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We call F : {0, 1}n × {0, 1}n → {0, 1} a symmetric XOR function if for a function

S : {0, 1, ..., n} → {0, 1}, F (x, y) = S(|x⊕ y|), for any x, y ∈ {0, 1}n, where |x⊕ y| is the
Hamming weight of the bit-wise XOR of x and y. We show that for any such function,
(a) the deterministic communication complexity is always Θ(n) except for four simple
functions that have a constant complexity, and (b) up to a polylog factor, both the

error-bounded randomized complexity and quantum communication with entanglement
complexity are Θ(r0 + r1), where r0 and r1 are the minimum integers such that r0, r1 ≤
n/2 and S(k) = S(k + 2) for all k ∈ [r0, n − r1).
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1 Introduction

The two-party interactive communication model was introduced by Yao [1] in 1979, and has

been widely studied since then for its simplicity and its power in capturing many of the

complexity issues of communication. Let X and Y be two sets and F : X × Y → {0, 1}
be a Boolean function. In this model, Alice has an input x ∈ X, Bob has an input y ∈ Y ,

and they want to compute F (x, y) by exchanging messages. If the communication protocol

is deterministic, the least number of bits they need to exchange on the worst-case input is

the deterministic complexity, denoted by D(F ). If they are allowed to share random bits, the

least number of bits they need to exchange in order to compute F with at least 2/3 of success

probability is the randomized complexity of F , denoted by R(F ). Yao also initiated the study

of quantum communication complexity [2], denoted by Q∗(F ), which is the least number of

quantum bits that Alice and Bob need to exchange in order to compute F with at least 2/3
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of success probability for any input. In this paper, we allow a quantum protocol to start with

an unlimited amount of quantum entanglement. Evidently, we have Q∗(F ) ≤ R(F ) ≤ D(F ).

A major research theme in communication complexity is to identify the asymptotic be-

havior of those variants of complexities for specific and often elementary functions. A closely

related focus is to identify functions on which the maximum gaps among those complexities

are achieved. Despite numerous studies, both types of questions are often difficult to answer.

For an overview of the field, an interested reader is referred to [3, 4, 5, 6]. In this paper,

we focus on the communication complexity of a class of functions that we call symmetric

XOR functions, and our main results are tight, or almost tight, characterizations of their

deterministic, randomized and quantum complexities.

To state our main results, let us define the necessary notation. Throughout this paper, the

length of the inputs to Alice and Bob is denoted by n. The Hamming weight of z ∈ {0, 1}n is

denoted by |z|. The bit-wise XOR of x, y ∈ {0, 1}n is denoted by x ⊕ y. A Boolean function

f : {0, 1}n → {0, 1} is symmetric if f(x) depends only on |x|, for all x.

Definition 1 A communication problem F : {0, 1}n × {0, 1}n → {0, 1} is a XOR function if

for a Boolean function f : {0, 1}n → {0, 1}, F (x, y) = f(x ⊕ y), for all x, y ∈ {0, 1}n. It is

said to be symmetric whenever f is symmetric. A symmetric XOR function is trivial if the

function or its negation has f(x) = 0, for all x, or f(x) = |x| mod 2, for all x.

If f ≡ 0, evidently D(F ) = 0. If f is the XOR function, D(F ) = 1 since it suffices for

Alice to send b = |x| mod 2 and Bob then calculates b+ |y| mod 2 = F (x, y). For nontrivial

symmetric XOR functions, we have the following.

Theorem 1 For any nontrivial symmetric XOR function F : {0, 1}n × {0, 1}n → {0, 1},
D(F ) = Θ(n).

To prove the above result, we make use of the following fact that relates D(F ) to the rank

of the matrix MF = [F (x, y)]x,y∈{0,1}n , denoted by rank(MF ).

Lemma 1 ([7]) For any F : {0, 1}n × {0, 1}n → {0, 1}, D(F ) = Ω(log rank(MF )).

