 otherwise; thus a branching program naturally
corresponds to the classifier B(L).

The ABPBA algorithm is given in Fig. 1. The branching
program initially consists of a single leaf. The algorithm
repeatedly performs two basic operations:

• Split a leaf (steps 2a-2b): The chosen leaf λ be-
comes an internal node which has two new leaves as

its children. The label of this new internal node is
an hypothesis generated by the weak learning algo-

rithm when run with the oracle EX(D̂|λ) (recall that
this distribution is obtained by first conditioning on
whether x ∈ λ (or x 6∈ λ) and then balancing that
conditional distribution).

• Merge two leaves (steps 2c-2d): The two leaves
`a and `b chosen for the merge are replaced by a single
leaf `a,b. All edges into `a and `b are redirected into
`a,b.

Intuitively, splitting a leaf should increase the accuracy of
our classifier. In the ABPBA algorithm, the leaf to be split is
chosen so as to maximally decrease the overall uncertainty
of the partition corresponding to the branching program.
Conversely, merging two leaves should decrease the accuracy
of our classifier. However, we must do merges in order to
ensure that the branching program does not get too large;
Kearns and Mansour [15] have shown that without merges
(i.e., building a tree) the size of the resulting decision tree
may be exponentially large. The leaves to be merged are
chosen so as to minimally increase the overall uncertainty
of the partition. The condition in 2d ensures that we only
perform a merge whose uncertainty increase is substantially
less than the uncertainty decrease of the split, and thus we
make progress. The final output hypothesis of the ABPBA
booster is the final branching program.

4.2 Agnostic analysis of the ABPBA algorithm
As we mentioned, we assume in this section that all proba-

bilities are computed exactly by the ABPBA algorithm. We
also assume that the weak learning algorithm successfully
finds a (1

2
− γ)-accurate hypothesis at each invocation, i.e.,

we ignore the constant probability of failure. (This failure
probability can be handled with standard techniques and
would have a negligible influence on the result.) First, we
observe that the following holds:

Lemma 6. For any distribution D over X × {0, 1}, and
family C of c : X → {0, 1},

1

2
− opt

D̂

(C) ≥ min{PD[y = 0],PD[y = 1]} − opt
D

(C).

All proofs in this section are deferred to Appendix D. We
then show that if the current branching program has a high
error rate then the split will significantly reduce the uncer-
tainty (but not necessarily the error rate).

Lemma 7. Suppose that in ABPBA, for some t ≥ 1, τ ≥
0, err(B(Lt−1)) ≥ opt(D,C)+α+τ . Then after performing
the split, the new partition L′t satisfies U(L′t, D) ≤ U(Lt, D)−
4γ2τ/|Lt|.

The next lemma bounds the increase due to a merge of two
leaves as a function of their probabilities and uncertainties.

Lemma 8. For any disjoint `1, `2 ⊆ X with p`1 ≤ p`2 ≤
1/2 (or p`1 ≥ p`2 ≥ 1/2),

∆(`1, `2) ≤ 2(w`1 + w`2)|u`1 − u`2 |.

The following lemma shows that if the branching program
is large enough then there is a merge which will have a small
increase in the uncertainty.

633

Input:
access to (m,α, γ)-weak agnostic learner A
access to distribution D (estimated by iid samples)

Notation: Given a partition L (i.e., a set of leaves), for every ` ∈ L, let w` = PrD[x ∈ `], p` =

PrD[y = 1|x ∈ `], u` = 2
√
p`(1− p`), D|` is the distribution obtained by conditioning on x ∈ `, and D̂|`

is the balanced distribution of D|`.

Algorithm:

1. Start with the trivial partition L0 = {X}. (The branching program is a single leaf.)

2. FOR t := 1, 2, . . . ,

(a) Construct candidate splits: For each leaf ` ∈ Lt−1, run the weak learning algorithm A on

the balanced distribution D̂|`. The output h` : ` → {0, 1} determines split `0, `1, where `i =
{x ∈ `|h`(x) = i}, as well as p`0, p`1, w`0, and w`1.

