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Abstract

With the growing demand of databases outsourcing and
its security concerns, we investigate privacy-preserving
set intersection in a distributed scenario. We propose a
one-round protocol for privacy-preserving set intersection
based on a combination of secret sharing scheme and ho-
momorphic encryption. We then show that, with an ex-
tra permutation performed by each contacted server, the
cardinality of set intersection can be computed efficiently.
All protocols constructed in this paper are provably secure
against an honest-but-curious adversary under the Deci-
sional Diffie-Hellman assumption.

1 Introduction

Privacy-preserving set intersection protocols [7] are
cryptographic techniques allowing two or more parties,
each holding a set of inputs, to jointly calculate set inter-
section of their inputs without leaking any information to
each other. Consider that two companies C1 and C2 want to
discover the consumption pattern of their shared customers.
That is, they want to determine the likelihood that a cus-
tomer buying a product P1 from C1 is also buying a prod-
uct P2 from C2. To obtain this information, they would
like to perform a set intersection operation on their private
datasets. In order to preserve confidentiality of the compa-
nies business and to protect the customers’ privacy, the pur-
chase details of customers must not be revealed. There are

many other examples of privacy-preserving set intersection
applications such as when two hospitals conduct a study
where they wish to analyze patients records anonymously.

With the growing demand of databases outsourcing and
security requirements imposed on its applications, we in-
vestigate privacy-preserving set intersection in a distributed
environment. We call this privacy-preserving distributed set
intersection. To illustrate the security problem, we consider
the following scenario. Assume that a provider owning a
dataset wishes to outsource it to commercial servers and
make it available to his clients. If he outsources his dataset
to a single server then he has to fully trust that server and
risk the privacy of his data. Alternatively, he can encrypt
his dataset before sending it to the server but querying and
evaluating on such encrypted data are very inefficient.

In order to protect the dataset privacy at an acceptable ef-
ficiency cost, we could let the provider distribute the dataset
to w servers using a (t, w)-threshold secret sharing scheme.
As such, any t − 1 or less servers should not able to find
out the original data. Now, assume that a client holding
her private dataset, wishes to compute the set intersection
of the two sets held by the provider and herself. In order
to do this successfully, the client interacts with t or more
servers. In our settings, we require that this interaction is
done with minimum possible disclosure of information, that
is, the client learns nothing except the final result of the set
intersection.

In general, privacy-preserving set intersection can be im-
plemented using secure multi-party computation protocols
[3, 23]. However, such solutions are generally inefficient.
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More specialized protocols on privacy-preserving set inter-
section are needed to improve its efficiency.
Related Work. A specialized private set intersection pro-
tocol recently developed by Freedman, Nissim and Pinkas
(FNP) [7] is based on the representation of datasets as roots
of a polynomial and the technique of oblivious polyno-
mial evaluation [16]. To briefly describe the FNP construc-
tion, suppose CS = (K,Epk,Dsk) is a semantically secure
public-key homomorphic encryption scheme. Assume that
Alice has the dataset A = {a1, . . . , an} and Bob owns the
dataset B = {b1, . . . , bm}.

To evaluate A ∩ B, Alice constructs the polynomial

f(x) =
∏

ai∈A

(x − ai) =
n∑

i=0

αix
i. Then, she encrypts

each coefficient as Epk(αi) using an homomorphic cryp-
tosystem CS such as Paillier’s [18] or the standard variant
of the ElGamal encryption scheme (see [4]). Note that an
homomorphic cryptosystem allows a party knowing Epk(x)
and Epk(y) to compute Epk(x + y) = Epk(x) · Epk(y) and
Epk(x · c) = Epk(x)c where c is any constant. The reader
is referred to Sect. 2.1 for a formal definition. Note that
we only use the standard variant of the ElGamal encryption
scheme in our protocols due to our distributed setting.

Thus, given encrypted coefficients, Bob can obliviously
evaluate Epk(f(bi)) for each element bi ∈ B. Note that if
bi ∈ A then f(bi) = 0. Since Bob does not want to re-
veal any other information when bi /∈ A, he randomizes all
his oblivious evaluations by a random nonzero value r as
Epk(f(bi))r = Epk(r · f(bi)). Consequently, if f(bi) = 0
then the encryption of Epk(r · f(bi)) = Epk(0). Otherwise,
Epk(r · f(bi)) is some random value. This hides any infor-
mation about elements in B which are not in A. To enable
Alice to check whether bi also belongs to her dataset, Bob
sends all the cryptograms Epk(r · f(bi) + bi)’s to her. She
decrypts them and tests whether any of the resulting plain-
texts are in A as Dsk(Epk(r · f(bi) + bi)) = bi if and only
if bi ∈ A.