It turns out that for a XOR function F , rank(MF ) is precisely the number of non-zero

Fourier coefficients of f . Recall that the Fourier coefficient f̂(w), where w ∈ {0, 1}n, is defined

as

f̂(w) =
1

2n

∑

x∈{0,1}n

(−1)x·wf(x). (1)

Our main technical contribution is the following lemma.

Lemma 2 For all sufficiently large n, and any symmetric function f : {0, 1}n → {0, 1} other

than the constant 0 function, the parity function and their negations, there exists w ∈ {0, 1}n

such that f̂(w) 6= 0 and n/16 ≤ |w| ≤ 15n/16.

By the symmetry of f , the above lemma implies that f̂ has 2Ω(n) non-zero Fourier coeffi-

cients, thus rank(MF ) = 2Ω(n). Theorem 1 then follows from Lemma 2. Another consequence

is that D(MF ) = Θ(log rank(MF )) for all symmetric XOR functions, since both D(F ) and

rank(MF ) is a constant when F is trivial. That is, symmetric XOR functions satisfy the

Log-Rank Conjecture of Lovász and Saks [8], which states that for all Boolean functions F ,

D(F ) = logΩ(1) rank(MF ).
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We now turn to our second main result, which is on the randomized and the quantum

complexities of symmetric XOR functions. The following two parameters of F are critical to

the complexities.

Definition 2 Let F : {0, 1}n×{0, 1}n → {0, 1} be a symmetric XOR function, and F (x, y) =

S(|x ⊕ y|), where S : {0, 1, · · · , n} → {0, 1}. Define r0 = r0(F ) and r1 = r1(F ) to be the

minimum numbers r′0 and r′1, respectively, such that r′0, r
′
1 ≤ n/2, and S(k) = S(k + 2), for

any k ∈ [r′0, n − r′1). Define r = r(F ) = max{r0, r1}.
Theorem 2 For any symmetric XOR function F : {0, 1}n × {0, 1}n → {0, 1}, Q∗(F ) =

Ω(r), and R(F ) = O(r log2 r log log r).

A corollary of the above theorem is the confirmation of the so-called Log-Equivalence

Conjecture [9], when restricted to symmetric XOR functions. The Log-Equivalence Conjecture

states that quantum and randomized communication complexities of any Boolean functions

are polynomially related.

Before we give the details of our proofs, we relate our results to some other closely related

works. That we focus on symmetric XOR functions was inspired by Razborov’s work [10]

on what he called “symmetric predicates” and subsequent works. A function F : {0, 1}n ×
{0, 1}n → {0, 1} is a symmetric predicate if F (x, y) = S(|x ∧ y|), where S : {0, 1, ..., n} →
{0, 1} and x ∧ y ∈ {0, 1}n is the bit-wise AND of x and y. Let ℓ0 and ℓ1 be the minimal

integers such that ℓ0, ℓ1 ≤ n/2 and that S is constant in [ℓ0, n − ℓ1). Razborov showed that

Q∗(F ) = Θ∗(
√

nℓ0 + ℓ1). Our quantum lower bound is a technical consequence of Razborov’s

lower bound. Our classical upper bound follows the same strategy of Huang et al. [11] in

constructing a O(d log d)-bits randomized protocol to decide if |x ⊕ y| > d.

We prove Theorem 1 by Fourier analysis of Boolean functions, which is a powerful tool for

the study of Boolean functions complexity. The course notes [12] provide an excellent survey

on the subject. The closest result to Lemma 2 that we are aware of is by Lipton et al. [13] on

a quantity ∆(n), which is the minimum integer n′ such that any symmetric f other than the

parity functions and the constant 0 or 1 functions has a non-zero Fourier coefficient f̂(w) with

1 ≤ |w| ≤ n′. They showed that ∆(n) = O(n/ log n), which has applications in computational

learning theory. Their method, however, does not seem to be applicable for our question.

Finally, we note that class of XOR functions is a subset of three classes of functions studied

previously.