(b) Choose best split: Let λ be the leaf in L that maximizes ∆(λ0, λ1). Let

L′t := {`0, `1} ∪ Lt−1 \ `.

In the corresponding branching program label node λ by hλ and add leaves λ0 and λ1.

(c) Consider candidate merge: Sort the leaves L′t = {`1, `2, . . .} so that p`1 ≤ p`2 ≤ Choose

i to minimize ∆(`i, `i+1), i.e., the candidates to merge are the two consecutive leaves that

minimize the increase in uncertainty.

(d) Merge if safe: IF ∆(`i, `i+1) ≤ ∆(`0, `1)/2 THEN:

• Lt := {`i ∪ `i+1}∪L′t \ {`i, `i+1} (In the corresponding branching program merge the leaves `i
and `i+1 to one leaf that receives the union of the incoming edges.)

• ELSE Lt := L′t.

Figure 1: The Agnostic Branching Program Boosting Algorithm (ABPBA)

Input: integers a, b (such that n = ab), and

x1, x2, . . . , xm ∈ {0, 1}n

Output: Disjoint I1, I2, . . . , Im′ ⊆ [m], for some m′.

Initialize: I1
1 = {1}, . . . , I1

m = {m} and I1 be the collection of all I1
j . Denote x(I) =

∑
k∈I xk, for

I ⊂ {1, . . . ,m}.

• For t = 1, . . . , a:

1. For each z ∈ {0, 1}b let Itz include all sets Itj such that x(Itj) = 0(t−1)bzy, for some y. Let

It be the union of Itz over z ∈ {0, 1}b.
2. For z ∈ {0, 1}b:

(a) Randomly match the sets in Itz into pairs (if their number is odd, ignore one at ran-

dom). Let M t
z be the matched pairs.

(b) For each matched pair, (j, k) ∈M t
z, create a new set It+1

i = Itj ∪ Itk.

• output Ia+1.

Figure 2: Grouping subroutine

Input: a, b, (x1, y1), . . . , (xm, ym) ∈ {0, 1}n × {0, 1}, and x ∈ {0, 1}n.
Output: ŷ ∈ {0, 1}.

1. Run Grouping subroutine on a, b, 〈x1, . . . , xm, x〉.
2. If m+ 1 ∈ Ii for some i, then output ŷ =

∑
j∈Ii;j 6=m+1 yj else ŷ = 0.

Figure 3: Parity helper

634

Lemma 9. Given a partition L = {`1, `2, . . . , `L}, where
p`1 ≤ p`2 ≤ . . . ≤ p`L , there exists 1 ≤ i < L such that
∆(`i, `i+1) ≤ 144/L2.

Combining the above lemmas we derive the following the-
orem.

Theorem 10. Let ε > 0 and consider an (m,α, γ)-weak
agnostic learner. For some t = O(ε−1γ−4) the error of the
branching program generated by idealized ABPBA is at most
opt +α+ ε.

5. AGNOSTIC PARITY LEARNING
In this section we show that a variation of an algorithm

given by Blum et al [4] is an agnostic weak learner for the
class of parity functions on n bits. (See Section 2 for a
definition of the class of parity functions.) The key ingre-
dient of their algorithm is a procedure that given a point
x ∈ {0, 1}n, finds a set I consisting of O(

√
n) out of the

2O(n/ logn) points sampled by the example oracle, such that
the sum (modulo 2) of the points in I is x. Then, since the
noise in [4] is random, the sum (modulo 2) of the labels in
I is weakly correlated with c(x). This implies that the am-
plification in [4] can be done by repeating this experiment
enough times and taking the majority, thus getting a signal
which is strongly correlated with c(x).