Inspired by FNP, Kissner and Song [12] propose a multi-
party solution to various privacy-preserving set operations
such as set union, set intersection, cardinality of set inter-
section and multiplicity testing. Based on a threshold homo-
morphic cryptosystem, Sang et al. gave protocols for the set
intersection and set matching problems with an improved
computation and communication complexity in [20].

Protocols for testing the subset relation in a two-party
setting are discussed in [11, 13] while the set disjointness
test are introduced in [10, 9]. Note that checking the equal-
ity of two datasets is a special case of the private disjoint-
ness problem, where each party has a single element in the
database. Such protocols were considered in [6, 16, 14].
Our Results. Our distributed solution is based on homo-
morphic encryption and secret sharing. This paper builds
on the recently developed FNP private set intersection pro-

tocols and offers a new construction in two-party private set
intersection where one dataset is distributed.

Contrary to the previous two-party privacy-preserving
set intersection protocols based on the one-client-one-server
setting, we deal with the distributed case relying on secret
sharing described earlier. Our construction may be of great
value where the privacy of unencrypted dataset outsourced
in a single server is a great concern.

We first compute the w shares of the dataset B of the
provider P by constructing a bivariate polynomial and eval-
uating it at w points to get the shares. This approach is to
make the share construction more efficient. Our construc-
tion only needs to use Shamir’s secret scheme [21] a single
time to compute the shares of the whole dataset.

In our set intersection protocol, we will use our obser-

vation that
t∑

j=1

cj (b − b�j
) = 0 where the cj’s are La-

grange interpolation coefficients, b is a value and the b�j
’s

are the shares of b. Using this relation, one can obliviously
check that an element b′ is equal to b by collecting t values
r(b′ − b�j

) where r is a randomizer common to all partici-
pants. As a consequence, if the client C interacts in parallel
with t servers with her whole dataset A, she is able to com-
pute A ∩B privately.

We then extend our privacy-preserving distributed set
intersection solution to a one-round protocol evaluating
|A ∩ B| only. To prevent the client from learning the in-
tersection A∩B, each server will permute the cryptograms
before sending them back to the client C. Thus, after de-
cryption and computation, the client only learns |A ∩B|.

Our protocols are secure against an honest-but-curious
adversary. By definition, such an adversary follows the
steps of the protocol execution but tries to learn extra in-
formation from the messages received during its execu-
tion. Our homomorphic encryption is based on the ElGamal
cryptosystem [5] which is semantically secure provided the
Decisional Diffie-Hellman (DDH) assumption holds [22].
The security of this building block will imply the security
of our protocols. Note that, as in [7, 10], our protocols
reveal the size of the datasets of both the client and the
provider. As suggested in [10], "dummy" elements can be
used for dataset padding in order to hide the size of the orig-
inal dataset. But, in this case, the protocols reveal an upper
bound on the number of elements in the sets.

The complexity of the communication cost for each of
these two constructions is O(t |A| |B| × log2 p) bits. The
computation cost complexity is O(t |A| |B| × log3

2 p) bits
for our two protocols. These complexity results are efficient
considering our distributed setting.

Our paper is organized as follows. In Sect. 2, we in-
troduce the cryptographic primitive used in our protocols,
describe the distributed environment in which our protocols
are run, and give the adversary model. In Sect. 3, we present
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our two protocols for the set intersection problem and the
cardinality of set intersection problem. The security and ef-
ficiency of these two schemes are analyzed in that section
as well. Finally, in Sect. 4, we give concluding remarks.

2 Preliminaries

2.1 Additive Homomorphic Encryption

We will utilize an additive homomorphic public key
cryptosystem. Following Adida and Wikstrom [1], we use
the following definition.