(i) Shi and Zhu [9] studied what they called block-composed functions, i.e. functions F :

{0, 1}kn × {0, 1}kn → {0, 1} that can be represented as F (x1, x2, ..., xn, y1, y2, ..., yn) =

f(g(x1, y1), g(x2, y2), ..., g(xn, yn)), for all xi, yi ∈ {0, 1}k, and some functions f : {0, 1}n →
{0, 1}, g : {0, 1}k × {0, 1}k → {0, 1}. Write such an F as f2g. An XOR function is

thus f2⊕ with k = 1. They showed that Q∗(F ) is lower-bounded by the approximate

polynomial degree of f when certain conditions on k and g are satisfied. Their bound

does not apply to XOR functions as they require k to be sufficiently large, and that not

all XOR functions are block-composed functions with a k ≥ 2.

(ii) Independent of [9], Sherstov[14] studied what he called pattern matrices. Those are

block-composed functions for a fixed g, g(x, (y, w)) = xy ⊕ w, where x ∈ {0, 1}k is

Alice’s block, (y, w) is Bob’s block with y ∈ {1, 2, ..., k}, w ∈ {0, 1}, and xy is the

y’th bit of x. Sherstov showed that for such functions Q∗(F ) is lower bounded by the
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approximate polynomial degree of f , multiplied by log k. A XOR function is such a

function with k = 1. However, Sherstov’s lower bound vanishes on this case.

(iii) Aaronson [15] studied what he called subset problems. Let G be a group and S be a

subset of G. A subset problem Subset(G,S) is to decide if x + y ∈ S, where x, y ∈ G

are the inputs of Alice and Bob, respectively. A XOR function is a subset function with

G being the n-fold direct sum of the 2 element finite field. Aaronson derived a general

lower bound on the one-way quantum communication complexity of a subset problem.

In contrast, we study the two-way communication complexity.

We give the proofs for our main theorems in the next two sections before concluding with

a discussion on open problems.

2 Deterministic communication complexity

In this section we prove Theorem 1, which states that any nontrivial symmetric XOR function

must have linear deterministic communication complexity.

Proof of Theorem 1. Let H = [(−1)x·y]x,y∈{0,1}n be the 2n × 2n Hadamard Matrix and DF

be the diagonal matrix with the diagonal entries [f̂(w)]w∈{0,1}n . Then MF = HDF H. Since

H is orthogonal,

rank(MF ) =
∣

∣

∣
{w ∈ {0, 1}n : f̂(w) 6= 0}

∣

∣

∣
. (2)

By the symmetry assumption on f , f̂ is also symmetric. That is, if f̂(w) 6= 0, f̂(w′) 6= 0 for

all w′ with |w′| = |w|. Therefore, by Lemma 2, to be proved below,
∣

∣

∣
{w : f̂(w) 6= 0}

∣

∣

∣
= 2Ω(n).

The theorem follows from Eqn. (2) and Lemma 1 2.

We now prove Lemma 2, which states that for any symmetric f : {0, 1}n → {0, 1}, there

exists a w ∈ {0, 1}n such that |w| ∈ [n/16, 15n/16] and f̂(x) 6= 0.

Proof of Lemma 2. Suppose that for a symmetric f , f̂(w) = 0 for all w ∈ {0, 1}n with

|w| ∈ [n/16, 15n/16], we shall prove that f is one of the four excluded functions.

Let fk = f(1k0n−k) and f̂k = f̂(1k0n−k). And for a polynomial g and an integer s, let

Ts(g) denote the coefficient of the monomial xs in g and G be the polynomial
∑n

s=0 fsx
n−s.

Then by the symmetry of f and f̂ ,

f̂k =
1

2n

∑

y∈{0,1}n

f(y)(−1)1
k0n−k·y =

1

2n

∑

y

f(y)(−1)y1+···+yk .

Grouping y by its Hamming weight, we have

f̂k =
1

2n

n
∑

s=0

fs

∑

|y|=s

(−1)y1+···+yk =
1

2n

∑

s

fs

k
∑

t=0

(−1)t

(

k

t

)(

n − k

s − t

)

.