In contrast to the random noise model, the agnostic set-
ting is much more challenging. In the agnostic model we
consider adversarial noise, which might “know” which points
we prefer in order to construct I, and plant noise on those
points. For example, the distribution D might give very low
weight to some prefixes, so the assumption that any prefix
is equally likely does not hold anymore. For this reason,
although our weak learner is quite similar to [4], our weak
learner uses additional randomness to overcome the adver-
sarial agnostic setting.

5.1 Weak agnostic parity learner
We first think of the n bits as a blocks of b bits (later,

we will fix a = logn
1000

and b = 1000 n
logn

). The Grouping
Subroutine, see Fig. 2 can be viewed as a randomized version
of [4]. It takes a list of examples and partitions them into
a number of groups of examples (leaving a small number
out) such that the sum of examples in each group is the
all 0 vector. The algorithm works in a manner similar to
Gaussian elimination, but going b bits at a time. To zero the
t-th block of b bits, it partitions the examples into 2b groups
based on their t-th block of bits, for t = 1, 2, . . . , a. It then
randomly pairs examples that are in the same group and
replaces each pair by its sum (leaving the odd example out,
if necessary). After doing this on each consecutive block,
all that remains are some number m′ of all-0 vectors, where
m/2a − a2b ≤ m′ ≤ m/2a. The algorithm outputs the sets
I1, . . . , Im′ ⊆ [m] of indices used to form the zero vectors.
(This means that the algorithm must keep track, not only
of the sums of the vectors but which vectors were used in
forming the sum.)

Based on the Grouping subroutine, we define the Parity
helper procedure (Fig. 3) that, given m labeled examples
and an unlabeled example x, predicts the label of x.

Lemma 11. For any distribution D over (x, y) ∈ {0, 1}n×
{0, 1}, let (x1, y1), . . . , (xm, ym), (x, y) be drawn independently

from D. Let a, b,m be such that 2−am − a2b ≥ 3a+12b+1.
Let ŷ be the output of the Parity helper on (x1, y1), . . . ,
(xm, ym), x. Then,

Pr[ŷ 6= y] ≤ 1− (1− 2 opt)2
a

2
+

3a+12b

2−am− a2b
.

Note that the probability above is over the random exam-
ples drawn from D as well as the randomness used by the
algorithm. Note that the second expression can be made
arbitrarily small, by setting m large enough. The proof of
the above lemma is deferred to Appendix B. The main the-
orem, Theorem 2, follows as a corollary of Lemma 11 and
the agnostic boosting theorem (Theorem 3).

Proof of Theorem 2. We claim the Parity helper,
run with a = logn

1000
, b = n/a is a (m,α, γ)-weak agnostic

guesser for α = 2−n
0.99

, γ = 2n
0.001−n0.991−2, and m =

4 · 3a+12b(2α)−2a2a + a2a+b = 2O(n/ logn). This is verified
by plugging opt ≤ 1

2
− α into the RHS of the quantity in

Lemma 11, giving,

1− 2(1−n0.99)n0.001

2
+

3a+12b

2−am− a2b
≤ 1

2
− 2(1−n0.99)n0.001−2.

By Lemma 4, with a poly(1/γ)-factor blowup (in terms of
the runtime and number of samples required), we can con-
vert this to a weak agnostic learner. Finally, by Theorem
3, we can achieve error arbitrarily close to opt +α in time
2O(n/ logn).

6. CONCLUSIONS
We have shown that the boosting by branching programs

algorithm [15] can be analyzed in the agnostic setting, with
the appropriate definition of agnostic weak learner. We have
illustrated the utility of this fact in the first nontrivial algo-
rithm for agnostically learning parity.

We remark that the algorithm of Blum et al [4] has been
shown to have applications to a variety of other problems,
such as determining the shortest lattice vector [1]. It would
be very interesting to see if our agnostic algorithm has other
applications. This paper helps us understand the actual
difficulty of agnostic learning by showing that full agnostic
boosting, is indeed possible, despite previous lower bounds.