Definition 1 ([1]) A cryptosystem with key generator K,
encryption algorithm Epk and decryption algorithm Dsk

is said to be homomorphic if for every key pair
(pk, sk) ∈ K(1l):

1. The message spaceM is a subset of an abelian group
G(M) written additively.

2. The randomizer space R is an abelian group written
additively.

3. The ciphertext space is an abelian group written mul-
tiplicatively.

4. The group operations can be computed in polynomial
time given pk. For every m,m′ ∈ M and r, r′ ∈ R,
we have

Epk(m, r)� Epk(m′, r′) = Epk(m + m′, r + r′).

5. The cryptosystem is said to be additive if the message
space M is the additive modular group Zn for some
integer n > 1.

When such operations are performed, we require that the
resulting ciphertexts be re-randomized for security. During
such a process, the ciphertext e of the plaintext m is trans-
formed into e′ such that e′ is still a valid cryptogram for the
message m but relying on a different random string from
e’s.

We note that all our protocols can be based on the
standard variant of the ElGamal encryption scheme (see
[4]) which recently was used for constructing privacy-
preserving set operation protocols in [10, 2, 14]. In our pro-
tocols, the computations are carried out over Zp where p is
prime. We assume that p = 2 q + 1 where q is also prime.

Let g, h and f be three random generators of order q in

Z
∗
p , m1,m2,m ∈ Zq and corresponding r1, r2, r

R← Zq. We
denote� the multiplication over Zp×Zp defined as follows.

Epk(r1,m1)� Epk(r2,m2) := (gr1+r2 , hr1+r2fm1+m2)
= Epk(r1 + r2,m1 + m2)

If we repeat this operation c times for a single encryption,
then we have

Epk(r,m)c = Epk(r,m)� Epk(r,m)� . . .� Epk(r,m)︸ ︷︷ ︸
c times

:= Epk(c r, cm)

For simplicity, we use Epk(m) to represent Epk(r,m) in the
rest of the presentation as we assume that there is always a

corresponding r
R← Zq.

2.2 Distributed Environment

The players are a client C, a provider P , and w servers
S1, S2, . . . , Sw. We assume that the provider holds a dataset
B = {b0, b1, . . . , bn−1} which is distributed to w servers
using (t, w)-Shamir’s secret sharing scheme.

The provider P does not directly interact with C for the
operation of the set intersection. Instead, C contacts at least
t servers to discover the set intersection. Note that this dis-
tributed setting was first proposed by Naor and Pinkas [17].

Our homomorphic encryption system is based on a vari-
ant of the ElGamal cryptosystem where the message space
is over Zq where q ≥ n. For simplicity, we omit modu-
lus q within the computation of shares construction in this
section.

Initialization and Share Distribution Phase. P con-
structs a polynomial F (y) whose coefficients represent

his dataset B, i.e. F (y) =
n−1∑
i=0

biy
i. Then, P gen-

erates a random masking bivariate polynomial H(x, y)

as H(x, y) =
t−1∑
j=1

n−1∑
i=0

αj,ix
jyi where αj,i

R← Zq.

Note that we have H(0, y) = 0 for any y. Using the
polynomial H(x, y), P defines another bivariate polyno-
mial Q(x, y) = F (y) + H(x, y). Note that we get
∀y Q(0, y) = F (y). For 1 ≤ � ≤ w, P sends

Q(�, y) =
n−1∑
i=0

βi,� yi to server S� where ∀i ∈ {0, . . . , n−1}

βi,� = bi + ϑi,� with ϑi,� =
t−1∑
j=1

αj,i �j . The server S� re-

ceives a set of shared coefficients {β0,�, . . . , βn−1,�} of the
polynomial F (y) (see [15]).

Secret Reconstruction Phase. We now show how any t-
subset of servers can recover F (y). Denote S�1 , . . . , S�t

the t servers contacted by the client. Using Lagrange inter-
polation formula, we know that the coalition of t or more
servers can reconstruct the original polynomial F (y). The t
polynomials Q(�j , y) for j ∈ {1, . . . , t} verify the follow-
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ing system:

V −1




Q(�1, y)
Q(�2, y)

...
Q(�t, y)


 =




F (y)
n−1∑
i=1

α1,i yi

...
n−1∑
i=1

αt−1,i yi




(1)

where V is the t × t Vandermonde matrix
V :=

(
�j
ι

)j=0,...,t−1

ι=1,...,t
. Since we are only interested in

the reconstruction of F (y), we simply need to know
the first row of V −1, (v1,1 · · · v1,t). Then, we have

t∑
j=1

v1,j Q(�j , y) = F (y). As a consequence, we obtain:

∀i ∈ {0, . . . , n− 1}
t∑

j=1

v1,j βi,�j
= bi (2)

Lemma 1 shows how to construct the first row of V −1

whose proof can be found in Appendix A.