Since
∑

t(−1)t
(

k
t

)(

n−k
s−t

)

is the coefficient of the monomial xs in the polynomial (1 − x)k(1 +

x)n−k and fs is that of xn−s in the polynomial G,

f̂k =
1

2n

∑

s

fsTs((1 − x)k(1 + x)n−k) =
1

2n
Tn(G · (1 − x)k(1 + x)n−k).
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Thus the assumption that f̂k = 0 for all t ≤ k ≤ n − t is equivalent to

Tn(G · (1 − x)k(1 + x)n−k) = 0, for all k, t ≤ k ≤ n − t.

It follows that for any t ≤ i, j ≤ n − t with i + j ≤ n,

0 =

n−j
∑

s=i

Tn

(

G · (1 − x)s(1 + x)n−s

(

n − i − j

s − i

))

= Tn

(

G · (1 − x)i(1 + x)j

n−j
∑

s=i

(

n − i − j

s − i

)

(1 − x)s−i(1 + x)n−i−j−(s−i)

)

= Tn(G · (1 − x)i(1 + x)j · 2n−i−j).

Therefore, for any i, j with t ≤ i, j ≤ n − t and i + j ≤ n, we have

Tn(G · (1 − x)i(1 + x)j) = 0. (3)

Let u be an integer with t ≤ u ≤ n/2. We set i = u. Setting j = u, and j = u+1, respectively,

Eqn. (3) becomes

Tn(G · (1 − x2)u) = 0,

and

0 = Tn(G · (1 − x2)u(1 + x)) = Tn(G · (1 − x2)u) + Tn−1(G · (1 − x2)u).

Thus

Tn−1(G · (1 − x2)u) = 0.

Setting j = u + 2 in Eqn. (3), we have

0 = Tn(G · (1 − x2)u(1 + x)2)

= Tn(G · (1 − x2)u) + 2Tn−1(G · (1 − x2)u) + Tn−2(G · (1 − x2)u).

Therefore

Tn−2(G · (1 − x2)u) = 0.

Continuing this process till i = u, j = n − u, we have

Ts(G · (1 − x2)u) = 0, for all s, 2u ≤ s ≤ n.

Expanding G · (1 − x2)u, we have

Ts(G · (1 − x2)u) = Ts

(

∑

k

fkxn−k
∑

l

(

u

l

)

(−1)lx2l

)

=
∑

l

(

u

l

)

(−1)lfn−s+2l = 0.

If u is an odd prime, for all l, 1 ≤ l ≤ u − 1, u |
(

u
l

)

. Thus

u | (fn−s − fn−s+2u),

since both fn−s and fn−s+2u are either 1 or 0. This implies that fn−s = fn−s+2u. That is,

for any odd prime u ∈ [t, n/2], it holds that for any s with s ≤ n − 2u,

fs = fs+2u.
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Bertrand’s Postulate[16] states that for any integer m > 3, there is at least one prime

number between m and 2m. So we can take two different primes p, q ∈ [t, n/4] (recall that

t = n/16) when n ≥ 32, such that fs = fs+2p (0 ≤ s, s + 2p ≤ n), and fs = fs−2q (0 ≤
s − 2q, s ≤ n). Using Chinese Remainder Theorem, we will get two positive integers a, b

such that 2ap − 2bq = 2. Because 2p + 2q < n, starting from arbitrary s, every time we can

either add 2p or subtract 2q to keep it in the interval [0, n], until we have done a additions

or b subtractions. If all a additions have been done, we continue to subtract 2q until the b

subtractions have been done. Finally we will get s + 2. This implies fs = fs+2 for arbitrary

s. Then f must be one of the four functions excluded in the statement of the theorem 2.

3 Randomized and quantum complexities

In this section, we prove theorem 2. The proof has two parts, a lower bound proof and a

protocol. Both proofs are along the same line as those in Huang et al. [11] on the Hamming

distance functions.

Proposition 3 For any symmetric XOR function F (x, y) = S(|x ⊕ y|), Q∗(F ) = Ω(r).