Acknowledgments. We are very grateful to the anony-
mous referees for the accurate and pointed comments. We
are also grateful to Rocco Servedio for allowing us to repro-
duce parts of the analysis of the earlier boosting algorithm.

7. REFERENCES
[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve

algorithm for the shortest lattice vector problem. In
Proceedings of the 33rd Annual ACMSymposium on
Theory of Computing, 2001.

[2] Shai Ben-David, Philip M. Long, and Yishay
Mansour. Agnostic boosting. In Proceedings of the
14th Annual Conference on Computational Learning
Theory, pages 507–516, 2001.

[3] A. Blum, M. Furst, M. Kearns, and R. Lipton.
Cryptographic Primitives Based on Hard Learning
Problems. In Advances in Cryptology – CRYPTO ’93,
pages 278–291, 1993.

635

[4] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query
model. J. ACM, 50(4):506–519, 2003.

[5] V. Feldman, P. Gopalan, S. Khot, and A. K.
Ponnuswami. New results for learning noisy parities
and halfspaces. In Proc. 47th IEEE Symp. on
Foundations of Computer Science, 2006.

[6] Dmitry Gavinsky. Optimally-smooth adaptive
boosting and application to agnostic learning. Journal
of Machine Learning Research, 4:101–117, 2003.

[7] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan.
Learning polynomials with queries: the highly noisy
case. SIAM J. of Discrete Mathematics,
13(4):535–570, 2000.

[8] David Haussler, Michael J. Kearns, Nick Littlestone,
and Manfred K. Warmuth. Equivalence of models for
polynomial learnability. Information and
Computation, 95(2):129–161, 1991.

[9] Nicholas J. Hopper and Manuel Blum. Secure human
identification protocols. In ASIACRYPT, pages 52–66,
2001.

[10] Ari Juels and Stephen A. Weis. Authenticating
pervasive devices with human protocols. In CRYPTO,
pages 293–308, 2005.

[11] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio.
Agnostically learning halfspaces. In Proceedings of the
46th IEEE Symp. on Foundations of Computer
Science, 2005.

[12] A. Kalai and R. Servedio. Boosting in the presence of
noise. To appear in Journal of Computer and System
Sciences, 2005.

[13] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[14] M. Kearns and Y. Mansour. On the boosting ability of
top-down decision tree learning algorithms. In
Proceedings of the Twenty-Eighth Annual Symposium
on Theory of Computing, pages 459–468, 1996.

[15] M. Kearns and Y. Mansour. On the boosting ability of
top-down decision tree learning algorithms. Journal of
Computer and System Sciences, 58(1):109–128, 1999.

[16] M. Kearns, R. Schapire, and L. Sellie. Toward
Efficient Agnostic Learning. Machine Learning,
17(2/3):115–141, 1994.

[17] Vadim Lyubashevsky. The parity problem in the
presence of noise, decoding random linear codes, and
the subset sum problem. In APPROX–RANDOM,
pages 378–389, 2005.

[18] Y. Mansour and D. McAllester. Boosting using
branching programs. Journal of Computer and System
Sciences, 64(1):103–112, 2002.

[19] E. Mossel and S. Roch. Learning nonsingular
phylogenies and hidden markov models. In To appear
in Proceedings of the 37th Annual Symposium on
Theory of Computing (STOC), 2005.

[20] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of the
thirty-seventh annual ACM Symposium on Theory of
Computing (STOC-05), pages 84–93, New York, 2005.

[21] R. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197–227, 1990.

[22] L. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

APPENDIX
A. PROOF OF LEMMA 4

Let hi : X → {0, 1} be the function computed by circuit
Qi, and h be the function of the output circuit. The error
of L is a non-negative random variable with mean at most
1
2
− γ. Since err(hi) ≥ 0, we have that,

P

[
err(hi) ≥

1

2
− γ

2

]
≤ 1/2− γ

1/2− γ/2 =
1− 2γ

1− γ ≤ 1− γ.