Lemma 1 We have ∀j ∈ {1, . . . , t} v1,j =
∏

1≤k≤t

k �=j

�k

�k−�j
,

and
t∑

j=1

v1,j = 1.

From the previous lemma, we deduce:

∀i ∈ {0, . . . , n− 1} bi =
t∑

j=1


 ∏

1≤k≤t

k �=j

�k

�k − �j


 βi,�j

Note that our reconstruction technique can be seen as a
particular case of Lagrange interpolation. Notice that we
use the variant of ElGamal that is defined over Zp. Further
in our paper, the computations are being done modulo p
and we simplify the notation by skipping the modulus in the
congruences. If we use a different modulus, the congruence
will be written in full to avoid confusion.

2.3 Adversary Model

We consider an honest-but-curious adversary model.
Due to space constraints, we only provide the intuition and
informal definitions of this model. The reader is referred to
[8] for a more complete discussion.

In this model, there is no direct interaction between C
and P . Instead the client C and w servers are assumed to
follow the steps defined in the protocol. The security def-
inition is straightforward that only the client C learns the
result of the protocol.

Definition 2 (t-secure). A distributed protocol is said to be
t-secure if among w servers any subset of t − 1 corrupted
servers learn no information about the provider’s dataset
and the protocol result.

Following [16, 17] our model should meet the following
requirements:
Correctness. A protocol is correct if the client C is able to
compute the valid result from shares obtained from t servers
assuming that each server and the client honestly follow the
protocol.
Client’s security. A protocol should guarantee the client
privacy, i.e. the servers learn nothing about either the
client inputs or its corresponding computed output. In other
words, a server is not able to distinguish the client inputs
from uniform random variables.
Provider’s security. A protocol should not give out to
the client any information about the function held by the
provider apart from the output of the function assuming that
no server colludes with the client. Also, the provider pri-
vacy is t-secure.

3 Protocols for Privacy-Preserving Dis-
tributed Set Intersection

In this section, we address the problem of designing
protocols for privacy-preserving distributed set intersection
related issues. Those targeted in this paper are the pri-
vacy preserving set intersection problem and the cardinal-
ity of set intersection problem. Let the dataset A of the
client C be {a0, . . . , am−1}. The provider P broadcasts

λ
R← Zq \ {0} to the w servers S1, . . . , Sw, and also dis-

tributes the shares of his dataset B = {b0, . . . , bn−1} to w
servers as in Sect. 2.2. Note that it is assumed that |A| = m
and |B| = n are publicly known.

3.1 Determination of the Set Intersection

Figure 1 represents a protocol which enables the client C
to compute the intersection A∩B by contacting any subset
of t servers S�1 , . . . , S�t

.
Correctness of the Protocol. In order to prove the sound-
ness of our construction, we need the following lemma.

Lemma 2 Let cj =
∏

1≤k≤t

k �=j

�k

�k−�j
be the Lagrange interpo-

lation coefficient in Fig. 1. Then,
t∑

j=1

cj(bi − βi,�j
) = 0.

Proof. Note that the coefficient cj corresponds to the jth

coefficient of the first row of the matrix V −1 denoted v1,j

in Sect. 2.2. From Lemma 1, we get that
t∑

j=1

cj = 1. Thus,

(2) provides our result.
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Input: The client C has a set of data A. Each server S�(1 ≤ � ≤ w) knows the random value λ and the shared
coefficients {β0,�, . . . , βn−1,�} of the polynomial F (y) (whose coefficients are the elements of the provider’s dataset
B).
Output: The client C learns A ∩B.

1. C generates a new key pair (pk, sk)← K(1l), and then broadcasts {Epk(a0), . . . , Epk(am−1)} with her public key
to t servers S�1 , . . . , S�t

.