To prove this lower bound, we restrict the problem on those pairs of inputs with an equal

Hamming weight. For an integer k, where 0 ≤ k ≤ n, define Xk = Yk = {x ∈ {0, 1}n : |x| =

k}. For a function S : {0, 1, · · · , n} → {0, 1}, let FS be the function FS(x, y) = S(|x ⊕ y|).
The restriction of FS on Xk × Yl, where 0 ≤ k, l ≤ n, is denoted by Fk,l,S . We shall use the

following key lemma of Razborov [10].

Lemma 3 (Razborov[10]) Suppose k ≤ n/4 and l ≤ k/4. Let S : {0, 1, · · · , k} → {0, 1} be

any Boolean predicate such that S(l) 6= S(l− 1). Let fn,k,S : Xk ×Yk → {0, 1} be the function

such that fn,k,S(x, y) = S(|x ∧ y|). Then Q∗(fn,k,S) = Ω(
√

kl).

Proof of Proposition 3. Any XOR function F (x, y) = S(|x⊕ y|) can be decomposed into two

parts F = FS0
∧ FS1

, where FS0
and FS1

are XOR functions with the underlying functions

S0, S1 : {0, 1, · · · , n} → {0, 1} defined as follows: S0(t) = S(t) when t is even, otherwise

S0(t) = 0; S1(t) = S(t) when t is odd, otherwise S1(t) = 0. Since Alice and Bob can compute

the parity of |x ⊕ y| through a O(1)-bits protocol,

Q∗(FS0
), Q∗(FS1

) ≤ Q∗(F ) + O(1). (4)

Let r0
0 = r0(S0) and r0

1 = r1(S0). We have S0(r
0
0 − 1) 6= S0(r

0
0 + 1). We want to show

Q∗(FS0
) = Ω(r0

0).

If r0
0 ≤ 3n/8, this will be proved by constructing another predicate S′ : [k] → {0, 1}

for Lemma 3 by S′(t) = S0(2k − 2t), here k is a parameter determined later. We define a

predicate fn,k,S′ on Xk × Yk by fn,k,S′ = S′(x ∧ y). Because |x ⊕ y| = |x| + |y| − 2|x ∧ y|
for any x ∈ Xk and y ∈ Yk, the two functions Fk,k,S and fn,k,S′ are identical. Therefore,

Q∗(fn,k,S′) = Q∗(Fk,k,S0
).

Since S0(r
0
0 −1) 6= S0(r

0
0 +1), then S′(k− (r0

0 −1)/2) 6= S′(k− (r0
0 +1)/2). For r0

0 < 3n/8,

let k = [2r0
0/3], we have k ≤ n/4 and l ≤ k/4. By lemma 3, we have Q∗(FS0

) ≥ Q∗(Fk,k,S0
) =

Q∗(fn,k,S′) ≥ Ω(
√

kl) = Ω(r0
0).

When r0
0 ≥ 3n/8, we will reduce to the previous case. Let n′ = 3n/4 and consider the

function S′
0 : [n′] → {0, 1} defined by S′

0(x) = S0(n − n′ + x). Notice that the corresponding

r0
0 for S′

0 is r0
0 −(n−n′), which satisfies r0

0 −(n−n′) ≤ n/2−(n−n′) = n/4 ≤ 9n/32 = 3n′/8,
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and that FS′

0
(x, y) = S′

0(|x ⊕ y|) is embedded to F . Therefore, Q∗(FS0
) ≥ Q∗(FS′

0
) =

Ω(r0
0 − (n − n′)) = Ω(n) = Ω(r0

0).

Consider the function S′
1 with S′

1(x) = S1(1 + x). Since FS′

1
(x, y) = FS1

(0x, 1y), FS′

1
is

embedded in FS1
. Let r1

0 = r0(S1) and r1
1 = r1(S1). Then the corresponding r0(S

′
1) = r1

0 − 1.

Similar to the case of S0, we have Q∗(FS1
) ≥ Q∗(FS′

1
) ≥ Ω(r1

0 − 1) = Ω(r1
0).