Hence, if we execute the algorithm 1/γ times, with probabil-

ity at most (1−γ)1/γ ≤ 1/e, we will have no hypothesis with
error ≤ 1/2− γ/2. In the other case, we argue that the re-
duction succeeds in finding one with error at most 1/2−γ/4,
with probability ≥ .9. Hence, the failure probability of the
algorithm is, by the union bound, at most 1/e+ .1 ≤ 1/2.

By Chernoff bounds, the probability that hypothesis h has
empirical error more than γ/8 from its true error, on a held

out test set of size 32
γ2 log 20

γ
is at most 2e

−2(γ/8)2 32
γ2

log 20
γ ≤

.1γ. If this happens for all 1/γ hypotheses, then we will find
one with error at most 1/2− γ/4. By the union bound, we
will fail on this part with probability at most .1γ(1/γ) ≤
.1.

B. PARITY ANALYSIS
It is easy to see that the Grouping subroutine partitions

the examples into a number of groups which each sum to
0 (and leaves out a small number of examples). Let m0 =
2−am − a2b. We will be interested in the cases of m,a, b
where m0 � 1.

Lemma 12. For any integers a, b ≥ 1, n = ab, and any m
unlabeled examples x1, x2, . . . , xm ∈ {0, 1}n, the Grouping
subroutine outputs disjoint sets Ia+1

1 , . . . , Ia+1
m′ such that, for

each j ≤ m′, x(Ia+1
j) = 0. Also, m0 ≤ m′ ≤ 2−am.

Fix distribution D on (x, y). Fix a parity function c ∈ Pn
that has minimal error on distribution D, so errPn(c) =
optPn(D). (Note that c is not necessarily unique, and that
different minimal error functions can be very far from each
other on D. This is part of the challenge of the agnostic
model.) An example (x, y) is called noisy if y 6= c(x) and
quiet otherwise. Let 〈(xi, yi)〉mi=1 be a data set of labeled ex-
amples chosen independently from D. Let η be the random
variable that denotes the fraction of the data that are noisy,
so E[η] = opt. It will also be convenient to talk about the
advantage α = (1− η)− η = 1− 2η ∈ [−1, 1], the fraction of
quiet examples minus noisy examples.

Consider passing the unlabeled examples to the Group-
ing subroutine. We say that Itj is quiet (resp. noisy) if an
even (resp. odd) number of the corresponding labeled ex-
amples (xi, yi), i ∈ Itj , are noisy. Similarly, we define ηt,
ηtz to be the empirical fraction of noisy sets in It and Itz,
respectively. Also, let αt = 1− 2ηt and αtz = 1− 2ηtz.

The key, perhaps surprising, technical lemma is the fol-
lowing.

Lemma 13. For any t = 1, 2, . . . , a,

E[αt+1] ≥ E[αt]2 − 6(2b)

m0
.

636

In Appendix C and D, we give the proofs of Lemma 11
and Lemma 13. Next, we give some intuition about why
Lemma 13 is true.

Informal Intuition for Lemma 13
Our analysis will show that worst case is approximately the
case of classification noise, where D is the distribution in
which each label y disagrees with c(x) with probability opt,
independent of x. This is not precisely true, but classifica-
tion noise will be close to the worst case.

To gain some intuition about why this is the case, let us
first be very imprecise. For this section only, let’s ignore var-
ious roundoff errors and assume that everything works out
exactly according to its expectation, e.g., η = opt. (How-
ever, we are not assuming that there is random classification
noise and we have an arbitrary distribution D.)