2. For j = 1, . . . , t, each contacted server S�j
computes and sends Epk(λ(aι − βi,�j

)) to C for ι ∈ {0, . . . , m − 1}
and i ∈ {0, . . . , n− 1}.

3. For ι = 0, . . . , m− 1, the client C

(a) computes dι,i,j ← Dsk(Epk(λ(aι − βi,�j
)) for i ∈ {0, . . . , n− 1} and j ∈ {1, . . . , t}.

(b) computes dι,i ←
t∏

j=1

(dι,i,j)
cj for i = 0, . . . , n− 1, where cj’s are the Lagrange interpolation coefficients.

(c) concludes aι ∈ B, if dι,i = 1 for i ∈ {0, . . . , n− 1}; otherwise dι,i is a random integer.

4. When this process concludes, C learns A ∩B.

Figure 1. Privacy-preserving set intersection protocol

In the above protocol, the client C first encrypts each ele-
ment aι of her dataset by using her public key as Epk(aι)
for ι ∈ {0, . . . ,m − 1} and broadcasts all these en-
crypted elements to t servers. For each encrypted ele-
ment Epk(aι), the servers S�j

(1 ≤ j ≤ t) compute
Epk(λ(aι − βi,�j

)) for i ∈ {0, . . . , n − 1}, and send
all the Epk(λ(aι − βi,�j

))’s back to C. The client C
then decrypts those Epk(λ(aι − βi,�j

))’s and computes

dι,i = f
λ

t∑
j=1

cj (aι−βi,�j
)

for each i = 0, . . . , n − 1. Note

that if aι = bi then
t∑

j=1

cj (aι − βi,�j
) = 0. Therefore, the

client C learns that aι ∈ B if there exists i ∈ {0, . . . , n−1}

such that f
λ

t∑
j=1

cj (aι−βi,�j
)

= 1. When all the steps are fin-
ished, C learns A ∩B.
Security of the Construction. The two theorems given be-
low characterize the security of the set intersection protocol.
Their proofs can be found in Appendix B and C.

Theorem 1 Given the set intersection protocol described in
Fig. 1 and assuming that the underlying homomorphic en-
cryption is semantically secure, then each of the contacted
servers cannot distinguish inputs generated by the client C
from random integers with a non-negligible probability.

Theorem 2 Assuming that the discrete logarithm problem
is hard, the client C cannot compute any information about
shared coefficients {β0,�, . . . , βn−1,�} (1 ≤ � ≤ w) dis-
tributed by the provider P . In addition, P’s privacy is t-
secure.

3.2 Computation of the Cardinality of
Set-Intersection

By introducing a permutation into our privacy-
preserving distributed set intersection protocol, we develop
an algorithm only computing the cardinality of the datasets’
intersection |A∩B|. Denote Pm n the set of all permutations
of {1, . . . , m n}. Assume that P has a private permutation
function π, chosen uniformly at random from Pm n, which
is given to the w servers. This scheme is represented as
Fig. 2.

The protocol, given in Fig. 2, works in the same way
as the distributed set intersection protocol with the addition
that all servers run the same permutation function π on their
computed cryptograms. This is to prevent the client C from
learning the set intersection A ∩B.
Security of the Construction. The security model and the
proof of this protocol are similar to our set-intersection pro-
tocol presented in Sect. 3.1 as the permutation π was chosen
uniformly at random from Pm n.

3.3 Efficiency of our Protocols
In this part, we study the communication and computa-

tion cost of our two constructions.
Communication Cost. For both protocols, C broadcasts a
set of m encrypted values to t servers while each contacted
server S�j

responds with mn messages. Thus, the com-
plexity of the communication cost for both constructions
are O(tmn× log2 p) bits.
Computation Cost. It should be noticed that operations in
Zp can be done in O(log2

2 p) bit operations.
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Input: The client C has a set of data A. Each server S�(1 ≤ � ≤ w) knows the random value λ, the permutation
function π and the shared coefficients {β0,�, . . . , βn−1,�} of the polynomial F (y) (whose coefficients are the elements
of the provider’s dataset B).
Output: The client C learns |A ∩B|.

1. C generates a new key pair (pk, sk)← K(1l), and then broadcasts {Epk(a0), . . . , Epk(am−1)} with her public key
to t servers S�1 , . . . , S�t

.