Since r0 = max(r0
0, r

1
0), Eqn. [4] implies that Q∗(F ) = Ω(r0). Consider S̄(x) = S(n − x),

then the corresponding r0 of S̄ is exactly r1. Since FS̄(x, y) = F (x̄, y) (here x̄ means the bit-

wise flipping of x), FS̄ and F are actually equivalent so that we have Q∗(F ) = Q∗(FS̄) = Ω(r1).

Combining the lower bounds by r0 and r1, we have Q∗(F ) = Ω(max(r0, r1)) 2.

We now turn to the construction of a randomized protocol for symmetric XOR functions.

Recall that the Hamming distance function HAMn,d is defined as follows: HAMn,d(x, y) = 1

iff |x⊕ y| > d. Huang et al. [11] constructed an efficient randomized one-way communication

protocol for HAMn,d, where Bob is not allowed to send messages to Alice.

Lemma 4 (Huang et al. [11]) There is a randomized one-way communication protocol for

HAMn,d using O(d log d) bits.

We will make use of their protocol to prove the following.

Proposition 4 There is a O(r log2 r log log r) randomized protocol for any symmetric XOR

function F (x, y) = f(x ⊕ y).

Proof. We construct a public-coin randomized protocol as following. By solving HAMn,r

and HAMn,n−r using O(r log r) bits (to make the final failure probability to be small, this

step will be repeated for constant times), Alice and Bob decide which of the three intervals

that |x⊕y| lies: [r, n−r], [0, r), or [n−r, n], with high probability. If |x⊕y| ∈ [r, n−r], by the

definition of r, F only depends on the parity of |x⊕y|, which can be computed in O(1) bits of

communication. If |x⊕ y| ∈ [0, r)∪ (n− r, n], Alice and Bob apply a binary search for |x⊕ y|.
Each time they check a Hamming distance instance Hamn,k for some k ∈ [0, r)∩(n−r, n]. The

exact value of |x⊕ y| can be determined in O(log r) rounds. To output a correct answer with

probability more than 2/3, it suffices to make sure that the failure probability is ≤ 1/(4 log r)

in every round. This can be done by repeating the Hamming distance instance Θ(log log r)

times in each round. By Lemma 4, each round uses at most O(r log r log log r) bits. The total

cost of this protocol is therefore O(r log2 r log log r) 2.

In the above protocol, Alice and Bob interactively send messages to determine the exact

|x ⊕ y| by binary search in O(log r) rounds. When Bob are not allowed to send information

back to Alice, they need to enumerate all possible |x ⊕ y| in the interval [0, r) ∩ (n − r, n].

Enumeration of |x⊕y| = d can be done by solving two Hamming distance problems HAMn,d−1

and HAMn,d. To obtain large success probability finally, each problem must be repeated

O(log r) times. This leads to the following.

Proposition 5 There is a O(r2 log2 r) one-way randomized protocol for any symmetric XOR

function F (x, y) = f(x ⊕ y).

The lower bound in Theorem 3 is still true for one-way quantum communication because

one-way complexity is always larger than the corresponding two-way complexity. There re-

mains a quadratic gap between the lower bound and upper bound for the one-way complexity.
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4 Discussion

In addition to the above-mentioned question regarding one-way communication complexity, we

state two other open problems. Our result implies the correctness of the Log-Rank Conjecture

for the class of symmetric XOR functions. It will be interesting to extend this consequence to

the asymmetric case, and to make use of the fact that rank(MF ) = |{w : f̂(w) 6= 0}| remains

true for asymmetric f .

We may also consider the unbounded-error communication complexity of XOR functions.

The unbound-error complexity, equivalent with logarithm of sign-rank, has applications in

other areas such as circuit complexity, rigidity and PAC learning. Sherstov[17] proved that the

unbounded-error complexity of S(|x ∧ y|) is essentially |{t : S(t) 6= S(t + 1)}|. We conjecture

that the unbounded-error complexity of S(|x ⊕ y|) is essentially |{t : S(t) 6= S(t + 2)}|.
However, Sherstov’s approach does not seem to work for XOR functions because the core

technique used — pattern matrix cannot be embedded in a XOR function.
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