Given ηtz, let us estimate the fraction of noisy examples
in M t

z, for some z ∈ {0, 1}b. A random pair has probability
approximately ηtz(1− ηtz) + (1− ηtz)ηtz of being noisy. (This
is not exact, because after the first example in a pair is
chosen to be, say, noisy , the chance that the second one is
quiet is larger due to the fact that pairs are drawn without
replacement.) Hence, we expect the advantage (the fraction
of quiet minus noisy examples) on M t

z to be about,

1− 2(ηtz(1− ηtz) + (1− ηtz)ηtz) = (1− 2ηtz)
2 = (αtz)

2.

So the advantage roughly squares on each set. Hence the
advantage on It+1, which is just a weighted average of ad-
vantages on Itz, over z, is about:

αt+1 ≈
∑

z∈{0,1}b

|Itz|
|It| (α

t
z)

2 ≤

 ∑
z∈{0,1}b

|Itz|
|It|α

t
z

2

= (αt)2.

The inequality above follows from the convexity of the func-
tion g(z) = z2. In the case of random classification noise,
the inequality is approximately an equality.

C. PROOF OF LEMMA 13
Let us fix the state St of the algorithm at the beginning

of iteration t. Hence, the data set, Itz, and αtz = 1− 2ηtz are
known for all z. The algorithm still makes random choices
that determine the matchings M t

z in Itz. For any one z,

note that |M t
z| = b |I

t
z |
2
c. A pair (j, k) ∈ M t

z is noisy if

x(Itj ∪ Itk) is noisy. The chance that a pair in M t
z is noisy

can be computed as follows. For a pair to be noisy one
element has to be noisy and the other quite. The first of
these two sets is noisy with probability ηtz and the chance
that the second one is quiet, given that the first was noisy

is
(1−ηtz)|I

t
z |

|Itz |−1
, since the two are drawn without replacement.

Similarly, the probability that the first set is quiet and the

second is noisy is (1− ηtz)
ηtz |I

t
z |

|Itz |−1
, which is the same. Hence,

the expected number of noisy sets in M t
z is:

2ηtz(1− ηtz)
|Itz|
|Itz| − 1

⌊
|Itz|
2

⌋
≤ ηtz(1− ηtz)(|Itz|+ 2)

≤ ηtz(1− ηtz)|Itz|+ 1.

In the above, we have used the facts that ηtz(1 − ηtz) ≤ 1/2
and

2
j

j − 1

⌊
j

2

⌋
≤ j2

j − 1
= j + 1 +

1

j − 1
≤ j + 2

for any integer j ≥ 2. For j = 0 or 1, we take 0/0 = 0 and
the inequality holds as well.

Let St denote the state of the algorithm at the start of
iteration t, including previously used random bits but not
including randomness used on period t. Hence, we have
that the expected number of noisy examples, given the state
at time t, is:

E[|It+1|ηt+1 | St] ≤
∑

z∈{0,1}b
(ηtz(1− ηtz)|Itz|+ 1).

In other words, the above is the expectation over the ran-
domness that determines the algorithms decisions on iter-
ation t. Recall that |It| ≥ m0 (from Lemma 12). Since
|It| ≤ 2|It+1|+ 2b, we have,

E[|It|ηt+1 | St] ≤ 2E[|It+1|ηt+1 | St] + 2b

≤ 2
∑

z∈{0,1}b
(ηtz(1− ηtz)|Itz|+ 1) + 2b

= 2
∑

z∈{0,1}b
ηtz(1− ηtz)|Itz|+ (3)2b

Since It is fixed, given St, we can divide by |It|.