2. For j = 1, . . . , t each contacted server S�j

(a) computes τυ,i,j ← Epk(λ(aι − βi,�j
)) for ι ∈ {0, . . . , m− 1} and i ∈ {0, . . . , n− 1}.

(b) obtains {τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j}
← π(τ0,0,j , . . . , τ0,n−1,j , τ1,0,j , . . . , τm−1,n−1,j).

(c) sends {τπ(0,0),j , . . . , τπ(0,n−1),j , τπ(1,0),j , . . . , τπ(m−1,n−1),j} to C.

3. For ι′ = 0, . . . ,m− 1, the client C

(a) computes dπ(ι′,i),j ← Dsk(τπ(ι′,i),j) for i = 0, . . . , n− 1 and j = 1, . . . , t.

(b) computes dπ(ι′,i) ←
t∏

j=1

(
dπ(ι′,i),j

)cj for i = 0, . . . , n−1, where cj’s are Lagrange interpolation coefficients.

4. When this process concludes, C learns |A ∩B| as it is the number of dπ(ι′,i)’s equal to 1.

Figure 2. Privacy-preserving cardinality of set-intersection protocol

For our first protocol, C needs m + 2 modular expo-
nentiations and m modular multiplications to encrypt her
dataset, tmn decryptions, tmn modular exponentiations
and mn (t − 1) modular multiplications for Lagrange in-
terpolation. Note that each decryption represents one mod-
ular multiplication and one modular exponentiation. Each
server S�j

executes mn modular exponentiations and mul-
tiplications when processing its shares. So, this proto-
col uses O(tmn × log2 p) modular multiplications con-
sidering that a single modular exponentiation takes at most
�log2(p− 1)	modular multiplications using the Fast Expo-
nentiation algorithm presented in [19].

The cost of our second protocol is the cost of the first
one plus t executions of the permutation π. Assuming that
π is represented by its binary permutation matrix Mπ , each
of these t queries has a negligible cost since π is a simple
reordering of its inputs (Mπ has a single coefficient equal
to 1 per row).

Therefore, the complexity of computation cost of these
two constructions is O(tmn× log3

2 p) bits.

4 Conclusion and Future Work

In this paper, we have proposed a protocol for the
privacy-preserving set intersection computation in a dis-
tributed environment. Our construction was based on

Shamir’s secret sharing scheme and homomorphic encryp-
tion. With our construction, each server only held the shares
of the original provider dataset, and consequently the pri-
vacy of that dataset was protected. Moreover, we have
shown that, using a permutation, we could efficiently com-
pute the cardinality of the set intersection.

Further research will be to focus on providing a solution
of the above distributed set intersection and the cardinality
of set intersection problems against an active adversary.
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A Proof of Lemma 1

Assume that t participants pool their shares together. The
Vandermonde matrix V corresponding to these participants
is constructed as follows:

V =




1 xi1 . . . xt−1
i1

...
...

. . .
...

1 xit
. . . xt−1

it


 .

Since xij
’s are pairwise distinct, V is invertible. Let

V −1 = (vi,j)1≤i,j≤t. By taking first row of V −1 and first

column of V , we obtain
t∑

j=1

v1,j = 1 as V −1 × V = Idt

where Idt denotes the t× t identity matrix.
Let P1(x), . . . , Pt(x) be t polynomials, such that

Pj(x) :=
∏

1≤k≤t

k �=j

x−xik

xik
−xij

for any 1 ≤ j ≤ t. Note that

these polynomials have a nice property, namely

∀j ∈ {1, . . . , t}, Pj(xij′ ) =
{

1 if j = j′

0 otherwise .
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Those polynomials also can be rewritten as:

∀j ∈ {1, . . . , t} Pj(x) =
t∑

k=1

γj,k xk−1 where each

γj,k ∈ Zp.
We now build a t× t matrix:

D =


γ1,1 γ2,1 · · · γt,1

...
...

. . .
...

γ1,t γ2,t · · · γt,t


 .

The jth column of D represents the coefficients of Pj(x).
We claim that: V −1 = D. It is sufficient to prove that V ×D
is a identity matrix.