E[ηt+1 | St] ≤
∑

z∈{0,1}b

|Itz|
|It|2η

t
z(1− ηtz) +

(3)2b

m0

=
∑

z∈{0,1}b

|Itz|
|It|2

1− αtz
2

1 + αtz
2

+
(3)2b

m0

=
∑

z∈{0,1}b

|Itz|
|It|

1− (αtz)
2

2
+

(3)2b

m0

=
1

2
−

∑
z∈{0,1}b

|Itz|
|It|

(αtz)
2

2
+

(3)2b

m0

Since, by definition, ηt+1 = 1
2
(1− αt+1), we have

E[αt+1 | St] ≥
∑

z∈{0,1}b

|Itz|
|It| (α

t
z)

2 − (6)2b

m0

However, by convexity of the function g(x) = x2, we have,

∑
z∈{0,1}b

|Itz|
|It| (α

t
z)

2 ≥

 ∑
z∈{0,1}b

|Itz|
|It|α

t
z

2

=
(
αt
)2

Since the last expectation held for any St, it holds in expec-
tation over all St, i.e.,

E[αt+1] ≥ E[(αtz)
2]− (6)2b

m0
.

In the above, expectations are taken over all randomness
in the input and algorithm. Finally, using the fact that
E[X2] ≥ E[X]2 (again by convexity of g(x) = x2 or non-
negativity of variance) we have the lemma.

D. REMAINING PROOFS
Proof of Lemma 6. WLOG p = PD[y = 1] ≤ 1/2, so

we need to show that 1/2− optD̂(C) ≥ p− optD(C).
Fix any c ∈ C. Let a = P[c(x) = 0|y = 1] and b =

P[c(x) = 1|y = 0] so that errD(c) = pa + (1 − p)b and

637

errD̂(c) = (a + b)/2. To complete the lemma, it suffices to
show that,

1

2
− a+ b

2
≥ p− (pa+ (1− p)b) ⇐⇒

0 ≥
(
p− 1

2

)
(1− a+ b).

The above is clearly true since b ≥ 0, a ≤ 1 and p ≤ 1/2.

Proof of Lemma 7. Call a leaf ` hazy if

min(p`, 1− p`)− opt
D|`

(C) ≥ α,

and let H be the set of hazy leaves in Lt. For each hazy leaf
` ∈ H, by Lemma 6, opt

D̂|`
(C) ≤ 1/2 − α, and hence an

(m,α, γ)-weak agnostic learner would return an hypothesis
h`, for the balanced distribution, with error at most 1/2 −
γ. By Equation (1), splitting such a leaf would reduce the
uncertainty by at least 2γ2w`u`. It remains to show that
there is a leaf ` ∈ H such that w`u` ≥ 2τ/|Lt|.

Since the error is err(B(Lt−1)) =
∑
` w` min(p`, 1− p`) ≥

optD(C)+α+τ , and optD(C) ≥
∑
` w` optD|`(C), we have,

∑
`

w`

(
min(p`, 1− p`)− opt

D|`
(C)

)
≥ α+ τ.

Since for each ` 6∈ H, min(p`, 1 − p`) − optD|`(C) ≤ α, we

have,
∑
` 6∈H w`(min(p`, 1−p`)−optD|`(C)) ≤ α. Therefore,

∑
`∈H

w`

(
min(p`, 1− p`)− opt

D|`
(C)

)
≥ τ.

Furthermore, since u` ≥ 2 min(p`, 1−p`), we have
∑
`∈H w`u` ≥

2τ . Since there are at most |Lt| leaves in H, one of them
must have w`u` ≥ 2τ/|Lt|. Hence, applying the split on
this leaf would give a reduction in uncertainty of at least
4γ2τ/|Lt|.

Proof of Lemma 8. For the purposes of this proof let
wi = w`i , pi = p`i , qi = 1−pi, ui = u`i = 2

√
piqi, ` = `1∪`2,

p = p`, q = 1−p, u = u`, and w = w`. Since p`1 ≤ p`2 ≤ 1/2
we have that u1 ≤ u ≤ u2. Then,

1

2
∆(`1, `2) = wu− w1u1 − w2u2

= w
[w1

w
(u− u1) +

w2

w
(u2 − u)

]
≤ w(u2 − u1)

Proof of Lemma 9. Let pi = p`i , ui = u`i and wi =
w`i . By symmetry, WLOG we may suppose that pL/2 ≤
1/2. We have 0 ≤ u1 ≤ u2 ≤ . . . ≤ uL/2 ≤ 1. Set xi =

(wi+wi+1)/2 and yi = |ui+1−ui|. Then
∑L/2−1
i=1 xi ≤ 1 and∑L/2−1

i=1 yi ≤ 1 Therefore, the number of xi such that xi ≤
6/L is at least (1/2−1/6)L. Similarly, the number of yi such
that yi ≤ 6/L is at least (1/2 − 1/6)L. Hence, there is an
index i such that xi ≤ 6/L and yi ≤ 6/L. This implies that

there is an index i ≤ L/2−1 such that
wi+wi+1

2
|ui+1−ui| ≤

36/L2. By Lemma 8 we have that ∆(`i, `i+1) ≤ 144/L2.

Proof of Theorem 10. Let an iteration be a sequence
of a split operation followed by a possible merge opera-
tion. First, note that by the definition of the ABPBA algo-
rithm, the value of U(L, D) cannot increase each iteration.

Let phase k be the iterations starting at the first time in
which 1

2
U(L, D) < opt +α + 2−k and ending just before

1
2
U(L, D) < opt +α + 2−(k+1). Recall that half the uncer-

tainty is a lower-bound on the error of the resulting branch-
ing program.

We claim that during phase k, there cannot be more than
Lk = 144γ−22k leaves. The reason is that, once there be-
come Lk leaves, by Lemma 7 the uncertainty U ≥ opt +α+
2−(k+1) prior to the split decreases by at least 21−kγ2/Lk.
Lemma 9 then implies that there is some merge which would
increase the uncertainty by at most 144/L2

k ≤ 1
2
21−kγ2/Lk,

for our choice of Lk. Thus this merge will be performed in
Step 7 and there will again be Lk leaves.

Thus the net reduction in uncertainty is at least 2−kγ2/Lk
during each iteration of phase k. Since the uncertainty drops
by at most 2−k during phase k, it can last at most Lkγ

−2

iterations. Thus phase r = dlog(1/ε)e will be reached af-
ter at most

∑r
k=1 Lkγ

−2 iterations, which is bounded by
O(γ−4ε−1).

Proof of Lemma 12. Each x(Itj) has the first t−1 blocks

all 0, for all t ≥ 1, so x(Ia+1
j) consists of only 0. Since each

example contributes to at most one Ia+1
j , the sets Ia+1

j are
disjoint. Since each set consists of 2a examples, there can be
at most 2−am such sets. Let nt be the number of different
sets Itj , i.e., |It|. Note that n0 = m + 1 and na+1 = m′.

Since we throw out at most 2b vectors during each iteration
(one per possible value z of b bits),we have nt+1 ≥ nt/2−2b,
implying na+1 ≥ 2−am− a2b.

Proof of Lemma 11. First, we have E[α1] = 1 − 2 opt.
We claim that for each t = 0, 1, . . . , a,

E[αt+1] ≥ (1− 2 opt)2
t

− (6)3t2b

m0
. (2)

We argue this by induction on t. The base case t = 0 is true
by definition. For t+ 1, from Lemma 13, we have E[αt+1] ≥
E[αt]2 − 6(2b)

m0
. Since for ε, z ∈ [0, 1], we have z2 − 2ε ≤

(z − ε)2. Therefore,

E[αt+1] ≥ E[αt]2 − 6(2b)

m0

≥
(

(1− 2 opt)2
t−1
− (6)3t−12b

m0

)2

− 6(2b)

m0

≥ (1− 2 opt)2
t

− 2
(6)3t−12b

m0
− 6(2b)

m0

≥ (1− 2 opt)2
t

− (6)3t2b

m0

Since the quantity we want to bound is ηa+1 = 1−αa+1

2
,

rearranging terms gives the lemma.

638