Let V × D = W = (ως,η) 1 ≤ ς ≤ t
1 ≤ η ≤ t

. Fixing

ς, η ∈ {1, . . . , t}, the coefficient ως,η is obtained by us-
ing the ςth row of V along with the ηth column of D as

ως,η =
t∑

ρ=1
xρ−1

iς
γη,ρ. Notice that ως,η = Pη(xiς

). Using

the previous property of the polynomial, we obtain

ως,η =
{

1 if η = ς
0 otherwise .

This property demonstrates that W is an identity matrix,
which proves that V −1 = D as the inverse is unique.

Since the sum of the coefficients of the first row of V −1

is 1, we get
t∑

j=1

v1,j =
t∑

j=1

γj,1 = 1. Notice that γj,1

is the constant coefficient of Pj(x), so ∀j ∈ {1, . . . , t},
γj,1 = Pj(0) =

∏
1≤k≤t

k �=j

xik

xik
−xij

. Combining the previous

two findings, we can conclude that:

t∑
j=1


 ∏

1≤k≤t

k �=j

xik

xik
− xij


 = 1.

B Proof of Theorem 1

Denote 〈g〉, the subgroup of Z
∗
p generated by g. By defi-

nition, the order of 〈g〉 is q.
The client C sends the group of t servers the encrypted

values Epk(a0), . . . , Epk(am−1) where ∀ι ∈ {0, . . . , m−1}
Epk(aι) = (gr, hr faι). Thus, the group of t servers obtains
gr, hr fa0 , . . . , hr fam−1 . The elements g and h are two
generators of the multiplicative group 〈g〉. As r is chosen
uniformly at random over 〈g〉, gr and hr are two elements
uniformly distributed over 〈g〉.

As the aι’s are all distinct, we get: faι �≡ faι′ mod p
when ι �= ι′. If hr �≡ 1 mod p then each element
hr faι mod p is uniformly distributed over 〈g〉 and we have:

Pr(hr �≡ 1 mod p) = Pr(r �≡ 0 mod q) = 1− 1
q

So, we deduce that hr fa0 , . . . , hr fam−1 are m pairwise
distinct elements uniformly distributed over 〈g〉 with prob-
ability 1 − 1

q as the same value r is used for each of these
elements.

As the discrete logarithm problem is assumed to be hard
over Zp (DDH assumption), the group of t servers cannot
compute r from gr with non-negligible probability in poly-
nomial time as a function of the bit size of p. Therefore,
given the above analysis, we deduce that the t servers can-
not distinguish the m elements hr fa0 , . . . , hr fam−1 from
m distinct elements of 〈g〉 drawn uniformly.

C Proof of Theorem 2

We first consider that C contacts t servers. At the end of
Step 3.b, we have: ∀ι ∈ {0, . . . , m−1},∀i ∈ {0, . . . , n−1}

dι,i = f
λ

t∑
j=1

cj (aι−βi,�j
)

Using the proof of Lemma 2, we get:

dι,i = f
λ

(
aι−

(
t∑

j=1
cj βi,�j

))

Using that lemma, we deduce that aι ∈ B if and only if

∃i0 ∈ {0, . . . , n− 1} aι −

 t∑

j=1

cj βi0,�j


 = 0

for each aι from A. Now, assume that aι is not an element
of B. We have:

∀i ∈ {0, . . . , n− 1} aι −

 t∑

j=1

cj βi,�j


 �= 0

Since λ has been chosen uniformly at random from Zq\{0},
we deduce that the element λ

(
aι −

(
t∑

j=1

cj βi,�j

))
is

uniformly distributed over Zq \ {0} as well. As the discrete
logarithm problem is assumed to be hard over Zp (DDH as-
sumption), this exponent is not computable in polynomial
time with non-negligible probability by C and thus the co-
efficients dι,0, . . . , dι,n−1 appeared to be uniformly drawn
from 〈g〉 to the client C as f generates that multiplicative
group.

We now assume that C only contacted t − 1 servers
S�1 , . . . , S�t−1 . In this situation, the polynomial F (y) rep-
resenting the provider dataset B cannot be reconstructed
uniquely to the secret polynomial of a (t, w)-Shamir se-
cret sharing scheme when only t − 1 participants work to-
gether. As a consequence, the missing participant involves
that F (y) can take p equally probable values where a single
one is correct. Thus, C cannot recover A ∩ B even if he
colludes with t − 1 servers as he cannot reconstruct F (y)
and use (2) at Step 3.b.
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